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1. Introduction

A simplicial complex K of dimension d is vertex-minimal if it is a d-simplex or it has d + 2 vertices. It is not hard to 
see that a vertex-minimal homogeneous (or pure) complex of dimension d is either an elementary starring (τ , a)�d of a 
d-simplex or the boundary ∂�d+1 of a (d +1)-simplex. On the other hand, a general non-pure complex with minimum num-
ber of vertices has no precise characterization. However, since vertex-minimal pure complexes are either balls or spheres, it 
is natural to ask whether there is a non-pure analogue to these polyhedra within the theory of non-homogeneous balls and 
spheres. In [5] G. Minian and the author introduced N H-manifolds, a generalization of the concept of manifold to the non-
pure setting (somewhat similar to Björner and Wachs’s extension of the shellability definition to non-pure complexes [3]). 
In this theory, N H-balls and N H-spheres are the non-pure versions of combinatorial balls and spheres.

The purpose of this article is to study minimal N H-balls and N H-spheres, which are respectively the non-pure coun-
terpart of vertex-minimal balls and spheres. Note that ∂�d+1 is not only the d-sphere with minimum number of vertices 
but also the one with minimum number of facets. For non-pure spheres, this last property is strictly stronger than vertex-
minimality and it is convenient to define minimal N H-spheres as the ones with minimum number of facets. With this 
definition, minimal N H-spheres with the homotopy type of a k-sphere are precisely the non-pure spheres whose nerve is 
∂�k+1, a property that also characterizes the boundary of simplices. On the other hand, an N H-ball B is minimal if it is 
part of a decomposition of a minimal N H-sphere, i.e. if there exists a combinatorial ball L with B ∩ L = ∂L such that B + L
is a minimal N H-sphere. This definition is consistent with the notion of vertex-minimal simplicial ball (see Lemma 4.1
below).

Surprisingly, minimal N H-balls and N H-spheres can be characterized by a property involving Alexander duals. Denote 
by K ∗ the Alexander dual of a complex K relative to the vertices of K . Set inductively K ∗(0) = K and K ∗(m) = (K ∗(m−1))∗ . 
Thus, in each step K ∗(i) is computed relatively to its own vertices, i.e. as a subcomplex of the boundary of the simplex of 
minimum dimension containing it. We call (K ∗(m))m∈N0 the sequence of iterated Alexander duals of K . The main result of the 
article is the following.

E-mail address: ncapitel@dm.uba.ar.
http://dx.doi.org/10.1016/j.comgeo.2016.05.002
0925-7721/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.comgeo.2016.05.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
mailto:ncapitel@dm.uba.ar
http://dx.doi.org/10.1016/j.comgeo.2016.05.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comgeo.2016.05.002&domain=pdf


20 N.A. Capitelli / Computational Geometry 57 (2016) 19–26
Theorem 1.1. Let K be a finite simplicial complex.

(i) There is an m ∈N0 such that K ∗(m) is the boundary of a simplex if and only if K is a minimal N H-sphere.
(ii) There is an m ∈N0 such that K ∗(m) is a simplex if and only if K is a minimal N H-ball.

In any case, the number of iterations needed to reach the simplex or the boundary of the simplex is bounded above by the number of 
vertices of K .

Note that K ∗ = �d if and only if K is a vertex-minimal d-ball which is not a simplex, so (ii) describes precisely all 
complexes converging to vertex-minimal balls. Theorem 1.1 characterizes the classes of �d and ∂�d in the equivalence 
relation generated by K ∼ K ∗ .

2. Preliminaries

2.1. Notation and definitions

All simplicial complexes that we deal with are assumed to be finite. Given a set of vertices V , |V | will denote its 
cardinality and �(V ) the simplex spanned by its vertices. �d := �({0, . . . , d}) will denote a generic d-simplex and ∂�d its 
boundary. The set of vertices of a complex K will be denoted V K and we set �K := �(V K ). A facet of a complex K is a 
simplex which is not a proper face of any other simplex of K . We denote by f(K ) the number of facets in K . A ridge is a 
maximal proper face of a facet. A complex is pure or homogeneous if all its facets have the same dimension.

We denote by σ ∗ τ the join of the faces σ , τ ∈ K (if σ ∩ τ = ∅) and by K ∗ L the join of the complexes K and L
(if V K ∩ V L = ∅). By convention, if ∅ is the empty simplex and {∅} the complex containing only the empty simplex then 
K ∗ {∅} = K and K ∗ ∅ = ∅. Note that ∂�0 = {∅}. For σ ∈ K , lk(σ , K ) = {τ ∈ K : τ ∩ σ = ∅, τ ∗ σ ∈ K } denotes its link and 
st(σ , K ) = σ ∗ lk(σ , K ) its star. The union of two complexes K , L will be denoted by K + L. A subcomplex L ⊆ K is said to 
be top generated if every facet of L is also a facet of K .

The notation K ↘ L will mean that K (simplicially) collapses to L. A complex is collapsible if it collapses to a single 
vertex and PL-collapsible if it has a subdivision which is collapsible. The simplicial nerve N (K ) of K is the complex whose 
vertices are the facets of K and whose simplices are the finite subsets of facets of K with non-empty intersection.

Two complexes are PL-isomorphic if they have a common subdivision. A combinatorial d-ball is a complex PL-isomorphic 
to �d . A combinatorial d-sphere is a complex PL-isomorphic to ∂�d+1. By convention, ∂�0 = {∅} is a sphere of dimension 
−1. A combinatorial d-manifold is a complex M such that lk(v, M) is a combinatorial (d − 1)-ball or (d − 1)-sphere for every 
v ∈ V M . A (d − 1)-simplex in a combinatorial d-manifold M is a face of at most two d-simplices of M and the boundary 
∂M is the complex generated by the (d − 1)-simplices which are faces of exactly one d-simplex. Combinatorial d-balls and 
d-spheres are combinatorial d-manifolds. The boundary of a combinatorial d-ball is a combinatorial (d − 1)-sphere.

2.2. Non-homogeneous balls and spheres

In order to make the presentation self-contained, we recall first the definition and some basic properties of non-
homogeneous balls and spheres. For a comprehensive exposition of the subject, the reader is referred to [5] (see also 
[6, §2.2] for a brief summary).

N H-balls and N H-spheres are special types of N H-manifolds, which are the non-pure versions of combinatorial man-
ifolds. N H-manifolds have a local structure consisting of regularly-assembled pieces of Euclidean spaces of different di-
mensions. In Fig. 1 we show some examples of N H-manifolds and their underlying spaces. N H-manifolds, N H-balls and 
N H-spheres are defined as follows.

Definition. An N H-manifold (resp. N H-ball, N H-sphere) of dimension 0 is a combinatorial manifold (resp. ball, sphere) of 
dimension 0. An N H-sphere of dimension −1 is, by convention, the complex {∅}. For d ≥ 1, we define by induction:

• An N H-manifold of dimension d is a complex M of dimension d such that lk(v, M) is an N H-ball or an N H-sphere 
(possibly of dimension −1) for all v ∈ V M .

• An N H-ball of dimension d is a PL-collapsible N H-manifold of dimension d.
• An N H-sphere of dimension d and homotopy dimension k is an N H-manifold S of dimension d such that there exist a 

top generated N H-ball B of dimension d and a top generated combinatorial k-ball L such that B + L = S and B ∩ L = ∂L. 
We say that S = B + L is a decomposition of S and write dimh(S) for the homotopy dimension of S .

The definitions of N H-ball and N H-sphere are motivated by the classical theorems of Whitehead [9] and Newman [7]
(see e.g. [8, Corollaries 3.28 and 3.13]). Just like for classical combinatorial manifolds, it can be seen that the class 
of N H-manifolds (resp. N H-balls, N H-spheres) is closed under subdivision and that the link of every simplex in an 
N H-manifold is an N H-ball or an N H-sphere. Also, the homogeneous N H-manifolds (resp. N H-balls, N H-spheres) are 
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Fig. 1. Examples of N H-manifolds (dark gray areas are 3-dimensional). (a), (d) and (e) are N H-spheres of dimension 1, 3 and 2 and homotopy dimension 
0, 2 and 1 respectively. (b) is an N H-ball of dimension 2 and (c), ( f ) are N H-balls of dimension 3. (g) is an N H-manifold which is neither an N H-ball nor 
an N H-sphere. The sequence (a)–(d) evidences how N H-manifolds are inductively defined.

precisely the combinatorial manifolds (resp. balls, spheres). Globally, a connected N H-manifold M is (non-pure) strongly 
connected: given two facets σ , τ ∈ M there is a sequence of facets σ = η1, . . . , ηt = τ such that ηi ∩ ηi+1 is a ridge of ηi or 
ηi+1 for every 1 ≤ i ≤ t − 1 (see [5, Lemma 3.15]). In particular, N H-balls and N H-spheres of homotopy dimension greater 
that 0 are strongly connected.

Unlike for classical spheres, non-pure N H-spheres do have boundary simplices; that is, simplices whose links are 
N H-balls. However, for any decomposition S = B + L of an N H-sphere and any σ ∈ B ∩ L, lk(σ , S) is an N H-sphere with 
decomposition lk(σ , S) = lk(σ , B) + lk(σ , L) (see [5, Lemma 4.8]). In particular, if σ ∈ B ∩ L then lk(σ , B) is an N H-ball.

Remark 2.1. Note that the “combinatorial” adjective may be safely removed from the previous remarks since a triangulated 
manifold all of whose simplices’ links are homeomorphic to spheres or balls is a combinatorial manifold (see the proof of 
[5, Theorem 3.6]). In particular, pure N H-balls are necessarily combinatorial balls since collapsible non-balls cannot occur 
in the combinatorial setting.

2.3. The Alexander dual

For a finite simplicial complex K and a ground set of vertices V ⊇ V K , the Alexander dual of K (relative to V ) is the 
complex

K ∗V = {σ ⊆ V | V \ σ /∈ K }.
The main importance of K ∗V lies in the combinatorial formulation of Alexander duality: Hi(K ∗V ) � Hn−i−3(K ). Here n = |V |
and the homology and cohomology groups are reduced (see e.g. [1,2]). In what follows, we shall write K ∗ := K ∗V K and 
K τ := K ∗V if τ = V \ V K . With this convention, K τ = K ∗ if τ = ∅. Note that (�d)∗ = ∅ and (∂�d+1)∗ = {∅}.

The relationship between Alexander duals relative to different ground sets of vertices is given by the following formula 
(see [6, Lemma 3.2]):

K τ = ∂τ ∗ �K + τ ∗ K ∗. (∗)

Here K ∗ is viewed as a subcomplex of �K . It is easy to see from the definition that (K ∗)V K \V K∗ = K and that (K τ )∗ = K if 
K = �d (see [6, Lemma 3.2]). The following result characterizes the Alexander dual of vertex-minimal complexes.

Lemma 2.2 ([6, Lemma 3.6]). If K = �d + u ∗ lk(u, K ) with u /∈ �d, then K ∗ = lk(u, K )τ where τ = V K \ V st(u,K ) .

It can be shown that K τ is an N H-ball (resp. N H-sphere) if and only if K ∗ is an N H-ball (resp. N H-sphere). This 
actually follows from the next result involving a slightly more general form of formula (∗), which we include here for future 
reference.

Lemma 2.3 ([6, Lemma 5.1]). If V K ⊆ V and η = ∅, then L := ∂η ∗ �(V ) + η ∗ K is an N H-ball (resp. N H-sphere) if and only if K is 
an N H-ball (resp. N H-sphere).

3. Minimal N H -spheres

In this section we introduce the non-pure version of ∂�d and prove part (i) of Theorem 1.1. Recall that f(K ) denotes the 
number of facets of K . We shall see that for a non-homogeneous sphere S , requesting minimality of f(S) is strictly stronger 
than requesting that of V S . This is the reason why vertex-minimal N H-spheres are not necessarily minimal in our sense.
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To introduce minimal N H-spheres we note first that any complex K with the homotopy type of a k-sphere has at least 
k + 2 facets. This follows from the fact that the simplicial nerve N (K ) is homotopy equivalent to K .

Definition. An N H-sphere S is said to be minimal if f(S) = dimh(S) + 2.

Note that, equivalently, an N H-sphere S of homotopy dimension k is minimal if and only if N (S) = ∂�k+1.

Remark 3.1. Suppose S = B + L is a decomposition of a minimal N H-sphere of homotopy dimension k and let v ∈ V L . 
Then lk(v, S) is an N H-sphere of homotopy dimension dimh(lk(v, S)) = k − 1 and lk(v, S) = lk(v, B) + lk(v, L) is a valid 
decomposition (see §2.2). In particular, f(lk(v, S)) ≥ k + 1. Also, f(lk(v, S)) < k + 3 since f(S) < k + 3 and f(lk(v, S)) = k + 2
since otherwise S is a cone. Therefore, f(lk(v, S)) = k + 1 = dimh(lk(v, S)) + 2, which shows that lk(v, S) is also a minimal 
N H-sphere.

We next prove that minimal N H-spheres are vertex-minimal.

Proposition 3.2. If S is a d-dimensional minimal N H-sphere then |V S | = d + 2.

Proof. Let S = B + L be decomposition of S and set k = dimh(S). We shall prove that |V S | ≤ d + 2 by induction on k. The 
case k = 0 is straightforward, so assume k ≥ 1. Let η ∈ B be a facet of minimal dimension and let ω denote the intersection 
of all facets of S different from η. Note that ω = ∅ since N (S) = ∂�k+1 and let u ∈ ω be a vertex. Since η /∈ L then ω ∈ L
and hence u ∈ L. By Remark 3.1, lk(u, S) is a minimal N H-sphere of dimension d′ ≤ d − 1 and homotopy dimension k − 1. 
By inductive hypothesis, |Vlk(u,S)| ≤ d′ + 2 ≤ d + 1. Therefore, st(u, S) is a top generated subcomplex of S with k + 1 facets 
and at most d + 2 vertices. By construction, S = st(u, S) + η. We shall show that Vη ⊂ V st(u,S) . Since B = st(u, B) + η, by 
strong connectivity there is a ridge σ ∈ B in st(u, B) ∩ η (see §2.2). By the minimality of η we must have η = w ∗ σ for 
some vertex w . Now, σ ∈ st(u, B) ∩ η ⊂ st(u, S) ∩ η; but st(u, S) ∩ η = σ since, otherwise, S = st(u, S) + η ↘ st(u, S) ↘ u, 
contradicting the fact that S has the homotopy type of a sphere. We conclude that w ∈ st(u, S) since every face of η not 
contained in σ contains w . Thus, |V S | = |V st(u,S) ∪ Vη| = |V st(u,S)| ≤ d + 2. �

This last proposition shows that, in the non-pure setting, requesting the minimality of f(S) is strictly more restrictive 
than requesting that of |V S |. For example, a vertex-minimal N H-sphere can be constructed from any N H-sphere S and a 
vertex u /∈ V S by the formula S̃ := �S + u ∗ S . It is easy to see that if S is not minimal, neither is S̃ .

Remark 3.3. By Proposition 3.2, a d-dimensional minimal N H-sphere S may be written S = �d + u ∗ lk(u, S) for some 
u /∈ �d . Note that for any decomposition S = B + L, the vertex u must lie in L (since this last complex is top generated). In 
particular, lk(u, S) is a minimal N H-sphere by Remark 3.1.

As we mentioned above, the Alexander duals play a key role in characterizing minimal N H-spheres. We now turn to 
prove Theorem 1.1 (i). We derive first the following corollary of Proposition 3.2.

Corollary 3.4. If S is a minimal N H-sphere then |V S∗ | < |V S | and dim(S∗) < dim(S).

Proof. V S∗ � V S follows from Proposition 3.2 since if S = �d + u ∗ lk(u, S) then u /∈ S∗ . In particular, this implies that 
dim(S∗) = dim(S) since S∗ is not a simplex by Alexander duality. �
Theorem 3.5. Let K be a finite simplicial complex and let τ be a simplex (possibly empty) disjoint from K . Then, K is a minimal 
N H-sphere if and only if K τ is a minimal N H-sphere. That is, the class of minimal N H-spheres is closed under taking Alexander dual.

Proof. Assume first that K is a minimal N H-sphere and set d = dim(K ). We proceed by induction on d. By Proposition 3.2, 
we can write K = �d +u ∗ lk(u, K ) for some vertex u /∈ �d . If τ = ∅ then, by Lemma 2.2, K ∗ = lk(u, K )ρ for ρ = V K \ V st(u,K ) . 
By Remark 3.3, lk(u, K ) is a minimal N H-sphere. Therefore, K ∗ = lk(u, K )ρ is a minimal N H-sphere by inductive hypothesis. 
If τ = ∅, K τ = ∂τ ∗ �K + τ ∗ K ∗ by formula (∗). In particular, K τ is an N H-sphere by Lemma 2.3 and the case τ = ∅. Now, 
by Alexander duality,

dimh(K τ ) = |V K ∪ Vτ | − dimh(K ) − 3 = |V K | + |Vτ | − dimh(K ) − 3 = dimh(K ∗) + |Vτ |.
On the other hand,

f(K τ ) = f(∂τ ∗ �K + τ ∗ K ∗) = f(∂τ ) + f(K ∗) = |Vτ | + dimh(K ∗) + 2,

where the last equality follows from the case τ = ∅. This shows that K τ is minimal.
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Assume now that K τ is a minimal N H-sphere. If τ = ∅ then K = (K τ )∗ and if τ = ∅ then K = (K ∗)V K \V K∗ (see §2.3). In 
any case, the result follows immediately from the previous implication. �
Proof of Theorem 1.1 (i). Suppose first that K is a minimal N H-sphere. By Theorem 3.5, every non-empty complex in 
the sequence {K ∗(m)}m∈N0 is a minimal N H-sphere. By Corollary 3.4, |V K ∗(m+1) | < |V K ∗(m) | for all m such that K ∗(m) = {∅}. 
Therefore, K ∗(m0) = {∅} for some m0 < |V K | and hence K ∗(m0−1) = ∂�d for some d ≥ 1.

Assume now that K ∗(m) = ∂�d for some m ∈ N0 and d ≥ 1. We proceed by induction on m. The case m = 0 corresponds 
to the trivial case K = ∂�d . For m ≥ 1, the result follows immediately from Theorem 3.5 and the inductive hypothesis. �
4. Minimal N H -balls

We now develop the notion of minimal N H-ball. The definition in this case is a little less straightforward than in the case 
of spheres because there is no piecewise-linear-equivalence argument in the construction of non-pure balls. To motivate the 
definition of minimal N H-ball, recall that for a non-empty simplex τ ∈ K and a vertex a /∈ K , the elementary starring (τ , a) of 
K is the operation which transforms K in (τ , a)K by removing τ ∗ lk(τ , K ) = st(τ , K ) and replacing it with a ∗ ∂τ ∗ lk(τ , K ). 
Note that when dim(τ ) = 0 then (τ , a)K is isomorphic to K .

Lemma 4.1. Let B be a combinatorial d-ball. The following statements are equivalent.

(1) |V B | ≤ d + 2 (i.e. B is vertex-minimal).
(2) B is an elementary starring of �d.
(3) B ⊂ ∂�d+1 .
(4) There is a combinatorial d-ball L such that B + L = ∂�d+1 and B ∩ L = ∂L.

Proof. We first prove that (1) implies (2) by induction on d. Since �d is trivially a starring of any of its vertices, we may 
assume |V B | = d + 2 and write B = �d + u ∗ lk(u, B) for some vertex u /∈ �d . Since lk(u, B) is necessarily a vertex-minimal 
(d − 1)-combinatorial ball then lk(u, B) = (τ , a)�d−1 by inductive hypothesis. It follows from an easy computation that B is 
isomorphic to (u ∗ τ , a)�d .

We next prove that (2) implies (4). We have

B = (τ ,a)�d = a ∗ ∂τ ∗ lk(τ ,�d) = a ∗ ∂τ ∗ �d−dim(τ )−1 = ∂τ ∗ �d−dim(τ ).

Letting L := τ ∗ ∂�d−dim(τ ) we get B + L = ∂�d+1 and

B ∩ L = ∂τ + ∂�d−dim(τ ) = ∂(τ ∗ ∂�d−dim(τ )) = ∂L.

Finally, (4) trivially implies (3) and (1) trivially follows from (3). �
Definition. An N H-ball B is said to be minimal if there exists a minimal N H-sphere S that admits a decomposition S =
B + L.

Note that if B is a minimal N H-ball and S = B + L is a decomposition of a minimal N H-sphere then, by Remark 3.1, 
lk(v, B) is a minimal N H-ball for every v ∈ B ∩ L (see §2.2). Note also that the intersection of all the facets of B is non-empty 
since N (B) �N (S) = ∂�k+1. Therefore, N (B) is a simplex. The converse, however, is easily seen to be false.

The proof of Theorem 1.1 (ii) will follow the same lines as its version for N H-spheres.

Proposition 4.2. If B is a d-dimensional minimal N H-ball then |V B | ≤ d + 2.

Proof. This follows immediately from Proposition 3.2 since dim(B) = dim(S) for any decomposition S = B + L of an 
N H-sphere. �
Corollary 4.3. If B is a minimal N H-ball then |V B∗ | < |V B | and dim(B∗) < dim(B).

Proof. We may assume B = �d . V B∗ � V B by the same reasoning made in the proof of Corollary 3.4. Also, if dim(B) =
dim(B∗) then B∗ = �d . By formula (∗), B = (B∗)ρ = ∂ρ ∗ �d where ρ = V B \ V B∗ , which is a contradiction since |V B | =
d + 2. �
Remark 4.4. The same construction that we made for minimal N H-spheres shows that vertex-minimal N H-balls need not be 
minimal. Also, similarly to the case of non-pure spheres, if B = �d +u ∗ lk(u, B) is a minimal N H-ball which is not a simplex 
then for any decomposition S = B + L of a minimal N H-sphere we have u ∈ L. In particular, since lk(u, S) = lk(u, B) + lk(u, L)

is a valid decomposition of a minimal N H-sphere, then lk(u, B) is a minimal N H-ball (see Remark 3.3).
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Theorem 4.5. Let K be a finite simplicial complex and let τ be a simplex (possibly empty) disjoint from K . Then, K is a minimal 
N H-ball if and only if K τ is a minimal N H-ball. That is, the class of minimal N H-balls is closed under taking Alexander dual.

Proof. Assume first that K is a minimal N H-ball and proceed by induction on d = dim(K ). The case τ = ∅ follows the same 
reasoning as the proof of Theorem 3.5 using the previous remarks. Suppose then τ = ∅. Since by the previous case K ∗ is a 
minimal N H-ball, there exists a decomposition S̃ = K ∗ + L̃ of a minimal N H-sphere. By Proposition 3.2 and Proposition 4.2, 
either K ∗ is a simplex (and V S̃ \ V K ∗ = {w} is a single vertex) or V S̃ = V K ∗ ⊂ V K . Let S := K τ + τ ∗ L̃, where we identify 
the vertex w with any vertex in V K \ V K ∗ if K ∗ is a simplex. We claim that S = K τ + τ ∗ L̃ is a valid decomposition of a 
minimal N H-sphere. On one hand, formula (∗) and Lemma 2.3 imply that K τ is an N H-ball and that

S = ∂τ ∗ �K + τ ∗ K ∗ + τ ∗ L̃ = ∂τ ∗ �K + τ ∗ S̃

is an N H-sphere. Also,

K τ ∩ (τ ∗ L̃) = (∂τ ∗ �K + τ ∗ K ∗) ∩ (τ ∗ L̃)

= ∂τ ∗ L̃ + τ ∗ (K ∗ ∩ L̃)

= ∂τ ∗ L̃ + τ ∗ ∂ L̃

= ∂(τ ∗ L̃).

This shows that S = K τ + τ ∗ L̃ is valid decomposition of an N H-sphere. On the other hand,

f(S) = f(∂τ ) + f( S̃) = dim(τ ) + 1 + dim(L̃) + 2 = dimh(S) + 2,

which proves that S is minimal. This settles the implication.
The other implication is analogous to the corresponding part of the proof of Theorem 3.5. �

Proof of Theorem 1.1 (ii). It follows the same reasoning as the proof of Theorem 1.1 (i) (replacing {∅} with ∅). �
If K ∗ = �d then, letting τ = V K \ V�d = ∅, we have K = (K ∗)τ = ∂τ ∗ �d = (τ , v)�d+dim(τ ) . This shows that Theo-

rem 1.1 (ii) characterizes all complexes which converge to vertex-minimal balls.

5. Further properties of minimal N H -balls and N H -spheres

In this final section we briefly discuss some characteristic properties of minimal N H-balls and N H-spheres.

Proposition 5.1. In a minimal N H-ball or N H-sphere, the link of every simplex is a minimal N H-ball or N H-sphere.

Proof. Let K be a minimal N H-ball or N H-sphere of dimension d and let σ ∈ K . We may assume K = �d . Since for a 
non-trivial decomposition σ = w ∗ η we have lk(σ , S) = lk(w, lk(η, S)), by an inductive argument it suffices to prove the 
case σ = v ∈ V K . We proceed by induction on d. We may assume d ≥ 1. Write K = �d +u ∗ lk(u, K ) where, as shown before, 
lk(u, K ) is either a minimal N H-ball or a minimal N H-sphere. Note that this in particular settles the case v = u. Suppose 
then v = u. If v /∈ lk(u, K ) then lk(v, K ) = �d−1. Otherwise, lk(v, K ) = �d−1 + u ∗ lk(v, lk(u, K )). By inductive hypothesis, 
lk(v, lk(u, K )) is a minimal N H-ball or N H-sphere. By Lemma 2.2,

lk(v, K )∗ = lk(v, lk(u, K ))ρ,

and the result follows from Theorem 3.5 and Theorem 4.5. �
For any vertex v ∈ K , the deletion K − v := {σ ∈ K | v /∈ σ } is again a minimal N H-ball or N H-sphere. This follows from 

Proposition 5.1, Theorem 3.5, Theorem 4.5 and the fact that lk(v, K ∗) = (K − v)∗ for any v ∈ V K (see [6, Lemma 3.7 (1)]). 
We can also show that minimal N H-balls are (non-pure) vertex-decomposable as defined by Björner and Wachs [4]. Recall 
that a complex K is vertex-decomposable if

(1) K is a simplex or K = {∅}, or
(2) there exists a vertex v ∈ K (called shedding vertex) such that

(a) K − v and lk(v, K ) are vertex-decomposable and
(b) no facet of lk(v, K ) is a facet of K − v .

Thus, if B = �d + u ∗ lk(u, B) is a minimal N H-ball which is not a simplex then u is a shedding vertex by Remark 4.4 and 
an inductive argument on dim(B). In particular, minimal N H-balls are collapsible (see [4, Theorem 11.3]).

We next make use of Theorem 3.5 and Theorem 4.5 to compute (up to isomorphism) the number of minimal N H-spheres 
and N H-balls in each dimension.
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Proposition 5.2. Let 0 ≤ k ≤ d.

(1) There are exactly 
(d

k

)
minimal N H-spheres of dimension d and homotopy dimension k. In particular, there are exactly 2d minimal 

N H-spheres of dimension d.
(2) There are exactly 2d minimal N H-balls of dimension d.

Proof. We first prove (1). An N H-sphere with d = k is homogeneous by [6, Proposition 2.7], in which case the result is 
obvious. Assume then 0 ≤ k ≤ d − 1 and proceed by induction on d. Let Sd,k denote the set of minimal N H-spheres of 
dimension d and homotopy dimension k. If S ∈ Sd,k it follows from Theorem 3.5, Corollary 3.4 and Alexander duality that 
S∗ is a minimal N H-sphere with dim(S∗) < d and dimh(S∗) = d − k − 1. Therefore, there is a well defined application

Sd,k
f−→

d−1⋃
i=d−k−1

Si,d−k−1

sending S to S∗ . We claim that f is a bijection. To prove injectivity, suppose S1, S2 ∈ Sd,k are such that S∗
1 = S∗

2. Let 
ρi = V Si \ V S∗

i
(i = 1, 2). Since |V S1 | = d + 2 = |V S2 | then dim(ρ1) = dim(ρ2) and, hence, S1 = (S∗

1)
ρ1 = (S∗

2)
ρ2 = S2. To 

prove surjectivity, let S̃ ∈ S j,d−k−1 with d − k − 1 ≤ j ≤ d − 1. Taking τ = �d− j−1 we have S̃τ ∈ Sd,k and f ( S̃τ ) = S̃ (see 
§2.3). Finally, using the inductive hypothesis,

|Sd,k| =
d−1∑

i=d−k−1

|Si,d−k−1| =
d−1∑

i=d−k−1

(
i

d − k − 1

)
=

(
d

k

)
.

For (2), let Bd denote the set of minimal N H-balls of dimension d and proceed again by induction on d. The very same 
reasoning as above gives a well defined bijection

Bd \ {�d} f−→
d−1⋃
i=0

Bi .

Therefore, using the inductive hypothesis,

|Bd \ {�d}| =
d−1∑
i=0

|Bi| =
d−1∑
i=0

2i = 2d − 1. �

Finally, we give a direct combinatorial description of minimal N H-balls and N H-spheres. This description (and its proof) 
was suggested by an anonymous referee. We are very grateful to him/her for this contribution.

Let V = {v1, . . . , vt} = ∅ and W be disjoint sets of vertices. Given a collection H = {H1, . . . , Ht} of subsets of W , we let 
K (V , W , H) ⊂ �(V ∪ W ) be the simplicial complex whose facets are the simplices ηi := (V \ {vi}) ∪ Hi for 1 ≤ i ≤ t . Note 
that

V K (V ,W ,H) =
{

V ∪ W t ≥ 2
Ht t = 1.

Proposition 5.3. Let K be a simplicial complex. Then

(1) K is a minimal N H-sphere of dimension d and homotopy dimension k if and only if K is isomorphic to K (V , W , H) for ver-
tex sets V = {v1, . . . , vk+2} and W = {w1, . . . , wd−k} and a collection H = {H1, . . . , Hk+2} satisfying ∅ = H1 ⊆ H2 ⊆ · · · ⊆
Hk+2 = W .

(2) K is a minimal N H-ball of dimension d if and only if K is isomorphic to K (V , W , H) for vertex sets V = {v1, . . . , vt} (t ≤ d + 1)

and W = {w1, . . . , wd+2−t} and a collection H = {H1, . . . , Ht} satisfying ∅ = H1 ⊆ H2 ⊆ · · · ⊆ Ht = W .

Proof. We deal with (1) first. Let K be a minimal N H-sphere of dimension d and homotopy dimension k and let 
η1, . . . , ηk+2 be the facets of K . Since N (K ) = ∂�k+1 then, for all 1 ≤ i ≤ k + 2, there is a vertex vi ∈ ⋂

j =i η j (and then 
vi /∈ ηi ). Set V := {v1, . . . , vk+2} and let W := V K \ V . We further set Hi := Vηi ∩ W . By relabeling the ηi ’s we may assume 
that |H1| ≤ |H2| ≤ · · · ≤ |Hk+2|. Note that ηi = (V \{vi}) ∪ Hi and that |W | = d −k by Proposition 3.2. It remains to show that 
∅ = H1 ⊆ H2 ⊆ · · · ⊆ Hk+2 = W . On one hand, H1 = ∅ since K has k-dimensional facets and Hk+2 = W since dim(K ) = d. On 
the other hand, if Hi � H j for some i < j, then, given that |Hi | ≤ |H j |, there are vertices wi ∈ Hi \ H j and w j ∈ H j \ Hi . Let 
ρ = V \ {vi, v j}. Note that since the only facets of K containing ρ are ηi and η j then lk(ρ, K ) = (v j ∗�(Hi)) + (vi ∗�(H j)). 
Consider L := lk(Hi ∩ H j, lk(ρ, K )) (in particular, L = lk(ρ, K ) if Hi ∩ H j = ∅). Now, L is an N H-ball or N H-sphere, since 
ρ ∈ K , and it is disconnected, since it contains the edges �({wi , v j}) and �({w j, vi}) in different components. The only 
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possibility is that L is an N H-sphere of homotopy dimension 0 (see §2.2), but this cannot happen since there are two 
components of dimension at least one.

Assume now that K = K (V , W , H) with the hypotheses as in the statement of (1). We will prove that K is a minimal 
N H-sphere by induction on d. The case d = 0 is trivial to check. Suppose d ≥ 1. Let ηi = (V \ {vi}) ∪ Hi (1 ≤ i ≤ k + 2) 
be the facets of K and note that K = ηk+2 + vk+2 ∗ lk(vk+2, K ) since dim(ηk+2) = d and |V K | = d + 2. By Lemma 2.2 and 
Theorem 3.5 it suffices to prove that lk(vk+2, K ) is a minimal N H-sphere. But one can easily check that lk(vk+2, K ) is 
isomorphic to K (Ṽ , W̃ , H̃) where Ṽ = V \ {vk+2}, W̃ = Hk+1 and H̃ = {H1, . . . , Hk+1}. The result then follows from the 
inductive hypothesis.

We next settle (2). Let K be a minimal N H-ball of dimension d. Then, there is a minimal N H-sphere S that admits 
a decomposition S = K + L. By (1) we know that S = K (Ṽ , W̃ , H̃) for some Ṽ = {v1, . . . , vk+2}, W̃ = {w1, . . . , wd−k} and 
H̃ = {H1, . . . , Hk+2} satisfying ∅ = H1 ⊆ H2 ⊆ · · · ⊆ Hk+2 = W . Let ηi1 , . . . , ηiq be the facets of L, where ηi = (V \ {vi}) ∪ Hi
as above. Since by dimensional reasons Hi1 = · · · = Hiq = ∅ we can relabel the vi ’s and Hi ’s so i j = j for 1 ≤ j ≤ q. Then, 
V := Ṽ \{v1, . . . , vq}, W := W̃ ∪{v1, . . . , vq} and H := {Hq+1 ∪{v1, . . . , vq}, . . . , Hk+2 ∪{v1, . . . , vq}} satisfy the requirements 
of the statement.

The converse is similar to the case of minimal NH-spheres. �
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