Contents lists available at ScienceDirect

Computational Geometry: Theory and Applications

www.elsevier.com/locate/comgeo

The non-pure version of the simplex and the boundary of the simplex

Nicolás A. Capitelli

Departamento de Matemática-IMAS, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina

ARTICLE INFO

Article history: Received 14 July 2015 Accepted 4 May 2016 Available online 10 May 2016

Keywords: Simplicial complexes Combinatorial manifolds Alexander dual

1. Introduction

ABSTRACT

We introduce the non-pure versions of simplicial balls and spheres with minimum number of vertices. These are a special type of non-homogeneous balls and spheres (*NH*-balls and *NH*-spheres) satisfying a minimality condition on the number of facets. The main result is that *minimal NH*-balls and *NH*-spheres are precisely the simplicial complexes whose iterated Alexander duals converge respectively to a simplex or the boundary of a simplex. © 2016 Elsevier B.V. All rights reserved.

A simplicial complex *K* of dimension *d* is *vertex-minimal* if it is a *d*-simplex or it has d + 2 vertices. It is not hard to see that a vertex-minimal homogeneous (or pure) complex of dimension *d* is either an elementary starring $(\tau, a)\Delta^d$ of a *d*-simplex or the boundary $\partial \Delta^{d+1}$ of a (d+1)-simplex. On the other hand, a general non-pure complex with minimum number of vertices has no precise characterization. However, since vertex-minimal pure complexes are either balls or spheres, it is natural to ask whether there is a non-pure analogue to these polyhedra within the theory of non-homogeneous balls and spheres. In [5] G. Minian and the author introduced *NH*-manifolds, a generalization of the concept of manifold to the non-pure setting (somewhat similar to Björner and Wachs's extension of the shellability definition to non-pure complexes [3]). In this theory, *NH*-balls and *NH*-spheres are the non-pure versions of combinatorial balls and spheres.

The purpose of this article is to study *minimal* NH-balls and NH-spheres, which are respectively the non-pure counterpart of vertex-minimal balls and spheres. Note that $\partial \Delta^{d+1}$ is not only the *d*-sphere with minimum number of vertices but also the one with minimum number of facets. For non-pure spheres, this last property is strictly stronger than vertex-minimality and it is convenient to define minimal NH-spheres as the ones with minimum number of facets. With this definition, minimal NH-spheres with the homotopy type of a *k*-sphere are precisely the non-pure spheres whose nerve is $\partial \Delta^{k+1}$, a property that also characterizes the boundary of simplices. On the other hand, an NH-ball B is minimal if it is part of a decomposition of a minimal NH-sphere, i.e. if there exists a combinatorial ball L with $B \cap L = \partial L$ such that B + L is a minimal NH-sphere. This definition is consistent with the notion of vertex-minimal simplicial ball (see Lemma 4.1 below).

Surprisingly, minimal *NH*-balls and *NH*-spheres can be characterized by a property involving Alexander duals. Denote by K^* the Alexander dual of a complex K relative to the vertices of K. Set inductively $K^{*(0)} = K$ and $K^{*(m)} = (K^{*(m-1)})^*$. Thus, in each step $K^{*(i)}$ is computed relatively to its own vertices, i.e. as a subcomplex of the boundary of the simplex of minimum dimension containing it. We call $(K^{*(m)})_{m \in \mathbb{N}_0}$ the sequence of iterated Alexander duals of K. The main result of the article is the following.

http://dx.doi.org/10.1016/j.comgeo.2016.05.002 0925-7721/© 2016 Elsevier B.V. All rights reserved.

E-mail address: ncapitel@dm.uba.ar.

Theorem 1.1. Let K be a finite simplicial complex.

- (i) There is an $m \in \mathbb{N}_0$ such that $K^{*(m)}$ is the boundary of a simplex if and only if K is a minimal NH-sphere.
- (ii) There is an $m \in \mathbb{N}_0$ such that $K^{*(m)}$ is a simplex if and only if K is a minimal NH-ball.

In any case, the number of iterations needed to reach the simplex or the boundary of the simplex is bounded above by the number of vertices of K.

Note that $K^* = \Delta^d$ if and only if K is a vertex-minimal d-ball which is not a simplex, so (*ii*) describes precisely all complexes *converging* to vertex-minimal balls. Theorem 1.1 characterizes the classes of Δ^d and $\partial \Delta^d$ in the equivalence relation generated by $K \sim K^*$.

2. Preliminaries

2.1. Notation and definitions

All simplicial complexes that we deal with are assumed to be finite. Given a set of vertices V, |V| will denote its cardinality and $\Delta(V)$ the simplex spanned by its vertices. $\Delta^d := \Delta(\{0, \dots, d\})$ will denote a generic *d*-simplex and $\partial \Delta^d$ its boundary. The set of vertices of a complex *K* will be denoted V_K and we set $\Delta_K := \Delta(V_K)$. A facet of a complex *K* is a simplex which is not a proper face of any other simplex of *K*. We denote by f(K) the number of facets in *K*. A *ridge* is a maximal proper face of a facet. A complex is *pure* or *homogeneous* if all its facets have the same dimension.

We denote by $\sigma * \tau$ the join of the faces $\sigma, \tau \in K$ (if $\sigma \cap \tau = \emptyset$) and by K * L the join of the complexes K and L (if $V_K \cap V_L = \emptyset$). By convention, if \emptyset is the empty simplex and $\{\emptyset\}$ the complex containing only the empty simplex then $K * \{\emptyset\} = K$ and $K * \emptyset = \emptyset$. Note that $\partial \Delta^0 = \{\emptyset\}$. For $\sigma \in K$, $lk(\sigma, K) = \{\tau \in K : \tau \cap \sigma = \emptyset, \tau * \sigma \in K\}$ denotes its *link* and $st(\sigma, K) = \sigma * lk(\sigma, K)$ its *star*. The union of two complexes K, L will be denoted by K + L. A subcomplex $L \subseteq K$ is said to be *top generated* if every facet of L is also a facet of K.

The notation $K \searrow L$ will mean that K (simplicially) collapses to L. A complex is *collapsible* if it collapses to a single vertex and *PL-collapsible* if it has a subdivision which is collapsible. The *simplicial nerve* $\mathcal{N}(K)$ of K is the complex whose vertices are the facets of K and whose simplices are the finite subsets of facets of K with non-empty intersection.

Two complexes are *PL-isomorphic* if they have a common subdivision. A *combinatorial d-ball* is a complex *PL-isomorphic* to Δ^d . A *combinatorial d-sphere* is a complex *PL-isomorphic* to $\partial \Delta^{d+1}$. By convention, $\partial \Delta^0 = \{\emptyset\}$ is a sphere of dimension -1. A *combinatorial d-manifold* is a complex *M* such that lk(v, M) is a combinatorial (d - 1)-ball or (d - 1)-sphere for every $v \in V_M$. A (d - 1)-simplex in a combinatorial *d*-manifold *M* is a face of at most two *d*-simplex. Combinatorial *d*-balls and *d*-spheres are combinatorial *d*-manifolds. The boundary of a combinatorial *d*-ball is a combinatorial (d - 1)-sphere.

2.2. Non-homogeneous balls and spheres

In order to make the presentation self-contained, we recall first the definition and some basic properties of non-homogeneous balls and spheres. For a comprehensive exposition of the subject, the reader is referred to [5] (see also $[6, \S2.2]$ for a brief summary).

NH-balls and *NH*-spheres are special types of *NH*-manifolds, which are the non-pure versions of combinatorial manifolds. *NH*-manifolds have a local structure consisting of regularly-assembled pieces of Euclidean spaces of different dimensions. In Fig. 1 we show some examples of *NH*-manifolds and their underlying spaces. *NH*-manifolds, *NH*-balls and *NH*-spheres are defined as follows.

Definition. An *NH*-manifold (resp. *NH*-ball, *NH*-sphere) of dimension 0 is a combinatorial manifold (resp. ball, sphere) of dimension 0. An *NH*-sphere of dimension -1 is, by convention, the complex { \emptyset }. For $d \ge 1$, we define by induction:

- An *NH-manifold* of dimension *d* is a complex *M* of dimension *d* such that lk(v, M) is an *NH*-ball or an *NH*-sphere (possibly of dimension -1) for all $v \in V_M$.
- An *NH-ball* of dimension *d* is a PL-collapsible *NH*-manifold of dimension *d*.
- An *NH-sphere* of dimension *d* and *homotopy dimension k* is an *NH*-manifold *S* of dimension *d* such that there exist a top generated *NH*-ball *B* of dimension *d* and a top generated combinatorial *k*-ball *L* such that B + L = S and $B \cap L = \partial L$. We say that S = B + L is a *decomposition* of *S* and write dim_h(*S*) for the homotopy dimension of *S*.

The definitions of *NH*-ball and *NH*-sphere are motivated by the classical theorems of Whitehead [9] and Newman [7] (see e.g. [8, Corollaries 3.28 and 3.13]). Just like for classical combinatorial manifolds, it can be seen that the class of *NH*-manifolds (resp. *NH*-balls, *NH*-spheres) is closed under subdivision and that the link of *every* simplex in an *NH*-manifold is an *NH*-ball or an *NH*-sphere. Also, the homogeneous *NH*-manifolds (resp. *NH*-balls, *NH*-spheres) are

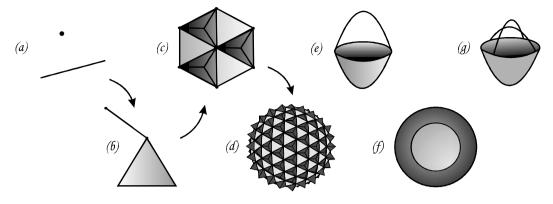


Fig. 1. Examples of *NH*-manifolds (dark gray areas are 3-dimensional). (*a*), (*d*) and (*e*) are *NH*-spheres of dimension 1, 3 and 2 and homotopy dimension 0, 2 and 1 respectively. (*b*) is an *NH*-ball of dimension 2 and (*c*), (*f*) are *NH*-balls of dimension 3. (*g*) is an *NH*-manifold which is neither an *NH*-ball nor an *NH*-sphere. The sequence (a)-(d) evidences how *NH*-manifolds are inductively defined.

precisely the combinatorial manifolds (resp. balls, spheres). Globally, a connected *NH*-manifold *M* is (non-pure) *strongly connected*: given two facets σ , $\tau \in M$ there is a sequence of facets $\sigma = \eta_1, \ldots, \eta_t = \tau$ such that $\eta_i \cap \eta_{i+1}$ is a ridge of η_i or η_{i+1} for every $1 \le i \le t - 1$ (see [5, Lemma 3.15]). In particular, *NH*-balls and *NH*-spheres of homotopy dimension greater that 0 are strongly connected.

Unlike for classical spheres, non-pure *NH*-spheres do have boundary simplices; that is, simplices whose links are *NH*-balls. However, for any decomposition S = B + L of an *NH*-sphere and any $\sigma \in B \cap L$, $lk(\sigma, S)$ is an *NH*-sphere with decomposition $lk(\sigma, S) = lk(\sigma, B) + lk(\sigma, L)$ (see [5, Lemma 4.8]). In particular, if $\sigma \in B \cap L$ then $lk(\sigma, B)$ is an *NH*-ball.

Remark 2.1. Note that the "combinatorial" adjective may be safely removed from the previous remarks since a triangulated manifold all of whose simplices' links are homeomorphic to spheres or balls is a combinatorial manifold (see the proof of [5, Theorem 3.6]). In particular, pure *NH*-balls are necessarily combinatorial balls since collapsible non-balls cannot occur in the combinatorial setting.

2.3. The Alexander dual

For a finite simplicial complex *K* and a ground set of vertices $V \supseteq V_K$, the *Alexander dual* of *K* (relative to *V*) is the complex

$$K^{*v} = \{ \sigma \subseteq V \mid V \setminus \sigma \notin K \}.$$

The main importance of K^{*v} lies in the combinatorial formulation of Alexander duality: $H_i(K^{*v}) \simeq H^{n-i-3}(K)$. Here n = |V| and the homology and cohomology groups are reduced (see e.g. [1,2]). In what follows, we shall write $K^* := K^{*v_K}$ and $K^{\tau} := K^{*v}$ if $\tau = V \setminus V_K$. With this convention, $K^{\tau} = K^*$ if $\tau = \emptyset$. Note that $(\Delta^d)^* = \emptyset$ and $(\partial \Delta^{d+1})^* = \{\emptyset\}$.

The relationship between Alexander duals relative to different ground sets of vertices is given by the following formula (see [6, Lemma 3.2]):

$$K^{\tau} = \partial \tau * \Delta_K + \tau * K^*. \tag{(*)}$$

Here K^* is viewed as a subcomplex of Δ_K . It is easy to see from the definition that $(K^*)^{V_K \setminus V_K^*} = K$ and that $(K^{\tau})^* = K$ if $K \neq \Delta^d$ (see [6, Lemma 3.2]). The following result characterizes the Alexander dual of vertex-minimal complexes.

Lemma 2.2 ([6, Lemma 3.6]). If $K = \Delta^d + u * lk(u, K)$ with $u \notin \Delta^d$, then $K^* = lk(u, K)^{\tau}$ where $\tau = V_K \setminus V_{st(u, K)}$.

It can be shown that K^{τ} is an *NH*-ball (resp. *NH*-sphere) if and only if K^* is an *NH*-ball (resp. *NH*-sphere). This actually follows from the next result involving a slightly more general form of formula (*), which we include here for future reference.

Lemma 2.3 ([6, Lemma 5.1]). If $V_K \subseteq V$ and $\eta \neq \emptyset$, then $L := \partial \eta * \Delta(V) + \eta * K$ is an NH-ball (resp. NH-sphere) if and only if K is an NH-ball (resp. NH-sphere).

3. Minimal NH-spheres

In this section we introduce the non-pure version of $\partial \Delta^d$ and prove part (*i*) of Theorem 1.1. Recall that f(K) denotes the number of facets of *K*. We shall see that for a non-homogeneous sphere *S*, requesting minimality of f(S) is strictly stronger than requesting that of V_S . This is the reason why vertex-minimal *NH*-spheres are not necessarily *minimal* in our sense.

To introduce minimal *NH*-spheres we note first that any complex *K* with the homotopy type of a *k*-sphere has at least k + 2 facets. This follows from the fact that the simplicial nerve $\mathcal{N}(K)$ is homotopy equivalent to *K*.

Definition. An *NH*-sphere *S* is said to be *minimal* if $f(S) = \dim_h(S) + 2$.

Note that, equivalently, an *NH*-sphere *S* of homotopy dimension *k* is minimal if and only if $\mathcal{N}(S) = \partial \Delta^{k+1}$.

Remark 3.1. Suppose S = B + L is a decomposition of a minimal *NH*-sphere of homotopy dimension k and let $v \in V_L$. Then lk(v, S) is an *NH*-sphere of homotopy dimension $\dim_h(lk(v, S)) = k - 1$ and lk(v, S) = lk(v, B) + lk(v, L) is a valid decomposition (see §2.2). In particular, $f(lk(v, S)) \ge k + 1$. Also, f(lk(v, S)) < k + 3 since f(S) < k + 3 and $f(lk(v, S)) \ne k + 2$ since otherwise *S* is a cone. Therefore, $f(lk(v, S)) = k + 1 = \dim_h(lk(v, S)) + 2$, which shows that lk(v, S) is also a minimal *NH*-sphere.

We next prove that minimal NH-spheres are vertex-minimal.

Proposition 3.2. If *S* is a *d*-dimensional minimal *NH*-sphere then $|V_S| = d + 2$.

Proof. Let S = B + L be decomposition of *S* and set $k = \dim_h(S)$. We shall prove that $|V_S| \le d + 2$ by induction on *k*. The case k = 0 is straightforward, so assume $k \ge 1$. Let $\eta \in B$ be a facet of minimal dimension and let ω denote the intersection of all facets of *S* different from η . Note that $\omega \ne \emptyset$ since $\mathcal{N}(S) = \partial \Delta^{k+1}$ and let $u \in \omega$ be a vertex. Since $\eta \notin L$ then $\omega \in L$ and hence $u \in L$. By Remark 3.1, |k(u, S)| is a minimal *NH*-sphere of dimension $d' \le d - 1$ and homotopy dimension k - 1. By inductive hypothesis, $|V_{lk(u,S)}| \le d' + 2 \le d + 1$. Therefore, st(u, S) is a top generated subcomplex of *S* with k + 1 facets and at most d + 2 vertices. By construction, $S = st(u, S) + \eta$. We shall show that $V_\eta \subset V_{st(u,S)}$. Since $B = st(u, B) + \eta$, by strong connectivity there is a ridge $\sigma \in B$ in $st(u, B) \cap \eta$ (see §2.2). By the minimality of η we must have $\eta = w * \sigma$ for some vertex *w*. Now, $\sigma \in st(u, B) \cap \eta \subset st(u, S) \cap \eta$; but $st(u, S) \cap \eta \ne \sigma$ since, otherwise, $S = st(u, S) + \eta \searrow st(u, S) \searrow u$, contradicting the fact that *S* has the homotopy type of a sphere. We conclude that $w \in st(u, S)$ since every face of η not contained in σ contains *w*. Thus, $|V_S| = |V_{st(u,S)} \cup V_\eta| = |V_{st(u,S)}| \le d + 2$. \Box

This last proposition shows that, in the non-pure setting, requesting the minimality of f(S) is strictly more restrictive than requesting that of $|V_S|$. For example, a vertex-minimal *NH*-sphere can be constructed from *any NH*-sphere *S* and a vertex $u \notin V_S$ by the formula $\tilde{S} := \Delta_S + u * S$. It is easy to see that if *S* is not minimal, neither is \tilde{S} .

Remark 3.3. By Proposition 3.2, a *d*-dimensional minimal *NH*-sphere *S* may be written $S = \Delta^d + u * lk(u, S)$ for some $u \notin \Delta^d$. Note that for any decomposition S = B + L, the vertex *u* must lie in *L* (since this last complex is top generated). In particular, lk(u, S) is a minimal *NH*-sphere by Remark 3.1.

As we mentioned above, the Alexander duals play a key role in characterizing minimal *NH*-spheres. We now turn to prove Theorem 1.1 (*i*). We derive first the following corollary of Proposition 3.2.

Corollary 3.4. If *S* is a minimal *NH*-sphere then $|V_{S^*}| < |V_S|$ and dim $(S^*) < \dim(S)$.

Proof. $V_{S^*} \subsetneq V_S$ follows from Proposition 3.2 since if $S = \Delta^d + u * lk(u, S)$ then $u \notin S^*$. In particular, this implies that $\dim(S^*) \neq \dim(S)$ since S^* is not a simplex by Alexander duality. \Box

Theorem 3.5. Let K be a finite simplicial complex and let τ be a simplex (possibly empty) disjoint from K. Then, K is a minimal NH-sphere if and only if K^{τ} is a minimal NH-sphere. That is, the class of minimal NH-spheres is closed under taking Alexander dual.

Proof. Assume first that *K* is a minimal *NH*-sphere and set $d = \dim(K)$. We proceed by induction on *d*. By Proposition 3.2, we can write $K = \Delta^d + u * lk(u, K)$ for some vertex $u \notin \Delta^d$. If $\tau = \emptyset$ then, by Lemma 2.2, $K^* = lk(u, K)^\rho$ for $\rho = V_K \setminus V_{st(u,K)}$. By Remark 3.3, lk(u, K) is a minimal *NH*-sphere. Therefore, $K^* = lk(u, K)^\rho$ is a minimal *NH*-sphere by inductive hypothesis. If $\tau \neq \emptyset$, $K^\tau = \partial \tau * \Delta_K + \tau * K^*$ by formula (*). In particular, K^τ is an *NH*-sphere by Lemma 2.3 and the case $\tau = \emptyset$. Now, by Alexander duality,

$$\dim_h(K^{\tau}) = |V_K \cup V_{\tau}| - \dim_h(K) - 3 = |V_K| + |V_{\tau}| - \dim_h(K) - 3 = \dim_h(K^*) + |V_{\tau}|.$$

On the other hand,

 $f(K^{\tau}) = f(\partial \tau * \Delta_K + \tau * K^*) = f(\partial \tau) + f(K^*) = |V_{\tau}| + \dim_h(K^*) + 2,$

where the last equality follows from the case $\tau = \emptyset$. This shows that K^{τ} is minimal.

Assume now that K^{τ} is a minimal *NH*-sphere. If $\tau \neq \emptyset$ then $K = (K^{\tau})^*$ and if $\tau = \emptyset$ then $K = (K^*)^{V_K \setminus V_{K^*}}$ (see §2.3). In any case, the result follows immediately from the previous implication. \Box

Proof of Theorem 1.1 (i). Suppose first that *K* is a minimal *NH*-sphere. By Theorem 3.5, every non-empty complex in the sequence $\{K^{*(m)}\}_{m \in \mathbb{N}_0}$ is a minimal *NH*-sphere. By Corollary 3.4, $|V_{K^{*(m+1)}}| < |V_{K^{*(m)}}|$ for all *m* such that $K^{*(m)} \neq \{\emptyset\}$. Therefore, $K^{*(m_0)} = \{\emptyset\}$ for some $m_0 < |V_K|$ and hence $K^{*(m_0-1)} = \partial \Delta^d$ for some $d \ge 1$.

Assume now that $K^{*(m)} = \partial \Delta^d$ for some $m \in \mathbb{N}_0$ and $d \ge 1$. We proceed by induction on m. The case m = 0 corresponds to the trivial case $K = \partial \Delta^d$. For $m \ge 1$, the result follows immediately from Theorem 3.5 and the inductive hypothesis. \Box

4. Minimal NH-balls

We now develop the notion of minimal *NH*-ball. The definition in this case is a little less straightforward than in the case of spheres because there is no piecewise-linear-equivalence argument in the construction of non-pure balls. To motivate the definition of minimal *NH*-ball, recall that for a non-empty simplex $\tau \in K$ and a vertex $a \notin K$, the *elementary starring* (τ, a) of K is the operation which transforms K in $(\tau, a)K$ by removing $\tau * lk(\tau, K) = st(\tau, K)$ and replacing it with $a * \partial \tau * lk(\tau, K)$. Note that when dim $(\tau) = 0$ then $(\tau, a)K$ is isomorphic to K.

Lemma 4.1. Let B be a combinatorial d-ball. The following statements are equivalent.

(1) $|V_B| \leq d + 2$ (i.e. B is vertex-minimal).

(2) *B* is an elementary starring of Δ^d .

(3) $B \subset \partial \Delta^{d+1}$.

(4) There is a combinatorial d-ball L such that $B + L = \partial \Delta^{d+1}$ and $B \cap L = \partial L$.

Proof. We first prove that (1) implies (2) by induction on *d*. Since Δ^d is trivially a starring of any of its vertices, we may assume $|V_B| = d + 2$ and write $B = \Delta^d + u * lk(u, B)$ for some vertex $u \notin \Delta^d$. Since lk(u, B) is necessarily a vertex-minimal (d-1)-combinatorial ball then $lk(u, B) = (\tau, a)\Delta^{d-1}$ by inductive hypothesis. It follows from an easy computation that *B* is isomorphic to $(u * \tau, a)\Delta^d$.

We next prove that (2) implies (4). We have

 $B = (\tau, a)\Delta^d = a * \partial \tau * lk(\tau, \Delta^d) = a * \partial \tau * \Delta^{d - \dim(\tau) - 1} = \partial \tau * \Delta^{d - \dim(\tau)}.$

Letting $L := \tau * \partial \Delta^{d-\dim(\tau)}$ we get $B + L = \partial \Delta^{d+1}$ and

$$B \cap L = \partial \tau + \partial \Delta^{d-\dim(\tau)} = \partial (\tau * \partial \Delta^{d-\dim(\tau)}) = \partial L$$

Finally, (4) trivially implies (3) and (1) trivially follows from (3). \Box

Definition. An *NH*-ball *B* is said to be *minimal* if there exists a minimal *NH*-sphere *S* that admits a decomposition S = B + L.

Note that if *B* is a minimal *NH*-ball and S = B + L is a decomposition of a minimal *NH*-sphere then, by Remark 3.1, lk(v, B) is a minimal *NH*-ball for every $v \in B \cap L$ (see §2.2). Note also that the intersection of all the facets of *B* is non-empty since $\mathcal{N}(B) \subsetneq \mathcal{N}(S) = \partial \Delta^{k+1}$. Therefore, $\mathcal{N}(B)$ is a simplex. The converse, however, is easily seen to be false.

The proof of Theorem 1.1 (ii) will follow the same lines as its version for NH-spheres.

Proposition 4.2. *If B is a d*-dimensional minimal *NH*-ball then $|V_B| \le d + 2$.

Proof. This follows immediately from Proposition 3.2 since $\dim(B) = \dim(S)$ for any decomposition S = B + L of an *NH*-sphere. \Box

Corollary 4.3. If *B* is a minimal *NH*-ball then $|V_{B^*}| < |V_B|$ and dim $(B^*) < \text{dim}(B)$.

Proof. We may assume $B \neq \Delta^d$. $V_{B^*} \subsetneq V_B$ by the same reasoning made in the proof of Corollary 3.4. Also, if dim(B) = dim(B^*) then $B^* = \Delta^d$. By formula (*), $B = (B^*)^{\rho} = \partial \rho * \Delta^d$ where $\rho = V_B \setminus V_{B^*}$, which is a contradiction since $|V_B| = d + 2$. \Box

Remark 4.4. The same construction that we made for minimal *NH*-spheres shows that vertex-minimal *NH*-balls need not be minimal. Also, similarly to the case of non-pure spheres, if $B = \Delta^d + u * lk(u, B)$ is a minimal *NH*-ball which is not a simplex then for any decomposition S = B + L of a minimal *NH*-sphere we have $u \in L$. In particular, since lk(u, S) = lk(u, B) + lk(u, L) is a valid decomposition of a minimal *NH*-sphere, then lk(u, B) is a minimal *NH*-ball (see Remark 3.3).

Theorem 4.5. Let K be a finite simplicial complex and let τ be a simplex (possibly empty) disjoint from K. Then, K is a minimal NH-ball if and only if K^{τ} is a minimal NH-ball. That is, the class of minimal NH-balls is closed under taking Alexander dual.

Proof. Assume first that *K* is a minimal *NH*-ball and proceed by induction on $d = \dim(K)$. The case $\tau = \emptyset$ follows the same reasoning as the proof of Theorem 3.5 using the previous remarks. Suppose then $\tau \neq \emptyset$. Since by the previous case K^* is a minimal *NH*-ball, there exists a decomposition $\tilde{S} = K^* + \tilde{L}$ of a minimal *NH*-sphere. By Proposition 3.2 and Proposition 4.2, either K^* is a simplex (and $V_{\tilde{S}} \setminus V_{K^*} = \{w\}$ is a single vertex) or $V_{\tilde{S}} = V_{K^*} \subset V_K$. Let $S := K^{\tau} + \tau * \tilde{L}$, where we identify the vertex *w* with any vertex in $V_K \setminus V_{K^*}$ if K^* is a simplex. We claim that $S = K^{\tau} + \tau * \tilde{L}$ is a valid decomposition of a minimal *NH*-sphere. On one hand, formula (*) and Lemma 2.3 imply that K^{τ} is an *NH*-ball and that

$$S = \partial \tau * \Delta_K + \tau * K^* + \tau * \tilde{L} = \partial \tau * \Delta_K + \tau * \tilde{S}$$

is an NH-sphere. Also,

$$\begin{aligned} K^{\tau} \cap (\tau * \tilde{L}) &= (\partial \tau * \Delta_{K} + \tau * K^{*}) \cap (\tau * \tilde{L}) \\ &= \partial \tau * \tilde{L} + \tau * (K^{*} \cap \tilde{L}) \\ &= \partial \tau * \tilde{L} + \tau * \partial \tilde{L} \\ &= \partial (\tau * \tilde{L}). \end{aligned}$$

This shows that $S = K^{\tau} + \tau * \tilde{L}$ is valid decomposition of an *NH*-sphere. On the other hand,

 $f(S) = f(\partial \tau) + f(\tilde{S}) = \dim(\tau) + 1 + \dim(\tilde{L}) + 2 = \dim_h(S) + 2,$

which proves that *S* is minimal. This settles the implication.

The other implication is analogous to the corresponding part of the proof of Theorem 3.5. \Box

Proof of Theorem 1.1 (ii). It follows the same reasoning as the proof of Theorem 1.1 (i) (replacing $\{\emptyset\}$ with \emptyset).

If $K^* = \Delta^d$ then, letting $\tau = V_K \setminus V_{\Delta^d} \neq \emptyset$, we have $K = (K^*)^{\tau} = \partial \tau * \Delta^d = (\tau, \nu) \Delta^{d+\dim(\tau)}$. This shows that Theorem 1.1 (*ii*) characterizes all complexes which converge to vertex-minimal balls.

5. Further properties of minimal NH-balls and NH-spheres

In this final section we briefly discuss some characteristic properties of minimal NH-balls and NH-spheres.

Proposition 5.1. In a minimal NH-ball or NH-sphere, the link of every simplex is a minimal NH-ball or NH-sphere.

Proof. Let *K* be a minimal *NH*-ball or *NH*-sphere of dimension *d* and let $\sigma \in K$. We may assume $K \neq \Delta^d$. Since for a non-trivial decomposition $\sigma = w * \eta$ we have $lk(\sigma, S) = lk(w, lk(\eta, S))$, by an inductive argument it suffices to prove the case $\sigma = v \in V_K$. We proceed by induction on *d*. We may assume $d \ge 1$. Write $K = \Delta^d + u * lk(u, K)$ where, as shown before, lk(u, K) is either a minimal *NH*-ball or a minimal *NH*-sphere. Note that this in particular settles the case v = u. Suppose then $v \neq u$. If $v \notin lk(u, K)$ then $lk(v, K) = \Delta^{d-1}$. Otherwise, $lk(v, K) = \Delta^{d-1} + u * lk(v, lk(u, K))$. By inductive hypothesis, lk(v, lk(u, K)) is a minimal *NH*-ball or *NH*-sphere. By Lemma 2.2,

 $lk(v, K)^* = lk(v, lk(u, K))^{\rho},$

and the result follows from Theorem 3.5 and Theorem 4.5. \Box

For any vertex $v \in K$, the deletion $K - v := \{\sigma \in K \mid v \notin \sigma\}$ is again a minimal *NH*-ball or *NH*-sphere. This follows from Proposition 5.1, Theorem 3.5, Theorem 4.5 and the fact that $lk(v, K^*) = (K - v)^*$ for any $v \in V_K$ (see [6, Lemma 3.7 (1)]). We can also show that minimal *NH*-balls are (non-pure) vertex-decomposable as defined by Björner and Wachs [4]. Recall that a complex *K* is *vertex-decomposable* if

- (1) *K* is a simplex or $K = \{\emptyset\}$, or
- (2) there exists a vertex $v \in K$ (called *shedding vertex*) such that
 - (a) K v and lk(v, K) are vertex-decomposable and
 - (b) no facet of lk(v, K) is a facet of K v.

Thus, if $B = \Delta^d + u * lk(u, B)$ is a minimal *NH*-ball which is not a simplex then *u* is a shedding vertex by Remark 4.4 and an inductive argument on dim(*B*). In particular, minimal *NH*-balls are collapsible (see [4, Theorem 11.3]).

We next make use of Theorem 3.5 and Theorem 4.5 to compute (up to isomorphism) the number of minimal *NH*-spheres and *NH*-balls in each dimension.

Proposition 5.2. *Let* $0 \le k \le d$ *.*

- (1) There are exactly $\binom{d}{k}$ minimal NH-spheres of dimension d and homotopy dimension k. In particular, there are exactly 2^d minimal NH-spheres of dimension d.
- (2) There are exactly 2^d minimal NH-balls of dimension d.

Proof. We first prove (1). An *NH*-sphere with d = k is homogeneous by [6, Proposition 2.7], in which case the result is obvious. Assume then $0 \le k \le d - 1$ and proceed by induction on d. Let $S_{d,k}$ denote the set of minimal *NH*-spheres of dimension d and homotopy dimension k. If $S \in S_{d,k}$ it follows from Theorem 3.5, Corollary 3.4 and Alexander duality that S^* is a minimal *NH*-sphere with dim $(S^*) < d$ and dim_{$h}(S^*) = d - k - 1$. Therefore, there is a well defined application</sub>

$$\mathcal{S}_{d,k} \xrightarrow{f} \bigcup_{i=d-k-1}^{d-1} \mathcal{S}_{i,d-k-1}$$

sending *S* to *S*^{*}. We claim that *f* is a bijection. To prove injectivity, suppose $S_1, S_2 \in S_{d,k}$ are such that $S_1^* = S_2^*$. Let $\rho_i = V_{S_i} \setminus V_{S_i^*}$ (i = 1, 2). Since $|V_{S_1}| = d + 2 = |V_{S_2}|$ then $\dim(\rho_1) = \dim(\rho_2)$ and, hence, $S_1 = (S_1^*)^{\rho_1} = (S_2^*)^{\rho_2} = S_2$. To prove surjectivity, let $\tilde{S} \in S_{j,d-k-1}$ with $d - k - 1 \le j \le d - 1$. Taking $\tau = \Delta^{d-j-1}$ we have $\tilde{S}^{\tau} \in S_{d,k}$ and $f(\tilde{S}^{\tau}) = \tilde{S}$ (see §2.3). Finally, using the inductive hypothesis,

$$|\mathcal{S}_{d,k}| = \sum_{i=d-k-1}^{d-1} |\mathcal{S}_{i,d-k-1}| = \sum_{i=d-k-1}^{d-1} \binom{i}{d-k-1} = \binom{d}{k}$$

For (2), let \mathcal{B}_d denote the set of minimal *NH*-balls of dimension *d* and proceed again by induction on *d*. The very same reasoning as above gives a well defined bijection

$$\mathcal{B}_d \setminus \{\Delta^d\} \xrightarrow{f} \bigcup_{i=0}^{d-1} \mathcal{B}_i.$$

Therefore, using the inductive hypothesis,

$$|\mathcal{B}_d \setminus \{\Delta^d\}| = \sum_{i=0}^{d-1} |\mathcal{B}_i| = \sum_{i=0}^{d-1} 2^i = 2^d - 1.$$

Finally, we give a direct combinatorial description of minimal *NH*-balls and *NH*-spheres. This description (and its proof) was suggested by an anonymous referee. We are very grateful to him/her for this contribution.

Let $V = \{v_1, ..., v_t\} \neq \emptyset$ and W be disjoint sets of vertices. Given a collection $\mathcal{H} = \{H_1, ..., H_t\}$ of subsets of W, we let $K(V, W, \mathcal{H}) \subset \Delta(V \cup W)$ be the simplicial complex whose facets are the simplices $\eta_i := (V \setminus \{v_i\}) \cup H_i$ for $1 \le i \le t$. Note that

$$V_{K(V,W,\mathcal{H})} = \begin{cases} V \cup W & t \ge 2\\ H_t & t = 1. \end{cases}$$

Proposition 5.3. Let K be a simplicial complex. Then

- (1) *K* is a minimal NH-sphere of dimension *d* and homotopy dimension *k* if and only if *K* is isomorphic to K(V, W, H) for vertex sets $V = \{v_1, \ldots, v_{k+2}\}$ and $W = \{w_1, \ldots, w_{d-k}\}$ and a collection $H = \{H_1, \ldots, H_{k+2}\}$ satisfying $\emptyset = H_1 \subseteq H_2 \subseteq \cdots \subseteq H_{k+2} = W$.
- (2) *K* is a minimal NH-ball of dimension *d* if and only if *K* is isomorphic to $K(V, W, \mathcal{H})$ for vertex sets $V = \{v_1, \ldots, v_t\}$ ($t \le d + 1$) and $W = \{w_1, \ldots, w_{d+2-t}\}$ and a collection $\mathcal{H} = \{H_1, \ldots, H_t\}$ satisfying $\emptyset \ne H_1 \subseteq H_2 \subseteq \cdots \subseteq H_t = W$.

Proof. We deal with (1) first. Let *K* be a minimal *NH*-sphere of dimension *d* and homotopy dimension *k* and let $\eta_1, \ldots, \eta_{k+2}$ be the facets of *K*. Since $\mathcal{N}(K) = \partial \Delta^{k+1}$ then, for all $1 \le i \le k+2$, there is a vertex $v_i \in \bigcap_{j \ne i} \eta_j$ (and then $v_i \notin \eta_i$). Set $V := \{v_1, \ldots, v_{k+2}\}$ and let $W := V_K \setminus V$. We further set $H_i := V_{\eta_i} \cap W$. By relabeling the η_i 's we may assume that $|H_1| \le |H_2| \le \cdots \le |H_{k+2}|$. Note that $\eta_i = (V \setminus \{v_i\}) \cup H_i$ and that |W| = d - k by Proposition 3.2. It remains to show that $\emptyset = H_1 \subseteq H_2 \subseteq \cdots \subseteq H_{k+2} = W$. On one hand, $H_1 = \emptyset$ since *K* has *k*-dimensional facets and $H_{k+2} = W$ since dim(*K*) = *d*. On the other hand, if $H_i \nsubseteq H_j$ for some i < j, then, given that $|H_i| \le |H_j|$, there are vertices $w_i \in H_i \setminus H_j$ and $w_j \in H_j \setminus H_i$. Let $\rho = V \setminus \{v_i, v_j\}$. Note that since the only facets of *K* containing ρ are η_i and η_j then $lk(\rho, K) = (v_j * \Delta(H_i)) + (v_i * \Delta(H_j))$. Consider $L := lk(H_i \cap H_j, lk(\rho, K))$ (in particular, $L = lk(\rho, K)$ if $H_i \cap H_j = \emptyset$). Now, *L* is an *NH*-ball or *NH*-sphere, since $\rho \in K$, and it is disconnected, since it contains the edges $\Delta(\{w_i, v_j\})$ and $\Delta(\{w_j, v_i\})$ in different components. The only

possibility is that L is an NH-sphere of homotopy dimension 0 (see §2.2), but this cannot happen since there are two components of dimension at least one.

Assume now that $K = K(V, W, \mathcal{H})$ with the hypotheses as in the statement of (1). We will prove that K is a minimal NH-sphere by induction on d. The case d = 0 is trivial to check. Suppose $d \ge 1$. Let $\eta_i = (V \setminus \{v_i\}) \cup H_i$ $(1 \le i \le k + 2)$ be the facets of K and note that $K = \eta_{k+2} + v_{k+2} * lk(v_{k+2}, K)$ since $\dim(\eta_{k+2}) = d$ and $|V_K| = d + 2$. By Lemma 2.2 and Theorem 3.5 it suffices to prove that $lk(v_{k+2}, K)$ is a minimal NH-sphere. But one can easily check that $lk(v_{k+2}, K)$ is isomorphic to $K(\tilde{V}, \tilde{W}, \tilde{\mathcal{H}})$ where $\tilde{V} = V \setminus \{v_{k+2}\}$, $\tilde{W} = H_{k+1}$ and $\tilde{\mathcal{H}} = \{H_1, \ldots, H_{k+1}\}$. The result then follows from the inductive hypothesis.

We next settle (2). Let *K* be a minimal *NH*-ball of dimension *d*. Then, there is a minimal *NH*-sphere *S* that admits a decomposition S = K + L. By (1) we know that $S = K(\tilde{V}, \tilde{W}, \tilde{H})$ for some $\tilde{V} = \{v_1, \ldots, v_{k+2}\}$, $\tilde{W} = \{w_1, \ldots, w_{d-k}\}$ and $\tilde{H} = \{H_1, \ldots, H_{k+2}\}$ satisfying $\emptyset = H_1 \subseteq H_2 \subseteq \cdots \subseteq H_{k+2} = W$. Let $\eta_{i_1}, \ldots, \eta_{i_q}$ be the facets of *L*, where $\eta_i = (V \setminus \{v_i\}) \cup H_i$ as above. Since by dimensional reasons $H_{i_1} = \cdots = H_{i_q} = \emptyset$ we can relabel the v_i 's and H_i 's so $i_j = j$ for $1 \le j \le q$. Then, $V := \tilde{V} \setminus \{v_1, \ldots, v_q\}$, $W := \tilde{W} \cup \{v_1, \ldots, v_q\}$ and $\mathcal{H} := \{H_{q+1} \cup \{v_1, \ldots, v_q\}, \ldots, H_{k+2} \cup \{v_1, \ldots, v_q\}\}$ satisfy the requirements of the statement.

The converse is similar to the case of minimal NH-spheres. \Box

Acknowledgements

I am grateful to Gabriel Minian for many helpful remarks and suggestions during the preparation of the paper. I would also like to thank the referees for their comments which helped to improve the presentation of the article. In particular, I am grateful to the anonymous referee who suggested the alternative description of minimal *NH*-balls and *NH*-spheres included in Section 5.

References

- [1] J.W. Alexander, A proof and extension of the Jordan–Brouwer separation theorem, Trans. Am. Math. Soc. 23 (4) (1922) 333–349.
- [2] A. Björner, M. Tancer, Combinatorial Alexander duality a short and elementary proof, Discrete Comput. Geom. 42 (4) (2009) 586–593.
- [3] A. Björner, M. Wachs, Shellable nonpure complexes and posets. I, Trans. Am. Math. Soc. 348 (4) (1996) 1299–1327.
- [4] A. Björner, M. Wachs, Shellable nonpure complexes and posets. II, Trans. Am. Math. Soc. 349 (10) (1997) 3945–3975.
- [5] N.A. Capitelli, E.G. Minian, Non-homogeneous combinatorial manifolds, Beitr. Algebra Geom. 54 (1) (2013) 419-439.
- [6] N.A. Capitelli, E.G. Minian, A generalization of a result of Dong and Santos–Sturmfels on the Alexander dual of spheres and balls, J. Comb. Theory, Ser. A 138 (2016) 155–174.
- [7] M.H.A. Newman, On the foundation of combinatorial analysis situs, Proc. Roy. Acad. Amsterdam 29 (1926) 610-641.
- [8] C.P. Rourke, B.J. Sanderson, Introduction to Piecewise-Linear Topology, Springer-Verlag, 1972.
- [9] J.H.C. Whitehead, Simplicial spaces, nuclei and m-groups, Proc. Lond. Math. Soc. 45 (1939) 243-327.