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Abstract
Techniques are developed to find all periodic solutions in the simple pendulum
by means of the homotopy analysis method (HAM). This involves the
solution of the equations of motion in two different coordinate representations.
Expressions are obtained for the cycles and periods of oscillations with a
high degree of accuracy in the whole range of amplitudes. Moreover, the
convergence of the method is easily checked. The aim of this work is to
show how the dynamics of a simple example of oscillatory systems may be
studied globally with the HAM and to incentivize the interest of advanced
undergraduate students in this type of techniques.

(Some figures may appear in colour only in the online journal)

1. Introduction

The simple pendulum consists of a mass point, constrained to move in a vertical plane at a
fixed distance from a pivot, and subject to gravity. In the absence of friction it is a conservative
system.

Despite the simplicity of this system it has dynamic characteristics that make it very
interesting. On the one hand, it is a nonlinear system that can be explicitly integrated, but
only after resorting to the theory of Jacobi elliptic functions [1, 2]. On the other hand, its
description as a dynamical system shows a phase space which has the structure of a manifold
with non-trivial topology; it is a cylinder. These features make it an example in almost every
book on mechanics, geometric mechanics or dynamical systems.

The simple pendulum is usually studied near its trivial equilibrium by linearization. This
approximation turns out to be a harmonic oscillator. It can be easily solved but it gives solutions
that are nearly exact only for oscillations of amplitude close to zero. In this work, we propose
to apply the homotopy analysis method (HAM) [3–5]. With this method we can calculate
analytical approximations of all oscillatory solutions (even for large amplitudes) and also for
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rotating solutions, usually not studied. We believe that the efficacy of this technique will be
of great interest for advanced undergraduate students of science and engineering who are
interested in dynamics and solving differential equations.

The HAM is a non-perturbative method that solves a wide range of nonlinear problems.
The system considered here is especially interesting from the point of view of resolution with
this method. There are mainly two reasons for this. The first is that the structure of the phase
space allows us to illustrate how a change of coordinates can be used to calculate the rotations
in the domain of a single chart. The second is that the presence of the function sin θ in the
equation gives rise to an algebraic problem referring to the starting conditions of the method.
We solved this problem by resorting to the series expansion of Jacobi–Anger [2].

In section 2, we show the characteristics of a well-known oscillatory system, the simple
pendulum, in which the proposed methodology will be applied later. In section 3, we implement
the HAM to find periodic solutions in this system. The method could be systematized in
the following steps. Write the equation in a suitable coordinate system. Find a change of
coordinates to normalize the solutions so that they have unit frequency and amplitude. Choose
the harmonic oscillator of unit frequency as a linear operator. Determine the starting conditions
of the HAM by solving certain algebraic equations. Obtain the terms of the series for the cycle,
the frequency and amplitude up to an arbitrary order by solving linear differential equations.
Then, check the convergence by plotting certain curves obtained from the solutions (h-curves).
The last step permits us to give a value to the h parameter of the method. In sections 4 and 5
the method is applied to obtain approximations of oscillatory and rotary solutions and their
respective frequencies. All these calculations can easily be performed with Mathematica.

The potential of the method for finding periodic orbits, without using complex
mathematical results, makes the HAM highly attractive for those students interested in the
study of dynamics and differential equations.

2. The simple pendulum

Consider the equation of a simple pendulum with distance L from the pivot,

θ̈ + g

L
sin θ = 0, (1)

where g is the acceleration of gravity. After introducing the parameter ω = √
g/L and changing

the time variable to ωt, we obtain the dimensionless equation

θ̈ + sin θ = 0. (2)

The simple pendulum shows two equilibria. The first is the trivial equilibrium which is a centre
according to the dynamical systems theory [6] (this is because it is a centre of the linearization
and the system is conservative). The orbits around this equilibrium are cycles homotopic to
the identity of the fundamental group of the cylinder. These movements are called vibrations.
The second is a saddle equilibrium that corresponds to the inverted pendulum. There are two
homoclinic orbits connecting this unstable equilibrium to itself. Separated by the latter are the
so-called rotations, orbits that are not homotopic to identity. Figure 1 shows several oscillating
and rotating solutions together with homoclinic orbits. Two different representations of the
phase space are shown: to the left it is represented on the plane and to the right on the cylinder.
In the following sections, we show why the last representation is the most appropriate to study
periodic solutions of the pendulum.

Because the energy

e = θ̇2

2
+ 1 − cos θ (3)
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Figure 1. Solutions in phase space (θ, θ̇ ) (left) and in the cylinder (right).

is constant, the solutions of the simple pendulum can be calculated by direct integration (see
for example [1], [7] or [8] for a quantum version). As we mentioned earlier, there are three
types of solutions depending on the value of the velocity v0 for θ = 0.

(1) If |v0| < 2 the motion is oscillatory. The angle has the following expression:

θ (t) = 2 arcsin(λ sn(t + φ; λ)), (4)

where λ = v0/2 and φ = K(λ). K is the complete elliptic integral of the first kind,

K(λ) =
∫ π/2

0

dϕ√
1 − λ2 sin2 ϕ

, 0 < λ < 1, (5)

and sn(u; λ) is a Jacobi elliptic function. The period of this movement is

T = 4K
(v0

2

)
. (6)

(2) If |v0| > 2 the movement is a rotation. The expression for the angle is

θ (t) = 2 arcsin(sn(λt; 1/λ)). (7)

The sign of v0 determines the direction of rotation; if v0 > 0, it is counterclockwise,
otherwise it is clockwise. The period in this case is

T = 4

v0
K

(
2

v0

)
. (8)

(3) If |v0| = 2 there are two homoclinic orbits connecting the unstable equilibrium with itself.
In this case, the motion is not periodic (it may be considered as the limit of a cycle when
the period goes to infinity), and the expression is as follows:

θ (t) = 4 arctan(tanh(t/2)). (9)

The three types of solutions mentioned above are depicted in figure 1.
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3. Periodic solutions with the homotopy analysis method

Now we show how to apply the HAM to calculate periodic solutions of nonlinear ordinary
differential equations.

Consider, for example, the second-order differential equation given by

f (y′′(τ ), y′(τ ), y(τ )) = 0, (10)

where f is a nonlinear function. Suppose that there is a periodic solution of this equation with
frequency ω and amplitude a (the maximum displacement of the periodic solution). After
making the replacements t = ωτ and y = ax, the normalized equation becomes

f (ω2aẍ(t), ωaẋ(t), ax(t)) = 0. (11)

In the new variables the periodic solution has unit frequency and amplitude; the last equation
can be written as N[x, ω, a] = 0, N being an appropriate nonlinear differential operator,
algebraically dependent on ω and a. We can perform a similar change of variables in other
differential equations and even in systems of equations. Different unknowns, such as frequency
and amplitude, are transformed into constants to be determined.

In the general case, we consider a nonlinear differential operator

N[x, g1, g2, . . . , gm] = 0, (12)

where x(t) ∈ R
n and gi ∈ R, i = 1, . . . , m, are unknown constants. The system has given

initial conditions, which we call IC.
To find a periodic solution xP(t) of (12) we consider the family of operators Hq which

depend on a deformation parameter q ∈ [0, 1] :

Hq[φ] = (1 − q) L[φ − x0] − q h Nq[φ], (13)

where φ(t, q) is an homotopy that we construct with the method, h �= 0 is a real parameter,
x0(t) is an initial approximation which verifies the ICs and L is a linear operator associated
with the system (12). In each equation studied, x0(t), h and L must be properly chosen. Finally,
Nq is the nonlinear operator

Nq[φ] = N[φ(t, q), γ1(q), γ2(q), . . . , γm(q)]. (14)

The procedure is based on a search for functions φ(t, q), γ1(q), . . . , γm(q), analytical in q
such that

(i) Hq[φ] = 0 for q ∈ [0, 1],
(ii) φ(t, q) verify the ICs for q ∈ [0, 1].

If these functions exist, then taking q = 0 we have

H0[φ] = L[φ(t, 0) − x0(t)] = 0. (15)

Then, as φ(t, q) and x0(t) verify the same ICs, we obtain φ(t, 0) = x0(t). In addition, if q = 1,

H1[φ] = −hN1[φ(t, 1)] = 0, (16)

thereafter xP(t) = φ(t, 1), g1 = γ1(1), . . . , gm = γm(1) will be the solution of the system
(12). Thus, when the parameter q varies from 0 to 1, the function φ(t, q) varies from the initial
approximation x0(t) to the desired solution xP(t).

To find the analytic functions φ(t, q), γ1(q), . . . , γm(q) we consider their series
expansions

φ(t, q) =
+∞∑
k=0

xk(t)q
k, γ1(q) =

+∞∑
k=0

g1kqk, . . . , γm(q) =
+∞∑
k=0

gmkqk. (17)
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Replacing these series in Hq[φ] = 0 and taking the kth derivative with respect to q at q = 0,
we obtain

L[xk(t) − (1 − δ1k)xk−1(t)] = h

(k − 1)!

∂k−1Nq[φ]

∂qk−1

∣∣∣∣
q=0

. (18)

Similarly, taking the series expansion of φ and considering that φ(t, 0) = x0(t) verifies the
ICs, we obtain xk(0) = x′

k(0) = 0 for k � 1.
The terms xk(t) in the series expansion of φ(t, 1) are calculated by solving the above

equation with the stated conditions. As the solution we want to find is periodic, each term
should be. Then, depending on the linear operator we take, the right-hand side of (18) must
verify certain conditions to ensure that the kth term does not contain non-periodic functions (of
type t cos t or t sin t ). These conditions allow us to calculate the terms gik, i = 1, . . . , m. For
k = 1, it yields a nonlinear system of equations with unknowns g10, . . . , gm0, while for k � 2
the system is linear. For each k the corresponding system is solved and xk(t) is calculated; this
procedure is repeated up to the desired order.

It remains to determine an appropriate value for h. The approximations of the constants
gi, i = 1, . . . , m, are polynomials in h, and so will be xP(t) and its derivatives for fixed t. As
shown in Liao’s book [3] observation of the behaviour of these polynomials is necessary to
select an appropriate value for h. For values of this parameter for which the series is convergent,
such polynomials converge to a value that is independent of h, as the order goes to infinity.
Thus, the polynomial plots give us a rough idea of the place where these intervals are found
and therefore we select an appropriate value for h.

4. Vibrations

Consider equation (2); suppose that there is a periodic solution with frequency and amplitude
ω and a, respectively. Rescaling the variables t and θ (but keeping their names to simplify the
notation), we obtain

ω2aθ̈ (t) + sin(aθ (t)) = 0. (19)

The new periodic solution θP(t) will be of unit frequency and amplitude. In particular, we can
impose the following initial conditions:

θP(0) = 1 and θ̇P(0) = 0. (20)

From equation (19) we define

Nq[φ] = N[φ(t, q),�(q), A(q)]

= �(q)2A(q)
∂2φ(t, q)

∂t2
+ sin(A(q)φ(t, q))

(21)

and take the linear operator

L[φ] = ∂2φ

∂t2
+ φ. (22)

Using the HAM described in section 3, θ0(t) being the initial approximation, and replacing in
H0[φ] = 0 we have

φ(t, 0) − θ0(t) = c1 cos t + c2 sin t, c1, c2 ∈ R, (23)

but as φ(t, q) and θ0(t) must verify conditions (20), then φ(t, 0) = θ0(t).
Moreover, the periodic solution of (19) is

θP(t) = φ(t, 1) =
+∞∑
k=0

θk(t), (24)
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and we have

ω = �(1) =
+∞∑
k=0

ωk, a = A(1) =
+∞∑
k=0

ak. (25)

To start with the method we need to define an initial function θ0(t). Considering the initial
conditions (20) we choose θ0(t) = cos t. Then, according to operators (21) and (22),
equation (18) for k = 1 is

θ̈1(t) + θ1(t) = h
( − ω2

0a0 cos t + sin(a0 cos t)
)
, (26)

with ICs θ1(0) = θ̇1(0) = 0. This equation can be solved by the method of variation of
parameters; we obtain

θ1(t) = h

a0
cos t(cos a0 − cos(a0 cos t)) + h sin t

(
−1

2
ω2

0a0t +
∫ t

0
cos s sin(a0 cos s) ds

)
.

(27)

It is straightforward to see that the term θ1(t) thus defined is not necessarily periodic. We can
make non-periodic terms disappear by setting certain values of ω0 and a0. More precisely, if
we cancel the coefficients of cos t and sin t on the right-hand side of (26), we obtain a periodic
function θ1(t). Using the Jacobi–Anger expansion in (26), we obtain

θ̈1(t) + θ1(t) = h

(
−ω2

0a0 cos t + 2
+∞∑
n=0

(−1)nJ2n+1(a0) cos((2n + 1)t)

)
, (28)

where Jn is the Bessel function of the first kind of order n. Then, the term θ1(t) will be periodic
if the coefficient of cos t vanishes, that is, if −ω2

0a0 + 2J1(a0) = 0, which implies

ω0 =
√

2J1(a0)

a0
. (29)

Setting a value of a0 the above equation allows us to obtain a value of ω0 and to calculate the
term θ1(t). We obtain

θ1(t) = 2h
+∞∑
n=1

(−1)n J2n+1(a0)

1 − (2n + 1)2
(cos((2n + 1)t) − cos t) . (30)

Now, we are able to find the equation for the term θ2(t). Considering k = 2 in (18), we obtain

θ̈2(t) + θ2(t) = θ̈1(t) + θ1(t) + h
(
a0ω

2
0 θ̈1(t) − (ω2

0a1 + 2ω0ω1a0) cos t

+(a0θ1(t) + a1 cos t) cos(a0 cos t)
)
. (31)

After replacing ω0 defined in (29), θ1(t) already calculated and using the Jacobi–Anger
expansion of cos(a0 cos t), we can calculate θ2(t) by solving the equation with ICs θ2(0) =
θ̇2(0) = 0. As in the previous case, the term θ2(t) will be periodic if the coefficient of cos t
vanishes. This gives a linear condition involving ω1 and a1. Setting a value of a1, we can obtain
a value of ω1. At this point, the hand calculations become very laborious; however, they can
be easily performed with symbolic computation programs.

The calculations for values of k � 2 are performed with Mathematica considering the
following Jacobi–Anger expansions:

sin(a0 cos t) = 2(J1(a0) cos(t) − J3(a0) cos(3t))

cos(a0 cos t) = J0(a0) + 2(−J2(a0) cos(2t) + J4(a0) cos(4t)).
(32)
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(a) (b)

(c)

Figure 2. (a) Polynomial function of h for v0 = 1.95, (b) (——) exact and (- - - -) approximate
solution with the HAM for h = −0.8 and (c) comparison periods: (——) exactly as in (6) and
(· · · · · ·) 2π/ωvib.

The mean square error (in a period) for this approximations is less than 0.01 for all
a0 < 2.7.

We see that for each k the condition of periodicity gives a single equation (corresponding
to cancel the coefficient of cos t in the right-hand side of (18)), which provides the relationship
that must verify the ωk−1 and ak−1 values. Therefore, as in the case k = 1, by setting
the value of ak−1 we can obtain ωk−1 and θk(t), and continue the process until the desired
order.

But, how do we set the values of ak for k � 0? The simple pendulum equation has a
centre at the trivial equilibrium. Moreover, for each IC θ (0) ∈ (0, π ), θ̇ (0) = 0, there is a
periodic solution of (2). Then, if we take a0 ∈ (0, π ) and ak = 0 for k � 1, the HAM allows
us to calculate the solution θP(t) of (19) and the frequency ω corresponding to the amplitude
a = a0.

4.1. Numerical results

For an oscillation of amplitude a, the energy equation (3) gives us the corresponding velocity
v0 at θ = 0. Then, setting a = arccos

(
1 − v2

0/2
)

and using the above process, we obtain
expressions of the solution and the frequency depending on the initial velocity 0 < v0 < 2.

As an example, we obtain the corresponding approximation of the solution up to order
15 for v0 = 1.95. Polynomials in h for ω, θP(0.1) and

...

θP (0.1) are shown in figure 2(a).
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The expressions of these polynomials are
ω = 0.270 673h15 + 3.123 59h14 + 16.9264h13 + 57.1904h12 + 134.906h11

+ 235.701h10 + 315.718h9 + 331.011h8 + 274.825h7 + 181.545h6 + 95.2529h5

+ 39.3305h4 + 12.5197h3 + 2.944 37h2 + 0.465 156h + 0.573 929

θP(0.1) = −0.091 4114h16 − 1.0801h15 − 6.001 75h14 − 20.828h13 − 50.5537h12

− 91.0661h11 − 126.052h10 − 136.917h9 − 118.12h8 − 81.3688h7 − 44.7303h6

− 19.4903h5 − 6.635 02h4 − 1.719 43h3 − 0.323 528h2 − 0.040 1146h + 0.995 004
...

θP (0.1) = 40.5402h16 + 469.514h15 + 2553.42h14 + 8657.97h13 + 20492.h12

+ 35911.1h11 + 48221.1h10 + 50637.2h9 + 42054.h8 + 27737.4h7 + 14497.3h6

+ 5950.09h5 + 1883.72h4 + 445.934h3 + 74.7369h2 + 7.96799h + 0.0998334.

(33)

As mentioned in the previous section, we can easily choose an appropriate value for h, for
example we can choose h = −0.8; the solution for this value gives

θP(t) = 2.88495 cos(0.536173t) − 0.20478 cos(1.60852t) + 0.0154932 cos(2.68086t)

− 0.00246577 cos(3.75321t) + 0.000277749 cos(4.82555t)

− 0.0000354327 cos(5.8979t) + 5.09679 × 10−6 cos(6.97024t)

− 7.10179 × 10−7 cos(8.04259t) + 1.01719 × 10−7 cos(9.11494t)

− 1.43853 × 10−8 cos(10.1873t) + 2.00188 × 10−9 cos(11.2596t)

− 2.71269 × 10−10 cos(12.332t) + 3.57771 × 10−11 cos(13.4043t)

− 3.68269 × 10−12 cos(14.4767t) + 1.66554 × 10−13 cos(15.549t)

+ 1.96159 × 10−14 cos(16.6214t) − 9.50801 × 10−15 cos(17.6937t). (34)

Figure 2(b) shows the calculated solution along with the exact one given in (4).
On the other hand, using the method described here it is possible to calculate an

approximation to the frequency ω as a function of the amplitude and therefore of the initial
velocity v0. So we can obtain the following approximation of order 2:

ωvib =
√

2J1(a)

a
− 1

10

(−aJ0(a) + 2J1(a) + aJ4(a))J3(a)√
2aJ1(a)

, (35)

where a = arccos(1 − v2
0/2).

Different approximations for the exact period (6) are known. They can be calculated by
the series expansion of the elliptic integral, harmonic balance method, etc (see [9], [10] or [11]
and references therein). Figure 2(c) compares the period (6) with our result 2π/ωvib. Note the
almost exact match for the speed v0 < 1.9; the relative error is less than 0.5%.

5. Rotations

The method as developed in section 4 is based on setting the amplitudes of the vibrations.
The definition of the amplitudes we have used does not even make sense in rotations. Also the
function θ (t) that represents a rotation is not strictly periodic because the movement does not
occur within a single coordinate chart. In order to apply the HAM for finding rotating solutions
of the pendulum in a straightforward manner we map the cylinder into the punctured plane,
i.e. the plane without the origin. The aim of this change is to solve the equations for a complete
rotation in the domain of a single chart. The relationship with the angular coordinates is as
follows: {

u = eθ̇ cos θ

v = eθ̇ sin θ
. (36)
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The pendulum equations in the new coordinates are{
u̇ = −uv(u2 + v2)−1/2 − 1

2v ln(u2 + v2)

v̇ = −v2(u2 + v2)−1/2 + 1
2 u ln(u2 + v2)

. (37)

Suppose that there is a periodic solution with frequency ω such that (u(0), v(0)) = (eξ , 0).

We normalize the system (37) so that the new periodic solution (uP(t), vP(t)) has frequency 1
and verifies (uP(0), vP(0)) = (1, 0) (to simplify the notation we keep the names of variables
after the normalization); hence, we obtain{

ωu̇ = −uv
(
u2 + v2

)−1/2 − vξ − 1
2v ln(u2 + v2)

ωv̇ = −v2(u2 + v2)−1/2 + uξ + 1
2 u ln(u2 + v2)

. (38)

To find periodic solutions of the previous system we apply the HAM with the operator L
defined by

L[φ1, φ2] =
(

∂
∂t 1

−1 ∂
∂t

)(
φ1

φ2

)
=

(
∂φ1

∂t + φ2

−φ1 + ∂φ2

∂t

)
, (39)

and Nq given by

Nq[φ1, φ2] = N[(φ1(t, q), φ2(t, q)),�(q),�(q)] =
(

N1

N2

)

=
(

�∂φ1/∂t + φ1φ2
(
φ2

1 + φ2
2

)−1/2 + φ2� + 1
2φ2 ln

(
φ2

1 + φ2
2

)
�∂φ2/∂t + φ2

2

(
φ2

1 + φ2
2

)−1/2 − φ1� − 1
2φ1 ln

(
φ2

1 + φ2
2

)
)

.

(40)

Thus, replacing in H0[φ1, φ2] = 0 we have(
φ1(t, 0)

φ2(t, 0)

)
−

(
u0(t)
v0(t)

)
= c1

(
cos t
sin t

)
+ c2

(− sin t
cos t

)
, c1, c2 ∈ R, (41)

but as (φ1(t, q), φ2(t, q))T and (u0(t), v0(t))T must verify the same conditions,
(φ1(t, 0), φ2(t, 0))T = (u0(t), v0(t))T . Further, according to the HAM the periodic solution
of (38) is (

uP(t)
vP(t)

)
=

(
φ1(t, 1)

φ2(t, 1)

)
=

(∑+∞
k=0 uk(t)∑+∞
k=0 vk(t)

)
, (42)

and we obtain

ω = �(1) =
+∞∑
k=0

ωk, ξ = �(1) =
+∞∑
k=0

ξk. (43)

According to the conditions of the periodic solutions at t = 0, we take (u0(t), v0(t))T =
(cos t, sin t)T . Equation (18) for k = 1 is{

u̇1(t) + v1(t) = h(−ω0 sin t + cos t sin t + ξ0 sin t)
−u1(t) + v̇1(t) = h(ω0 cos t + sin2 t − ξ0 cos t)

, (44)

with initial conditions u1(0) = v1(0) = 0. Considering the inverse operator of L, the term
(u1(t), v1(t))T will be periodic if the coefficients of cos t and sin t vanish in the following
expression: (

∂

∂t
N1 − N2

)∣∣∣∣
q=0

= 2(−ω0 + ξ0) cos(t) + 1

2
(−1 + 3 cos(2t)); (45)

then, the term is periodic if ω0 = ξ0. Now, we can solve equation (44) to obtain{
u1(t) = h(cos(t) + 1

2 (−1 − cos(2t)))
v1(t) = h

(
sin(t) − 1

2 sin(2t)
) . (46)
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(a) (b)

Figure 3. (a) (——) exact rotating solutions and (- - - -) approximate solution with HAM in both
coordinate systems, (b) comparison periods: (——) exactly as in (8), and (· · · · · ·) 2π/ωrot.

For each k � 2, taking the inverse operator of L, the term (uk(t), vk(t))T will be periodic if
the coefficients of cos t and sin t must vanish in the following expression:(

∂

∂t

(
∂k−1N1

∂qk−1

)
− ∂k−1N2

∂qk−1

)∣∣∣∣
q=0

. (47)

As in the previous section, one of these coefficients vanishes for all k and the remaining
give a relation between ωk−1 and ξk−1. The first of these conditions means that ω0 = ξ0.

It is appropriate to fix the value ξ0 = θ̇ (0) > 2, and ξk = 0 if k � 1. If θ̇ (0) < −2
the direction of the solutions changes and in this case the appropriate initial function is
(u0(t), v0(t))T = (cos t,− sin t)T . Given the symmetry of the rotational solutions we only
consider the case ξ0 > 2.

The terms ωk−1 and (uk(t), vk(t))T can be calculated for a fixed ξk−1. Then, the solution
(uP(t), vP(t))T and frequency ω can be determined for the initial condition (eξ , 0) to the
desired order. In the original coordinates the solution found corresponds to the rotational
solution with velocity v0 = ξ > 2 for θ = 0.

5.1. Numerical results

Given a value v0 > 2, we can calculate the corresponding rotation. As in the previous case,
we choose a suitable value for h after performing the calculations until the desired order.
Figure 3(a) shows the exact solution (7) together with the approximated one calculated by
the HAM to order 10 for v0 = 2.5 and 3. The solutions are shown in space (u, v) and in the
cylinder. We choose h = −0.3 for the first of these values of v0 and the expression of the
solution is

uP(t) = 1.00598 + 7.61297 cos(1.99018t) + 2.83201 cos(3.98036t)
+ 0.613502 cos(5.97053t) + 0.10334 cos(7.96071t) + 0.0133044 cos(9.95089t)
+ 0.00129487 cos(11.9411t) + 0.0000891894 cos(13.9312t)
+ 4.33837 × 10−6 cos(15.9214t) + 1.163544 × 10−7 cos(17.9116t)
+ 4.043190 × 10−9 cos(19.9018t) − 1.267310 × 10−10 cos(21.892t)
vP(t) = 7.61297 sin(1.99018t) + 2.79792 sin(3.98036t) + 0.610272 sin(5.97053t)
+ 0.103039 sin(7.96071t) + 0.0132836 sin(9.95089t) + 0.00129386 sin(11.9411t)
+ 0.0000891479 sin(13.9312t)+4.338662 × 10−6 sin(15.9214t)
+ 1.162647 × 10−7 sin(17.9116t) + 4.055239 × 10−9 sin(19.9018t)
− 1.267310 × 10−10 sin(21.892t).

(48)
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In addition for v0 = 3 we choose h = −0.2. The expression of the periodic solution in this
case is

uP(t) = 1.70325 + 14.0746 cos(2.61725t) + 3.68573 cos(5.2345t)
+ 0.551584 cos(7.85176t) + 0.0644068 cos(10.469t) + 0.00556285 cos(13.0863t)
+ 0.000358114 cos(15.7035t) + 0.0000152767 cos(18.3208t)
+ 5.073228 × 10−7 cos(20.938t) + 4.111218 × 10−9 cos(23.5553t)
+ 4.416404 × 10−10 cos(26.1725t)
vP(t) = 14.0746 sin(2.61725t) + 3.65976 sin(5.2345t) + 0.549794 sin(7.85176t)
+ 0.0643009 sin(10.469t) + 0.00555781 sin(13.0863t) + 0.000357997 sin(15.7035t)
+ 0.0000152709 sin(18.3208t) + 5.074780 × 10−7 sin(20.938t)
+ 4.101773 × 10−9 sin(23.5553t) + 4.418700 × 10−10 sin(26.1725t).

(49)

Moreover, in this case it is also possible to calculate the frequency approximations ω, for the
initial velocity v0. The approximation to order 8 is

ωrot = −1.40935 + 1.74363v0 − 0.214217v2
0 + 0.0381421v3

0

− 0.00436724v4
0 + 0.000317095v5

0 − 0.0000134445v6
0 + 2.56289 × 10−7v7

0 . (50)

Figure 3(b) compares the period (8) with that calculated from the previous approximation.
For values of v0 between 3.2 and 15, the relative error of the approximation does not exceed
1%. For values v0 < 3.2 the error increases considerably, but can be improved by calculating
higher order approximations.

6. Conclusions

In this paper, we have applied the HAM to find analytical expressions for oscillating and
rotating periodic solutions of the simple pendulum. We mapped the cylinder to the punctured
plane to calculate the rotating solutions and apply the HAM to study the resulting system of
differential equations. The approximations of both types of solutions are very good compared
with the exact solutions, which are calculated using Jacobi elliptic functions. In addition, the
method allows us to obtain expressions for the frequency of the periodic solutions. It is noted
that the corresponding period is in very good agreement with the exact one, for a wide range
of initial velocities. If necessary, this approach can be improved by increasing the number of
calculated terms. Therefore we show how a comprehensive study, in a pedagogical example,
can be made using the HAM, without the use of complex mathematics. We show that it is a
suitable and effective method for studying the dynamics and solutions of differential equations.
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