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Abstract
There are different models of devices for achieving a separation of mixtures of particles by
using the ratchet effect. On the other hand, it has been proposed that one could also control the
separation by means of appropriate interactions. Through Monte Carlo simulations, we show
that inclusion of simple interactions leads to a decrease of the ratchet effect and therefore also
a separation of the mixtures.

PACS numbers: 05.60.−k, 05.40.Jc, 05.10.Gg, 0.5.10.Ln

(Some figures may appear in colour only in the online journal)

1. Introduction

The ratchet effect is the appearance of a directional flow
in systems composed by particles lying on a substrate that
provides a spatially periodic and asymmetric potential in
the non-equilibrium regime. Since these currents depend (in
magnitude and direction) on the characteristics of the potential
and can vary with the kind of particles, several devices have
been proposed for achieving segregation of particles. The
proposed models are mostly based on one-dimensional (1D)
systems [1–3, 6, 7], neglecting any interaction among the
particles, and those who take into account the interactions
do not consider the hard core (HC) effect [4, 5]. This is
because its inclusion made it quite difficult to solve the
coupled Langevin equations for the time evolution or the
Fokker–Planck equation in the mean field approximation.

The study of 1D systems (which do not exist in nature)
has been justified considering its application to systems
characterized as ‘quasi-1D’ without a clear meaning. In
the absence of any interaction, this would mean that the
ratchet potential depends only on a coordinate, and the other
dimension is not relevant. However, with the inclusion of
interactions (or the HC), it is difficult to imagine a realistic
interaction which depends only on that coordinate. Therefore,
1D systems are not appropriate when interaction effects
are considered in transport phenomena. In particular, in 1D
systems the inclusion of the simplest realistic interaction

(the HC) completely prevents segregation; meanwhile, in the
quasi-dimensional systems as described above, this does not
occur. Thus, in order to elucidate the effect of the HC and
interactions on the transport and segregation of particles, we
use Monte Carlo techniques in two-dimensional (2D) systems.
These types of techniques have also been used to study the
diffusion in highly confined hard disc fluid mixtures [8].

2. The system

We consider a cell of length L with na particles in the ratchet
potential Vα(x), and nb particles were not affected by any
potential (neutral particles).
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For α > 1 the minima of the wells of the ratchet are
displaced to the right, while if α < 1, the minima are displaced
to the left. Figure 1 displays the potential equation (1) for
α = 1/3.

The temperature fluctuates between the two values Tl

(low) and Th (high), with periodic boundary conditions in the
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Figure 1. Ratchet potential with α = 1/3.

(a) (b)

Figure 2. Typical configuration of the system with only HC as
interaction (rhc = 0.04). Black (red) discs correspond to a
non-neutral (b neutral) particles. (a) Tl and (b) Th.

x-direction. For 2D systems the boundary condition in the
y-direction is hard wall. In our calculations we take as the unit
of energy the depth of the ratchet potential (Uo) and the unit
of length, the length of the cell (L).

We include the interactions vi, j (as a step function) given
by equation (2) among the particles besides the HC and vs

takes different values if the particles are identical or not. rmin

stands for the hard core radius (rhc) or 0 if this is neglected:

vi, j =

{
vs for rmin 6 ri, j 6 rmax,

0 for rmax 6 ri, j

(2)

with

r =

{√
(xi − x j )2 + (yi − y j )2 for 2D,

|xi − x j | for 1D.
(3)

Rejected Monte Carlo simulations for 1D and 2D systems
were performed in order to analyze the displacement of
particles. Each time a particle leaves the cell to the right
(left), it is re-injected to the left (right) and moves forward
(backward) one cell. After Np passes, we calculate the
histogram of the cell displacement, the fraction of particles
moving forward (backward) n cells ( f (n)), for each type
of particles. The temperature flips from high to low each
Nf � Np pass.

The system behavior under different bath temperatures
is displayed in figure 2. The figure shows the typical 2D
system configurations at two temperatures without interaction
(vs = 0 for all particles). The values were na = 50, nb = 50,
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Figure 3. The fraction of particles f (n) versus n number of cells
for 1D systems. The black (red) line corresponds to a non-neutral
(b neutral) particles: (A) with HC, (B) without interaction,
(C) without HC but attractive interaction among identical particles
and repulsive in the other case and (D) without HC but repulsive
interaction among identical particles and attractive in the others.
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Figure 4. The fraction of particles f (n) versus n number of cells
for 2D systems. Black (red) corresponds to a non-neutral (b neutral)
particles: (A) with HC, (B) with HC and attractive interaction
among identical particles and repulsive for the others, (C) with HC
and repulsive interaction among identical particles and attractive in
the other case, (D) without interaction, (E) the same as (C) but
without HC and (F) the same as (D) but without HC.

Np = 9 × 106, Nf = 104, L = 1, U0 = 1, vs = 0, Tl = 0.01 and
Th = 6, α = 1/3, rhc = 0.04 (for the 2D system). When the
additional interactions equation (2) is included, |vs | = 0.15
and rmax = 0.12.

In figure 3, panel (A) corresponds to the 1D system
with HC, where there is observed no particle separation,
and the histograms are identical although they present a
left drag. In figure 3(B) (without HC), diffusion is observed
only for neutral particles, while for the others a left drift is
found besides diffusion. The histograms shown in figure 3(C)
refer to attractive interaction among identical particles and
repulsive interaction in the other case, both show a left drift
without any segregation. In figure 3(D) the interaction is
repulsive among the identical particles and attractive in the
others. It is observed that the ratchet effect does not appear.
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Figure 5. The density of particles. The first row corresponds to HC interaction. The second row corresponds to HC and repulsive
interaction between identical particles and attractive interaction among different particles. The third row corresponds to HC and attractive
interaction between identical particles and repulsive interaction among others. The first (third) column corresponds to a particles at Th (Tl).
The second (fourth) column corresponds to b particles (neutral) at Th (Tl).

As expected, the inclusion of HC eliminates any
possibility of segregation of particles in the 1D system (see
figure 3(A)). Even when HC is not considered, if there is
repulsion between particles of different types, there is an
effective HC at Tl (see figure 3(C)). In some 1D models
without HC [4, 5], opposite displacements for different kinds
of particles are obtained by controlling the interaction. In
our case this behavior was not obtained. This is due to
the repulsive interaction works as an effective HC at low
temperatures, so there is always a drag effect.

For 2D systems, taking into account the HC effect as
the only interaction present, the neutral particles are dragging
to the left (see figure 4(A)). In figure 4(B) is displayed the
effect of attraction among identical particles and repulsion
in different particles, and in figure 4(C) the interaction
is repulsive among identical particles and attractive in the
different particles. In both cases the ratchet effect diminishes,
although the drag remains from neutral particles to the left.
In figures 4(D)–(F) the interactions are the same as above but
without HC.

The inclusion of HC has significant effects as can be seen
by comparing figures 4(A) and (D). This interaction in all
cases decreases the possibility of segregation and diffusion
(compare figures 4(B) and (E) or figures 4(C) and (F)). By
adding the interactions equation (2) to the system with HC,
it can be seen that the segregation diminishes considerably
(figure 4(B)) or disappears completely (figure 4(C)).

Figure 5 shows the particle density for the cases discussed
above (2D and HC). Panels 1–4 have only HC interaction
between particles, panels 5–8 have repulsive interaction
between identical particles and attractive interaction among
different ones, and panels 9–12 have attractive interaction
between identical particles and repulsive among others. Panels

1, 2, 5, 6, 9 and 10 correspond to Th and the remaining
panels to Tl, while panels 1, 5, 3, 7, 9 and 11 correspond
to the a particles and the remaining to b particles (neutral).
The asymmetry is evident for the case without interaction.
By including interactions, the densities become similar (the
asymmetry disappears) and because of that, the ratchet effect
decreases.

3. Summary and conclusions

The effect of HC eliminates the possibility of segregation in
1D systems. Even if HC is not considered, when repulsive
interactions between particles of different type are included
there is an effective HC at Tl. On the other hand, always
neglecting the HC, if the interaction between identical
particles is repulsive and attractive among different particles,
the configurations for Tl are messy and the ratchet effect is
lost. In the 2D system the inclusion of HC has a significant
effect to diminish both diffusion and particle segregation. The
effect of other interactions considered here decreases even
further the achievement of segregation.
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