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ABSTRACT: Motivated by recent photodetachment experiments studying resonance structures
in the transition-state region of the F + CH4 → HF + CH3 reaction, the vibrational dynamics of
the precursor complex CH4·F

− is investigated. Delocalized vibrational eigenstates of CH4·F
− are

computed in full dimensionality employing the multiconfigurational time-dependent Hartree
(MCTDH) approach and a recently developed iterative diagonalization approach for general
multiwell systems. Different types of stereographic coordinates are used, and a corresponding
general N-body kinetic energy operator is given. The calculated tunneling splittings of the
ground and the lower vibrational excited states of the CH4·F

− complex do not significantly
exceed 1 cm−1. Comparing the converged MCTDH results for localized vibrational excitations
with existing results obtained by normal-mode-based (truncated) vibrational configuration
interaction calculations, significantly lower frequencies are found for excitations in the
intermolecular modes.

1. INTRODUCTION

Fundamental studies of elementary chemical reactions
increasingly focus on polyatomic systems consisting of more
than three or four atoms. The increased complexity of these
polyatomic reactions offers many interesting new questions and
challenges. Reactions of methane with different atoms such as
F, Cl, H, or O provide prototypical examples that are
extensively studied by experiment and theory.1−23 While
these studies typically describe the chemical reaction as a
reactive scattering process, recently, the F + CH4 → HF + CH3
system has also been investigated employing a transition-state
spectroscopy approach.24,25 In these experiments, photodetach-
ment of the anionic CH4·F

− complex generates the neutral
CH4·F system at an initial geometry close to the transition
state. The subsequent reaction then yields F + CH4 as well as
HF + CH3 products.
The low-resolution photodetachment spectrum of CH4·F

−

shows two broad peaks. The first peak shows a much higher
intensity, and the difference in electron binding energy between
the peaks is about 1300−1400 cm−1. This spectrum has very
recently also been studied theoretically by full-dimensional
wave packet dynamics calculations26 employing the multi-
configurational time-dependent Hartree (MCTDH) ap-
proach27,28 and potential energy surfaces (PESs) developed
by Bowman and co-workers.6,29 Here, a localized vibrational
state of CH4·F

− has been employed as the initial wave packet,
which was vertically excited to the PES of the neutral complex
by the photodetachment process. The calculations were
restricted to propagation times of about 100 fs and
correspondingly could not provide an energy resolution better
than 100 cm−1 . Experimentally, Neumark and co-workers
could also measure a high-resolution photodetachment
spectrum that shows interesting resonance structures super-
imposed on the first peak.25 The energy spacings seen there are
in the 10−30 cm−1 region and have not yet been addressed by
theoretical investigations.

Considering the high-resolution photodetachment experi-
ments, a fundamental question regarding the vibrational
structure of CH4·F

− arises. The PES of CH4·F
− shows four

symmetry-equivalent minima.29 In principle, the vibrational
ground state of CH4·F

− would thus be delocalized. Whether a
localized model can also provide a valid description depends on
the tunneling splitting of the delocalized eigenstates. These
splittings are mainly determined by the height and width of the
barrier separating the minima and by the mass of the tunneling
atoms. In CH4·F

−, the complex can change from one minimum
to another by only rotating the methane relative to the fluorine,
a motion that includes only movement of hydrogen atoms.
Furthermore, the height of the barriers separating the minima is
only about 4 kcal/mol. It should be noted that this value is
comparable to the barrier height found in malonaldehyde, a
benchmark proton-transfer system showing a tunneling
splitting of about 20 cm−1. The present work will investigate
whether a sizable tunneling splitting can also be found in the
CH4·F

− complex.
Czako ́ et al.29 already investigated the vibrational states of the

CH4·F
− complex. However, they employed normal coordinates

and a (single-reference) vibrational configuration interaction
(VCI)30,31 scheme. By construction, this approach enforces
localization of the vibrational states of CH4·F

− in a single
potential well. Thus, it cannot provide information concerning
tunneling splittings.
The accurate calculation of delocalized vibrational eigenstates

in polyatomic systems is a challenging task. There are only a
few examples of systems consisting of six or more atoms that
have been studied in full dimensionality, the molecular
hydrogen trimer (H2)3,

32 CH5
+,33 the protonated water dimer
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H5O2
+,34−38 or malonaldehyde.39−45 These calculations em-

ployed very elaborate discrete variable representation (DVR)
schemes,32,33 diffusion Monte Carlo based approaches,39,40,42 or
the MCTDH approach.34−39,41,43−45 In analogy to the
investigation of the symmetric double-well system malonalde-
hyde, the present work will use the MCTDH approach to study
the vibrational eigenstates of CH4·F

− .
The MCTDH calculations for malonaldehyde utilized the

symmetry of the double-well structure of the PES to reduce the
numerical effort. However, the schemes employed, which are
described in detail in ref 41, are restricted to specific
symmetries and cannot be employed for more complex
multiwell systems. In particular, they cannot be applied to the
Td-symmetric four-well PES of the CH4·F

− complex. Therefore,
very recently, a more general scheme was proposed that allows
one to utilize more general symmetries and multiwell structures
in MCTDH calculations of delocalized vibrational eigenstates.46

Studying CH4·F
−, the present work will present the first

application of this approach to a real molecular system.
To describe the large-amplitude motion in the intermolecular

coordinates of CH4·F
−, the present work employs curvilinear

coordinates. While standard Jacobi and Radau constructions are
used to define the underlying orthogonal vectors, the
parametrization of these vectors employs the recently
introduced stereographic coordinates.47 Originally, the stereo-
graphic coordinates were introduced to avoid relevant
singularities in the kinetic energy operator describing the H +
CH4 → H2 + CH3 reaction.21,22,47 In the present work, the
definition of the stereographic coordinates is extended. A
corresponding general N-body kinetic energy operator is
derived and applied to the study of the vibrational states of
CH4·F

−.
The article is organized as follows. The theory section

(section 2) starts with a description of the stereographic
coordinates and the corresponding general N-body kinetic
energy operator. Then, the MCTDH approach is briefly
reviewed, and the multiwell iterative diagonalization approach is
described. Section 3 focuses on the details of the CH4·F

−

system. The coordinate system, the PES, symmetry consid-
erations, and the wave function representation are discussed.
Then, the results are presented and discussed in section 4.
Concluding remarks complete this article.

2. THEORY
A. Stereographic Coordinates and an N-Body Kinetic

Energy Operator. The present work employs a generic N-
body kinetic energy operator that uses stereographic
coordinates to parametrize the vectors not involved in the
definition of the body-fixed frame. Stereographic coordinates
parametrize a vector r by its length r and the coordinates s,t,
which determine its orientation with respect to a reference
frame. Reference 47 introduced stereographic coordinates with
a projection that employs the south pole of the unit sphere to
construct the orientational coordinates s,t (see Figure 1a). The
s,t coordinates equal the x,y coordinates of the intersection
point of the equatorial plane (z = 0) and the line connecting
the south pole and the point on the unit sphere. Thus, s2 + t2 ≤
1 holds for the points of the northern hemisphere, while the
points of the southern hemisphere yield s2 + t2 > 1. The north
pole has the coordinates s = t = 0, whereas the south pole
cannot be represented. The formulas connecting spherical polar
coordinates (r,ϑ,φ) and Cartesian coordinates (x,y,z) with
stereographic ones read47
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Choosing ordinary spherical polar coordinates to derive the
kinetic energy operator, singularities appear at ϑ = 0 and π, that
is, for points lying on the whole z-axis. Utilizing the
stereographic coordinates defined above, only the negative
half of the z-axis cannot be represented. Consequently, these
coordinates yield a kinetic energy operator with no singularities
in the terms describing the nonembedding vectors. However,
the negative z-axis is not accessible by the dynamics of the
corresponding particle within this description.
In contrast to ref 47, this work also considers particles whose

motion does not exclude the negative z-axis but the positive z-
axis. To allow for a correct description of their dynamics, the
corresponding stereographic coordinates constructed via a
projection from the north pole are introduced (see Figure 1b).

Figure 1. Stereographic coordinates constructed via a projection from
the south pole or the north pole of the unit sphere are displayed in
panels (a) and (b), respectively.
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Here, the line that intersects the equatorial plane connects the
north pole with the point on the unit sphere. The points of the
southern hemisphere are mapped to the region inside of the
unit circle lying in the equatorial plane, while the points of the
northern hemisphere are mapped outside of this circle. The
south pole is located at s = t = 0, and the north pole cannot be
represented. The formulas corresponding to the ones given
above now read
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Please note that eqs 2 and 4 differ only in the signs of the z
coordinates. This can also be understood by inspecting Figure
1. There, the points on the sphere are chosen to be related by a
reflection through the equatorial plane, that is, they differ only
in the signs of their z coordinates.
Within the construction corresponding to Figure 1b, only the

positive half of the z-axis cannot be represented. Thus, by
employing both sets of stereographic coordinates (projection
from the south pole and from the north pole) simultaneously
for the derivation of the kinetic energy operator, each
nonembedding vector can be parametrized according to the
dynamically relevant region of the corresponding particle. This
avoids the appearance of singularities inherent when utilizing
ordinary spherical polar coordinates.
In the following, a generic kinetic energy operator

corresponding to stereographic coordinates is derived for a
molecular system that consists of N nuclei. After separation of
the overall translational motion, the system is described by
N − 1 vectors. A right-handed body-fixed frame is defined by
attaching the z-axis along the first vector r1 and constraining the
second vector r2 to lie in the positive half of the xz-plane. To
describe these two embedding vectors, the internal coordinates
are chosen as r1,r2, which denote the mass-weighted lengths,
and θ, which denotes the angle enclosed by the two vectors.
Further assuming that the N − 1 vectors employed are
orthogonal (e.g., a mixture of Jacobi and Radau vectors), the
kinetic energy operator with respect to the body-fixed frame
reads (see, e.g., ref 48 for a detailed discussion)
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Here, the {ri, i ≥ 3} are the mass-weighted vectors not used to
define the reference frame and Δri represents the corresponding
Laplace operator. T̂2V is the kinetic energy operator for a
triatomic system (or equivalently for a two-vector model).49 It
depends on the aforementioned three internal coordinates
r1,r2,θ and on the operator J ̂ − ∑i=3

N−1 L̂i. Here, J ̂ denotes the
angular momentum operator associated with the overall

rotation of the N-atomic system, and {L̂i, i ≥ 3} are the
angular momentum operators associated with the nonembed-
ding vectors. The explicit form of T̂2V reads
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J2̂V is the angular momentum operator associated with the
overall rotation of the triatomic system. It should be noted that
the volume element v = r1

2r2
2 sin θ is incorporated in the

operator given above (i.e., T̂2V → v1/2T2Vv
−1/2). Moreover,

angular momentum operators J2̂V,α that obey the anomalous
commutation relations50 are used in contrast to ref 49. Utilizing
this explicit form of T̂2V in the expression of eq 5, the kinetic
energy operator for the N − 1 vector model
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is obtained. To derive an explicit form of the kinetic energy
operator, the angular momentum operators L̂i have to be
expressed in the stereographic coordinates s,t introduced above.
The corresponding equation reads
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Again, the volume element v = 4r2/(1 + s2 + t2)2 is incorporated
in the operator equation above.47 σ determines if the
stereographic projection coordinates are constructed using
the south pole (σ = 1) or the north pole (σ = −1) projection.
Thus, the corresponding angular momentum operators differ
only in the signs of the respective x and y components. The
squared form L̂2 is equal for both constructions and reads
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In eq 7, each L̂i with i ≥ 3 can now be described utilizing one of
the two types of stereographic coordinates presented above.
This choice should be made in a way to provide an efficient
description of the dynamically relevant regions of the respective
particle considered.
B. MCTDH Approach. The MCTDH approach27,28,51

provides an efficient method for the accurate simulation of
multidimensional quantum dynamics. In the present work, the
state-averaged MCTDH scheme52 is used. The wave function
ansatz reads
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A set of P wave packets Ψp is represented within a common
basis of time-dependent single-particle functions (SPFs) ϕji

1;κ

using the time-dependent expansion coefficients Aj1,...,jd,m
1 . In the

original MCTDH scheme,27,28 each ϕji
1;κ is itself expanded in an

underlying time-independent basis or equivalently on a grid
utilizing a discrete variable representation (DVR)53−55 or a fast
Fourier transform (FFT) scheme56
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This scheme corresponds to a two-layer representation, where
the superscripts 1 and 2 denote the upper and lower layers,
respectively. In the multilayer extension of the MCTDH
approach,57,58 the ϕjκ

1;κ can be multidimensional functions which
themselves are recursively represented by other sets of SPFs
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Here, ϕm
1;κ depends on the multidimensional coordinate qκ

1,
which combines a set of coordinates q1

2;κ, ..., qdκ
2;κ. This type of

representation can be recursively repeated for the functions
ϕji
2;κ,i, resulting in a tree-like scheme, until it is terminated by a

bottom layer of time-independent functions, as shown in eq 11.
For the integration of the MCTDH equations of motion,

specially adapted propagation schemes can be utilized.59,60

Specifically, the present work employs the CMF2 scheme of ref
60. The evaluation of potential energy matrix elements
appearing in the equations of motion is performed via the
correlation discrete variable representation (CDVR).58,61−63

C. Multiwell Iterative Diagonalization. The MCTDH
approach can be employed to calculate eigenstates of the
Hamiltonian Ĥ. Several methods have been developed for this
purpose, for example, the iterative diagonalization of the
exp(−βĤ) operator64 or the improved relaxation approach.65

Within the state-averaged MCTDH approach used in the
present work, the block relaxation scheme52 that employs
subspace iteration can be utilized.
For the treatment of systems with a multiwelled PES (like

the presently investigated CH4·F
− complex), a multiwell

iterative diagonalization procedure has recently been pre-
sented.46 Its key idea is to construct a basis of states that are
dominantly localized in each well of the potential surface.
Considering a system with W wells in the potential, P state-
averaged MCTDH wave functions are employed in each well in
each step of the iteration procedure. Initial seed vectors ψwp

(0)

provide a starting point that induces the localization; each
initial wave function ψwp

(0) is well-localized in well w. Then,
further sets of (localized) wave functions ψwp

(n) are generated
using a block Lanczos-type iteration sequence. The correspond-
ing recursion relations used within this work read
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Here, ψwp
(n) denotes the pth wave packet dominantly localized in

well w, which has been generated in the nth iteration step. The
operator Â is chosen as exp(−iĤt) exp(−βĤ). P̂w

(n) is a
projector onto the SPF basis of Âψwp

(n−1). The αvq
(i) are given by

the set of linear equations
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The states ψwp
(n) then serve as a basis for the diagonalization of

the Hamiltonian Ĥ (or a bijective function of it). In this work,
eigenstates and eigenenergies of the Hamiltonian Ĥ are
obtained by diagonalizing exp(−iĤt) in the basis of
exp(−βĤ)ψwp

(j). To this end, the generalized eigenvalue problem
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is solved. Here, the cvq,m
(l) denote the eigenvector components

and ϵm the eigenvalues. The eigenvalues ϵ determine the
eigenenergy E via ϵ = e−iEt.
In ref 46, also an alternative scheme that employs explicit

interwell orthogonalization of the Âψwp
(n−1) in the recursion

relations was introduced and discussed. However, the system
studied in the present work shows only weak coupling between
the wave functions localized in the different wells (vide infra).
Thus, the use of this more involved scheme would not offer any
advantage in the present context.
The key idea of constructing localized functions on

multiwelled potential surfaces suggests to interpret vibrational
states localized in well w as a useful zeroth-order basis and the
interwell coupling as a perturbation. These localized vibrational
states can also be obtained within the present approach by
solving the generalized eigenvalue problem of eq 16 utilizing
the basis of the exp(−βĤ)ψwp

(j) for a single value of the well
index w only
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Thus, the mth local state in well w, which is denoted by ψw,m
(lok)

and corresponds to the eigenvalue ϵ̃w,m, reads
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(18)

Local states defined in this way correspond to localized
approximate eigenstates in the well w. In the limit of wells
separated by infinitely high barriers, the ψw,m

(lok) would be the
exact eigenstates.
It should be noted that the multiwell iterative diagonalization

scheme converges the vibrational energy levels from bottom to

top, that is, all lower-energy states have to be reasonably well
converged before higher-energy states can be reliably obtained.

3. SYSTEM

A. Coordinate System. The coordinate system employed
for the description of the CH4·F

− complex is based on a mixed
Radau−Jacobi construction. After separation of the transla-
tional motion of the whole system, four Radau vectors that
connect the canonical point with each of the four hydrogens are
used to describe the CH4. A Jacobi vector that connects the
center of mass of CH4 with F− is used to describe the relative
position of the fluorine. Two Radau vectors define the body-
fixed frame and are described by the internal coordinates r1,r2,
and θ. The remaining two Radau vectors are parametrized by
the stereographic coordinates r3,s3,t3 and r4,s4,t4. Here, a
projection employing the north pole (see Figure 1b) is used
because the dynamics of the corresponding hydrogen atoms
will take place dominantly in the southern hemisphere. The
Jacobi vector is parametrized by the stereographic coordinates
rF,sF,tF corresponding to the projection employing the south
pole (see Figure 1a).
Considering the tetrahedral equilibrium structure of the

methane molecule in the reference frame chosen, one hydrogen
atom lies on the positive z-axis, while the remaining three
hydrogens are located below the x−y-plane. In each of the four
minima of the whole CH4·F

− complex, the fluorine is collinear
with the carbon and one of the four hydrogens. Thus, to be able
to describe the minimum corresponding to the hydrogen that
lies on the positive z-axis, the Jacobi vector associated with the
fluorine has to be parametrized using stereographic coordinates
that result from the south pole projection. Then, the sF,tF
coordinates approximately correspond to the normal modes of
this PES minimum. Consequently, the correlation between sF
and tF is minimized, yielding a beneficial description of the
dynamics. For the remaining three minima, these stereographic
coordinates are less advantageous. With a given basis set size of
the wave function representation, the local dynamics will thus

Figure 2. Contour plot of the CH4·F
− PES with respect to the coordinates sF,tF.
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be described most accurately in the first well (i.e., when the
fluorine is placed on the positive z-axis).
B. Potential. All calculations presented in this work employ

the PES developed by Czako ́ et al.29 Figures 2 and 3 show this
PES as a function of the coordinate pairs sF,tF and rF,sF with all
other coordinates relaxed, respectively. In Figure 2, the four
minima of the PES showing tetrahedral symmetry are nicely
displayed. The minimum at sF = tF = 0 corresponds to the
fluorine being located on the positive z-axis, while the
remaining three minima correspond to the fluorine lying
below the x−y-plane. The apparently unsymmetric “sizes” of
the potential wells are a direct consequence of the properties of
the stereographic coordinates employed. Though stereographic
projection preserves angles (i.e., is conformal), it does not
preserve lengths. Employing south pole projection, a given
distance located in the southern hemisphere appears larger in
the s,t space than the same distance located in the northern
hemisphere. The contour plot employing the rF,sF coordinates
shown in Figure 3 illustrates the transition-state region between
two different potential wells. The potential barrier relative to
the minimum is about 1270 cm−1.
The harmonic frequencies with respect to one of the four

potential minima29 are given in Table 1. It is noteworthy that
the intermolecular stretching mode (νs = 200 cm−1) shows a

lower frequency than the bending one (νb = 276 cm−1). The νs
mode corresponds to a F− − CH4 stretching motion. In
contrast, the νb mode describes mainly rotations of the CH4
around axes perpendicular to the line connecting F and C.
Thus, the relative masses associated with each type of motion
are quite different. In the stretching mode, the effective mass
that undergoes the vibration is approximately given by the
reduced mass of methane and fluorine. In the bending mode,
the relevant moment of inertia is approximately given by the
moment of inertia of CH4 because the rotation of the fluorine is
hindered by its large mass and the large distance of the fluorine
from the center of mass of methane. Thus, while the heavy
atoms C and F vibrate in the stretching mode, in the bending
mode, only light H atoms rotate.
The other nine vibrational coordinates correspond to

intramolecular vibrations of the CH4 and show significantly
higher vibrational frequencies. Thus, their fundamental
excitations are located in an energy range where the density
of the vibrational states is already rather high due to the
intermolecular motions. Thus, the present relaxation-based
approach cannot address intramolecular vibrational excitations
or corresponding resonances in the CH4·F

− complex.
C. Symmetry. The symmetry group of the nuclear

Hamiltonian of the CH4·F
− complex is G48. It is a direct

product of S4 (the permutation group of the four hydrogens)
and the inversion group I = {E,E*}, that is, G48 = S4 ⊗ I.66,67

However, any symmetry transformation changing the chirality
of the CH4 core is hindered by an insuperable potential barrier.
Consequently, half of the elements in G48 can be ignored,
yielding a group isomorphic to the Td point group. Thus, the
irreducible representations of Td can be used to label the global
energy eigenstates.
Accounting for the physical significance of localized states, an

alternative view offered by Altmann can be utilized.68 There,
the symmetry group G of a nonrigid molecule is written as a
product of a so-called isodynamic group GI connecting the
energetically equivalent reference structures located at the
minima of the potential and the point group GR associated with
the reference structures themselves, that is, G = GI ∧ GR, where

Figure 3. Contour plot of the CH4·F
− PES with respect to the coordinates rF,sF. rF is given in Å (no mass-weighting).

Table 1. Harmonic Frequencies of the CH4·F− Complex in
cm−1a

mode

νs(A1) 200
νb(E) 276
ν4(A1) 1296
ν4(E) 1395
ν2(E) 1570
νhb(A1) 2782
ν3(A1) 3024
ν3(E) 3074

aTaken from ref 29.
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the product is written in its general, semidirect form. The
CH4·F

− complex exhibits four such isoenergetic structures
because the potential has four equivalent minima correspond-
ing to the four possible C3v-symmetric F−−H−CH3 structures.
Labeling the hydrogens from 1 to 4, the transformation among
the structures can be realized by the operations of the group GI
= V4 = {E, (12) (34), (13) (24), (14) (23)}, which is a normal
divisor of S4 and isomorphic to the point groups C2v and D2.
One particular reference structure, on the other hand, exhibits
C3v point group symmetry, that is, GR = C3v. For the reference
structure associated with the first hydrogen, for instance, the
point group elements read GR = {E, (12)*, (13)*, (23)*, (123),
(132)} (please note that (12)* = E* (12) = (12) E*). The
overall symmetry is obtained from the semidirect product G =
V4 ∧ C3v = Td, consistent with the considerations above.
Because the four minima present in the CH4·F

− complex are
equivalent, the respective localized vibrational states obtained
from eq 17 should be equal for each well. Due to the
coordinates employed, only the hydrogens described by the
stereographic coordinates are treated on the same footing.
Thus, results for the localized vibrational states obtained from
numerical calculations will differ between the wells if the
calculations are not perfectly converged. This may be an issue if
the coupling between the wells is rather weak, resulting in small
splittings in the spectrum of the global states. Then, the errors
introduced by the artificial differences in the local states might
exceed the splittings, leading to misinterpretations. This could
be, in principle, avoided by applying the operations of the
group V4 to the wave functions localized in the first well, for
instance, to obtain the functions in the remaining three wells, as
was done in ref 46. However, the coordinate system used in the
present work does not allow for a straightforward trans-
formation of the wave functions, especially with regard to the
conservation of the MCTDH structure of linear combinations
of Hartree products (see eq 10). The direct transformation of
wave functions can be avoided if symmetry is introduced only
when solving the generalized eigenvalue problems of eqs 16
and 17. To this end, the substitution (see eq 17 for the
definition of the ϵ̃w,m)

ψ ψ ψ ψϵ̃ = ⟨ | | ⟩ = ⟨ | | ⟩ = ϵ̃

= · =

− ̂ − ̂

m P n w W

e e
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,
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1,
( ) i

1,
( )
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can be made to enforce all of the local eigenvalues to be equal
to the ones in the first well (which will be described most
accurately as discussed in section 3A). The new (“symme-
trized”) matrices of the local representation of the operator
exp(−iĤt) can now be obtained by back-transforming eq 18,
that is
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The values of these local matrices then replace the matrix
elements diagonal in the well index (i.e., w = v) of the global
representation of exp(−iĤt) in eq 16. Consequently, solving
this modified global generalized eigenvalue problem, the

differences between the local and global energies now result
only from the coupling between different wells.

D. Wave Function Representation. The multilayer
MCTDH wave function representation employed in all
dynamical calculations is shown diagrammatically in Figure 4.

Each solid circle represents one set of expansion coefficients A
(see eqs 10−12). The label beside each line that connects two
circles denotes the size of the corresponding SPF basis set ϕ
employed. P is the number of state-averaged MCTDH wave
packets used. The {Ni, i = 1, ..., 12} indicate the sizes of the
time-independent grids (see ref 58 for a more detailed
explanation of the diagrammatic representation).
Harmonic oscillator DVR schemes are used to represent the

SPFs in the coordinates {ri, i = 1, ..., 4} (32 grid points per
coordinate) and rF (120 grid points). SPF basis functions in the
coordinate θ employ a Legendre DVR with 40 grid points. In
the block relaxation calculations, FFT schemes with 48 grid
points per coordinate are used to represent all functions in the
stereographic coordinates. Here, only initial guess functions
that are located in the first well are employed (see the
discussion in section 3A). Thus, the grids in sF and tF are
constructed to describe the dynamics appropriately only in this
region. In the iterative diagonalization approach, the grids used
for the functions in the fluorine coordinates sF,tF are enlarged to
144 points per coordinate. Here, all wells have to be described
simultaneously (see section 2C). Consequently, the grids in sF
and tF have to be enlarged to make all wells dynamically
accessible.
The SPF basis set sizes employed in the block relaxation and

iterative diagonalization calculations are given in Table 2. All

Figure 4. Diagrammatic representation of the multilayer MCTDH
wave function.
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calculations employ four wave packets in the state-averaged
MCTDH approach, that is, P = 4, and an imaginary
propagation time of β = 300 au in the iteration step. In the
multiwell iterative diagonalization, a time period of t = 100 au is
used in the real time propagation step. Converged results could
be obtained within 16 Lanczos iterations.

4. RESULTS
A. Block Relaxation Calculations. As a first step,

reference results for the four lowest vibrational states localized
in a single potential well were obtained by employing the block
relaxation of state-averaged MCTDH wave functions.52

Propagating the set of localized initial wave functions in
imaginary time, no tendency of delocalization into the other
potential wells was obtained. This observation indicates that the
coupling between the different potential wells is weak.
To allow for a detailed analysis of the accuracy achieved,

three different basis sets of systematically increasing size,
denoted B1, B2, and B3, are employed. The numbers of SPFs
used in these basis sets is given in Table 2. Stepping from B1 to
B2 and then to B3, in each step, the number of SPFs in all
physical coordinates is increased by one and that in all logical
coordinates, that is, combined modes, by two. The calculated
energy levels are given in Table 3.
Considering first the zero-point energy (denoted ν0 in the

table), energy differences of 3.5 and 1.1 cm−1 are found when
increasing the basis set size from B1 to B2 and from B2 to B3,

respectively. Thus, it is reasonable to expect that the value of
9786.6 cm−1 obtained with the largest basis set is converged to
about 1 cm−1 accuracy. Even higher accuracies are achieved for
the excitation energies. The corresponding energy differences
for the stretching mode νs read 0.4 and 0.1 cm−1, clearly
indicating subwavenumber accuracy. Because the numerical
methods employed do not impose the local C3v symmetry by
construction, two different energy values are computed for the
excitation in the degenerate bending mode νb. This difference
only vanishes in the limit of a converged SPF basis. Analyzing
again the convergence behavior displayed in Table 3, it seems
reasonable to expect that the excitation energy of 268 cm−1

obtained with basis set B3 is converged to an accuracy of at
least one cm−1. It should be noted that this convergence study
simultaneously addresses the issues of wave function
representation and potential quadrature because the number
of quadrature points employed in the CDVR quadrature
simultaneously increases with the size of the SPF basis
employed.
Czako ́ et al.29 investigated the local vibrational states of the

CH4·F
− complex on the same potential surface. Their

calculations employed normal coordinates and a VCI30

approach that utilizes an n-mode representation of the potential
and an excitation-class-based truncation scheme to reduce the
CI space (see ref 31 for a detailed description). Their results,
which differ significantly from our present ones, are also given
in Table 3. The comparison with the harmonic frequencies
given in Table 1 highlights the differences between our results
and the ones of Czako ́ et al. While the present results indicate
that the F−CH4 stretching excitation energy is reduced from
the harmonic value of 200 to 193 cm−1 due to anharmonicity,
Czako ́ et al. obtained an excitation energy slightly above the
harmonic value. Considering the intermolecular bending, the
present calculations yield a decrease from 276 to 268 cm−1 due
to anharmonicity. In contrast, Czako ́ et al. find a significant
increase to 299.9 cm−1.
The disagreement between our present results and the ones

of Czako ́ et al. is surprising because, like the MCTDH
approach, the VCI approach in principle is a numerically exact
method. Errors can only result from incomplete convergence of
the (truncated) basis sets representations or the potential
quadrature. Considering our MCTDH calculations, we think
that the convergence study presented above convincingly
establishes the accuracy of the present MCTDH results.
Considering the VCI calculations, three potential sources of
errors are listed in the work of Czako ́ et al., the number of
simultaneous excitations in different modes considered in the
truncated VCI expansions, the number of excitation quanta
considered for each mode, and the number of modes
simultaneously considered in the n-mode representation of
the potential. A convergence study addressing all of the issues
was presented by Czako ́ et al., but the maximum number of
configurations included in their VCI calculations was rather
limited; it included a maximum of 21 348 configurations. In
contrast, the basis sets B1, B2, and B3 used in the present
MCTDH calculation employ 114 048, 407 680, and 1 152 000
configurations, respectively, for each of the four vibrational
states considered. In addition, the maximum number of modes
that could be simultaneously excited was limited to five in the
VCI calculation. Thus, we assume that the use of normal
coordinates to describe the large-amplitude intermolecular
motion in the CH4·F

− complex resulted in artificially slow
convergence in the truncated VCI scheme. This could not be

Table 2. Wave Function Representations Employed in the
Block Relaxation and Iterative Diagonalization Calculations

SPF basis

B1 B2 B3 B4

n1 6 8 10 6
n2 4 5 6 4
n3 12 14 16 12
n4 12 14 16 12
n5 3 4 5 5
n6 11 13 15 15
n1,1 2 3 4 2
n1,2 2 3 4 2
n1,3 2 3 4 2
n1,4 2 3 4 2
n3,1 4 5 6 4
n3,2 5 6 7 5
n4,1 4 5 6 4
n4,2 5 6 7 5
n6,1 4 5 6 6
n6,2 4 5 6 6

Table 3. Local Ground-State Energy and Local Vibrational
Excitation Energies of the First Three Excited States in cm−1

Calculated Employing the Block Relaxation Approacha

SPF basis

level B1 B2 B3 ref 29

ν0(A1) 9791.2 9787.7 9786.6 9794.7
νs(A1) 193.8 193.4 193.3 201.1
νb(E) 271.3 268.8 268.1 299.9

272.1 269.2 268.4 299.9

aThe corresponding energy values from ref 29 are shown for
comparison.
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detected in the convergence test due to the limitations in the
configuration space considered. Considering that the MCTDH
and VCI approaches are, in principle, variational (except for the
errors due to the potential quadrature employed), the fact that
the present vibrational energies are always lower than VCI ones
also supports this assumption.
B. Multiwell Iterative Diagonalization. As in the block

relaxation calculations, the multiwell iterative diagonalization
calculations employed the basis sets B1, B2, and B3. While
results converged with respect to the number of iterations
could be obtained for basis sets B1 and B2, the basis B3 has
been numerically too demanding to perform many Lanczos
iterations. For this base, only three Lanczos iterations could be
computed, and the results are reasonably well converged with
respect to the number of iterations only for the local ground
state and the corresponding tunneling splittings. To investigate
the convergence of the locally excited vibrational states, the
additional basis set B4 (see Table 2) is utilized. This basis
employs the same SPF basis sizes in the intermolecular modes
as B3 but restricts the number of SPFs in the intramolecular
modes to the values taken in B1. Comparing the basis B2 and
B4, B2 includes more SPFs in the intramolecular modes, while
B4 uses more SPFs in the intermolecular ones. The total
numerical effort for calculations with the basis B2 and B4 is
roughly comparable, and thus, convergence with respect to the
number of iterations could also be achieved for the basis B4. As
a basis for the investigation of the delocalized vibrational states
by the multiwell iterative diagonalization approach, first, the
local states obtained by eq 17 are studied. The computed
energies of the vibrational states localized in the first well are
presented in Table 4. Considering the zero-point energy ν0 and

the first two fundamentals νs and νb computed with the basis
B1 and B2, the results obtained by iterative diagonalization are
quite similar to the ones computed with the same basis sets by
block relaxation (see Table 3). Thus, the accuracy achieved
with the iterative diagonalization approach seems to be
comparable with the accuracy of the block relaxation results
obtained with the same SPF basis. Comparing the results
obtained with the different basis sets and considering the
energy differences of states that theoretically should be
degenerate, one can estimate that the results obtained with
the larger basis sets are converged to within a few cm−1. The
excitation energies for the fundamental and the first overtone of
the stretching mode are presumably converged within wave-

number accuracy, but larger uncertainties are found for the
bending overtones and the combined stretching and bending
excitation. Here, the differences between the results obtained
with the larger basis sets B2 and B4 increase up to 2.5 cm−1.
For the combined stretching and bending excitation, even a 5
cm−1 difference for the excitation into the two components of
this degenerate level is found using the B2 basis. The B4 basis
yields more reliable results for this excitation; here, the
difference is less than 1 cm−1.
Studying the convergence behavior in more detail, a

comparison between the B2 and B4 results is particularly
interesting. One would naively expect that the B4 basis, which
uses the largest number of SPFs in the intermolecular
coordinates, should yield the most accurate results for the
excitation energies of the intermolecular modes. However, the
B2 basis clearly yields more accurate results for the excitation
energy in the bending fundamental. This finding indicates that
the intermolecular and intramolecular modes are rather
strongly correlated. Finally, the delocalized vibrational eigen-
states of the CH4·F

− complex are investigated. These rigorous
eigenstates (for vanishing total angular momentum J = 0) are
calculated by the multiwell iterative diagonalization approach
using eq 16 and symmetrized matrix elements obtained as
described in section 3C. The resulting energies are given in
Table 5.
The ground-state tunneling splitting is particularly interesting

because it could affect the photodetachment spectrum observed
in experiment. Theoretically, the delocalization between the
four wells splits the four local vibrational ν0 states into the
global vibrational ground state, which transforms according to
the A1 irreducible representation of the Td group, and the triply
degenerated 1F2 state. Comparing the results obtained with the
different basis sets, one cannot reliably obtain an accurate value
for the tunneling splitting between the global 1A1 ground state
and the 1F1 level. While a still sizable splitting of about 3 cm−1

is computed with the small B1 basis, this splitting decreases to
about 1 cm−1 and below for all larger basis. Thus, one can
reliably conclude that the ground-state tunneling splitting does
not significantly exceed 1 cm−1 and thereby establish an upper
boundary of about 1 cm−1 for the tunneling splitting. However,
given the presently available data, one should not attempt to
provide a lower boundary for the accurate value of the
tunneling splitting.
The results of Table 5 clearly show that the tunneling

splittings of the local vibrational excited states are similarly
small. Considering locally excited states of A1 symmetry, the
tunneling splittings obtained with the larger basis sets B2 and
B4 are always below 1 cm−1. For the locally excited states of E
symmetry, one has to note that already, the two different
components of the local representation are not perfectly
degenerate (see Table 4). Here, the additional splittings
introduced by the interwell interaction are again always below
1 cm−1.
In conclusion, the present results clearly demonstrate that

the tunneling splittings in the CH4·F
− complex do not exceed

about 1 cm−1 for vibrational states that could be thermally
populated under experimental conditions. Considering the
simulation and theoretical analysis of the high-resolution
CH4·F

− photodetachment spectrum, this upper boundary is
sufficiently low to establish that the delocalization of the
CH4·F

− complex can be safely disregarded in the description.

Table 4. Local Ground-State Energy and Local Vibrational
Excitation Energies of the First Nine Excited States in cm−1

Calculated in the First Well Employing the Multiwell
Iterative Diagonalization Approach

SPF basis

local vibrational excitation B1 B2 B3 B4

ν0(A1) 9791.5 9787.7 9787.0 9791.2
νs(A1) 193.6 193.2 193.6
νb(E) 271.1 269.1 270.8

272.3 269.7 271.5
[2νs](A1) 386.8 379.1 379.7
[νs + νb](E) 462.0 457.1 459.5

463.7 462.4 460.6
[2νb](A1) 542.6 525.5 528.0
[2νb](E) 551.5 546.4 544.9

567.8 548.8 546.9
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5. CONCLUSIONS
A detailed investigation of the vibrational states of the CH4·F

−

complex focusing on the intermolecular modes was presented.
Accurate full-dimensional calculations of the vibrational
eigenstates have been performed using the state-averaged
multilayer MCTDH/CDVR approach. While localized vibra-
tional states could be computed via the well-established block
relaxation scheme, a recently developed iterative diagonaliza-
tion approach for multiwell system has been employed to study
the tunneling splittings resulting from delocalization.
To adequately describe the large-amplitude motion in the

intermolecular modes, a curvilinear coordinate system has been
used. This coordinate system uses stereographic coordinates to
parametrize Jacobi and Radau vectors. Extending earlier work
on stereographic coordinates, a generalized definition that

employs either north or south pole projection is presented. A
corresponding general N-body kinetic energy operator that can
be applied to a wide range of systems is derived.
The tunneling splittings resulting from delocalization via the

four symmetry-equivalent wells in the CH4·F
− PES are found to

be small. They do not significantly exceed 1 cm−1 for the
ground state or the vibrationally excited states with excitation
energies below 550 cm−1. Thus, delocalization of the vibrational
eigenstates of CH4·F

− will not significantly affect even high-
resolution photodetachment spectra. There the resonance
structures that show spacings in the 10−30 cm−1 range.25

Localized initial wave packets can thus reliably be employed in
quantum dynamics simulations of CH4·F

− photodetachment.
Considering vibrational excitation in the intermolecular

stretching and bending modes, surprisingly large differences
between the present results and the VCI results of Czako ́ et
al.29 have been found. They are particularly large for the
bending mode that mainly corresponds to a rotation of the
methane molecule relative to the F−C axis. Here, the combined
use of rectilinear normal modes, which can not describe large-
amplitude rotational type motion in the separable (VSCF)
picture, and an aggressively truncated VCI expansion seems to
produce errors due to incomplete convergence that cannot
easily be monitored even by rather careful convergence tests.
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