The non-pure version of the simplex and the boundary of the simplex

Nicolás A. Capitelli
Departamento de Matemática-IMAS, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina

A R TICLE INFO

Article history:

Received 14 July 2015
Accepted 4 May 2016
Available online 10 May 2016

Keywords:

Simplicial complexes
Combinatorial manifolds
Alexander dual

Abstract

We introduce the non-pure versions of simplicial balls and spheres with minimum number of vertices. These are a special type of non-homogeneous balls and spheres (NH -balls and NH -spheres) satisfying a minimality condition on the number of facets. The main result is that minimal NH -balls and NH -spheres are precisely the simplicial complexes whose iterated Alexander duals converge respectively to a simplex or the boundary of a simplex.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A simplicial complex K of dimension d is vertex-minimal if it is a d-simplex or it has $d+2$ vertices. It is not hard to see that a vertex-minimal homogeneous (or pure) complex of dimension d is either an elementary starring (τ, a) Δ^{d} of a d-simplex or the boundary $\partial \Delta^{d+1}$ of a ($d+1$)-simplex. On the other hand, a general non-pure complex with minimum number of vertices has no precise characterization. However, since vertex-minimal pure complexes are either balls or spheres, it is natural to ask whether there is a non-pure analogue to these polyhedra within the theory of non-homogeneous balls and spheres. In [5] G. Minian and the author introduced $N H$-manifolds, a generalization of the concept of manifold to the nonpure setting (somewhat similar to Björner and Wachs's extension of the shellability definition to non-pure complexes [3]). In this theory, NH -balls and NH -spheres are the non-pure versions of combinatorial balls and spheres.

The purpose of this article is to study minimal NH -balls and NH -spheres, which are respectively the non-pure counterpart of vertex-minimal balls and spheres. Note that $\partial \Delta^{d+1}$ is not only the d-sphere with minimum number of vertices but also the one with minimum number of facets. For non-pure spheres, this last property is strictly stronger than vertexminimality and it is convenient to define minimal $N H$-spheres as the ones with minimum number of facets. With this definition, minimal NH -spheres with the homotopy type of a k-sphere are precisely the non-pure spheres whose nerve is $\partial \Delta^{k+1}$, a property that also characterizes the boundary of simplices. On the other hand, an $N H$-ball B is minimal if it is part of a decomposition of a minimal $N H$-sphere, i.e. if there exists a combinatorial ball L with $B \cap L=\partial L$ such that $B+L$ is a minimal NH -sphere. This definition is consistent with the notion of vertex-minimal simplicial ball (see Lemma 4.1 below).

Surprisingly, minimal NH -balls and NH -spheres can be characterized by a property involving Alexander duals. Denote by K^{*} the Alexander dual of a complex K relative to the vertices of K. Set inductively $K^{*(0)}=K$ and $K^{*(m)}=\left(K^{*(m-1)}\right)^{*}$. Thus, in each step $K^{*(i)}$ is computed relatively to its own vertices, i.e. as a subcomplex of the boundary of the simplex of minimum dimension containing it. We call $\left(K^{*(m)}\right)_{m \in \mathbb{N}_{0}}$ the sequence of iterated Alexander duals of K. The main result of the article is the following.

[^0]Theorem 1.1. Let K be a finite simplicial complex.
(i) There is an $m \in \mathbb{N}_{0}$ such that $K^{*(m)}$ is the boundary of a simplex if and only if K is a minimal $N H$-sphere.
(ii) There is an $m \in \mathbb{N}_{0}$ such that $K^{*(m)}$ is a simplex if and only if K is a minimal $N H$-ball.

In any case, the number of iterations needed to reach the simplex or the boundary of the simplex is bounded above by the number of vertices of K.

Note that $K^{*}=\Delta^{d}$ if and only if K is a vertex-minimal d-ball which is not a simplex, so (ii) describes precisely all complexes converging to vertex-minimal balls. Theorem 1.1 characterizes the classes of Δ^{d} and $\partial \Delta^{d}$ in the equivalence relation generated by $K \sim K^{*}$.

2. Preliminaries

2.1. Notation and definitions

All simplicial complexes that we deal with are assumed to be finite. Given a set of vertices $V,|V|$ will denote its cardinality and $\Delta(V)$ the simplex spanned by its vertices. $\Delta^{d}:=\Delta(\{0, \ldots, d\})$ will denote a generic d-simplex and $\partial \Delta^{d}$ its boundary. The set of vertices of a complex K will be denoted V_{K} and we set $\Delta_{K}:=\Delta\left(V_{K}\right)$. A facet of a complex K is a simplex which is not a proper face of any other simplex of K. We denote by $f(K)$ the number of facets in K. A ridge is a maximal proper face of a facet. A complex is pure or homogeneous if all its facets have the same dimension.

We denote by $\sigma * \tau$ the join of the faces $\sigma, \tau \in K$ (if $\sigma \cap \tau=\emptyset$) and by $K * L$ the join of the complexes K and L (if $V_{K} \cap V_{L}=\emptyset$). By convention, if \emptyset is the empty simplex and $\{\emptyset\}$ the complex containing only the empty simplex then $K *\{\emptyset\}=K$ and $K * \emptyset=\emptyset$. Note that $\partial \Delta^{0}=\{\emptyset\}$. For $\sigma \in K, l k(\sigma, K)=\{\tau \in K: \tau \cap \sigma=\emptyset, \tau * \sigma \in K\}$ denotes its link and $\operatorname{st}(\sigma, K)=\sigma * l k(\sigma, K)$ its star. The union of two complexes K, L will be denoted by $K+L$. A subcomplex $L \subseteq K$ is said to be top generated if every facet of L is also a facet of K.

The notation $K \searrow L$ will mean that K (simplicially) collapses to L. A complex is collapsible if it collapses to a single vertex and PL-collapsible if it has a subdivision which is collapsible. The simplicial nerve $\mathcal{N}(K)$ of K is the complex whose vertices are the facets of K and whose simplices are the finite subsets of facets of K with non-empty intersection.

Two complexes are PL-isomorphic if they have a common subdivision. A combinatorial d-ball is a complex PL-isomorphic to Δ^{d}. A combinatorial d-sphere is a complex PL-isomorphic to $\partial \Delta^{d+1}$. By convention, $\partial \Delta^{0}=\{\emptyset\}$ is a sphere of dimension -1 . A combinatorial d-manifold is a complex M such that $l k(v, M)$ is a combinatorial ($d-1$)-ball or ($d-1$)-sphere for every $v \in V_{M}$. A ($d-1$)-simplex in a combinatorial d-manifold M is a face of at most two d-simplices of M and the boundary ∂M is the complex generated by the ($d-1$)-simplices which are faces of exactly one d-simplex. Combinatorial d-balls and d-spheres are combinatorial d-manifolds. The boundary of a combinatorial d-ball is a combinatorial $(d-1)$-sphere.

2.2. Non-homogeneous balls and spheres

In order to make the presentation self-contained, we recall first the definition and some basic properties of nonhomogeneous balls and spheres. For a comprehensive exposition of the subject, the reader is referred to [5] (see also [$6, \S 2.2$] for a brief summary).

NH -balls and NH -spheres are special types of NH -manifolds, which are the non-pure versions of combinatorial manifolds. NH -manifolds have a local structure consisting of regularly-assembled pieces of Euclidean spaces of different dimensions. In Fig. 1 we show some examples of NH -manifolds and their underlying spaces. NH -manifolds, NH -balls and NH -spheres are defined as follows.

Definition. An NH -manifold (resp. NH -ball, NH -sphere) of dimension 0 is a combinatorial manifold (resp. ball, sphere) of dimension 0 . An NH -sphere of dimension -1 is, by convention, the complex $\{\emptyset\}$. For $d \geq 1$, we define by induction:

- An NH-manifold of dimension d is a complex M of dimension d such that $l k(v, M)$ is an $N H$-ball or an $N H$-sphere (possibly of dimension -1) for all $v \in V_{M}$.
- An $N H$-ball of dimension d is a PL-collapsible $N H$-manifold of dimension d.
- An $N H$-sphere of dimension d and homotopy dimension k is an $N H$-manifold S of dimension d such that there exist a top generated $N H$-ball B of dimension d and a top generated combinatorial k-ball L such that $B+L=S$ and $B \cap L=\partial L$. We say that $S=B+L$ is a decomposition of S and write $\operatorname{dim}_{h}(S)$ for the homotopy dimension of S.

The definitions of NH -ball and NH -sphere are motivated by the classical theorems of Whitehead [9] and Newman [7] (see e.g. [8, Corollaries 3.28 and 3.13]). Just like for classical combinatorial manifolds, it can be seen that the class of NH -manifolds (resp. NH -balls, NH -spheres) is closed under subdivision and that the link of every simplex in an NH -manifold is an NH -ball or an NH -sphere. Also, the homogeneous NH -manifolds (resp. NH -balls, NH -spheres) are

Fig. 1. Examples of NH -manifolds (dark gray areas are 3 -dimensional). (a), (d) and (e) are $N H$-spheres of dimension 1 , 3 and 2 and homotopy dimension 0,2 and 1 respectively. (b) is an NH -ball of dimension 2 and $(c),(f)$ are NH -balls of dimension $3 .(g)$ is an NH -manifold which is neither an NH -ball nor an NH -sphere. The sequence (a)-(d) evidences how NH -manifolds are inductively defined.
precisely the combinatorial manifolds (resp. balls, spheres). Globally, a connected NH -manifold M is (non-pure) strongly connected: given two facets $\sigma, \tau \in M$ there is a sequence of facets $\sigma=\eta_{1}, \ldots, \eta_{t}=\tau$ such that $\eta_{i} \cap \eta_{i+1}$ is a ridge of η_{i} or η_{i+1} for every $1 \leq i \leq t-1$ (see [5, Lemma 3.15]). In particular, $N H$-balls and $N H$-spheres of homotopy dimension greater that 0 are strongly connected.

Unlike for classical spheres, non-pure $N H$-spheres do have boundary simplices; that is, simplices whose links are NH -balls. However, for any decomposition $S=B+L$ of an $N H$-sphere and any $\sigma \in B \cap L, l k(\sigma, S)$ is an $N H$-sphere with decomposition $l k(\sigma, S)=l k(\sigma, B)+l k(\sigma, L)$ (see [5, Lemma 4.8]). In particular, if $\sigma \in B \cap L$ then $l k(\sigma, B)$ is an $N H$-ball.

Remark 2.1. Note that the "combinatorial" adjective may be safely removed from the previous remarks since a triangulated manifold all of whose simplices' links are homeomorphic to spheres or balls is a combinatorial manifold (see the proof of [5, Theorem 3.6]). In particular, pure NH -balls are necessarily combinatorial balls since collapsible non-balls cannot occur in the combinatorial setting.

2.3. The Alexander dual

For a finite simplicial complex K and a ground set of vertices $V \supseteq V_{K}$, the Alexander dual of K (relative to V) is the complex

$$
K^{* V}=\{\sigma \subseteq V \mid V \backslash \sigma \notin K\}
$$

The main importance of $K^{* V}$ lies in the combinatorial formulation of Alexander duality: $H_{i}\left(K^{* V}\right) \simeq H^{n-i-3}(K)$. Here $n=|V|$ and the homology and cohomology groups are reduced (see e.g. [1,2]). In what follows, we shall write $K^{*}:=K^{* v_{K}}$ and $K^{\tau}:=K^{* V}$ if $\tau=V \backslash V_{K}$. With this convention, $K^{\tau}=K^{*}$ if $\tau=\emptyset$. Note that $\left(\Delta^{d}\right)^{*}=\emptyset$ and $\left(\partial \Delta^{d+1}\right)^{*}=\{\emptyset\}$.

The relationship between Alexander duals relative to different ground sets of vertices is given by the following formula (see [6, Lemma 3.2]):

$$
\begin{equation*}
K^{\tau}=\partial \tau * \Delta_{K}+\tau * K^{*} \tag{*}
\end{equation*}
$$

Here K^{*} is viewed as a subcomplex of Δ_{K}. It is easy to see from the definition that $\left(K^{*}\right)^{V_{K} \backslash V_{K^{*}}}=K$ and that $\left(K^{\tau}\right)^{*}=K$ if $K \neq \Delta^{d}$ (see [6, Lemma 3.2]). The following result characterizes the Alexander dual of vertex-minimal complexes.

Lemma 2.2 ([6, Lemma 3.6]). If $K=\Delta^{d}+u * l k(u, K)$ with $u \notin \Delta^{d}$, then $K^{*}=l k(u, K)^{\tau}$ where $\tau=V_{K} \backslash V_{\text {st }(u, K)}$.
It can be shown that K^{τ} is an $N H$-ball (resp. $N H$-sphere) if and only if K^{*} is an $N H$-ball (resp. $N H$-sphere). This actually follows from the next result involving a slightly more general form of formula $(*)$, which we include here for future reference.

Lemma 2.3 ([6, Lemma 5.1]). If $V_{K} \subseteq V$ and $\eta \neq \emptyset$, then $L:=\partial \eta * \Delta(V)+\eta * K$ is an $N H$-ball (resp. $N H$-sphere) if and only if K is an NH -ball (resp. NH -sphere).

3. Minimal $\mathbf{N H}$-spheres

In this section we introduce the non-pure version of $\partial \Delta^{d}$ and prove part (i) of Theorem 1.1. Recall that $f(K)$ denotes the number of facets of K. We shall see that for a non-homogeneous sphere S, requesting minimality of $f(S)$ is strictly stronger than requesting that of V_{S}. This is the reason why vertex-minimal $N H$-spheres are not necessarily minimal in our sense.

To introduce minimal NH -spheres we note first that any complex K with the homotopy type of a k-sphere has at least $k+2$ facets. This follows from the fact that the simplicial nerve $\mathcal{N}(K)$ is homotopy equivalent to K.

Definition. An NH -sphere S is said to be minimal if $\mathrm{f}(S)=\operatorname{dim}_{h}(S)+2$.
Note that, equivalently, an $N H$-sphere S of homotopy dimension k is minimal if and only if $\mathcal{N}(S)=\partial \Delta^{k+1}$.
Remark 3.1. Suppose $S=B+L$ is a decomposition of a minimal $N H$-sphere of homotopy dimension k and let $v \in V_{L}$. Then $l k(v, S)$ is an $N H$-sphere of homotopy $\operatorname{dimension} \operatorname{dim}_{h}(l k(v, S))=k-1$ and $l k(v, S)=l k(v, B)+l k(v, L)$ is a valid decomposition (see §2.2). In particular, $\mathrm{f}(l k(v, S)) \geq k+1$. Also, $\mathrm{f}(l k(v, S))<k+3$ since $\mathrm{f}(S)<k+3$ and $\mathrm{f}(l k(v, S)) \neq k+2$ since otherwise S is a cone. Therefore, $\mathrm{f}(l k(v, S))=k+1=\operatorname{dim}_{h}(l k(v, S))+2$, which shows that $l k(v, S)$ is also a minimal NH -sphere.

We next prove that minimal NH -spheres are vertex-minimal.
Proposition 3.2. If S is a d-dimensional minimal $N H$-sphere then $\left|V_{S}\right|=d+2$.
Proof. Let $S=B+L$ be decomposition of S and set $k=\operatorname{dim}_{h}(S)$. We shall prove that $\left|V_{S}\right| \leq d+2$ by induction on k. The case $k=0$ is straightforward, so assume $k \geq 1$. Let $\eta \in B$ be a facet of minimal dimension and let ω denote the intersection of all facets of S different from η. Note that $\omega \neq \emptyset$ since $\mathcal{N}(S)=\partial \Delta^{k+1}$ and let $u \in \omega$ be a vertex. Since $\eta \notin L$ then $\omega \in L$ and hence $u \in L$. By Remark 3.1, $l k(u, S)$ is a minimal $N H$-sphere of dimension $d^{\prime} \leq d-1$ and homotopy dimension $k-1$. By inductive hypothesis, $\left|V_{l k(u, S)}\right| \leq d^{\prime}+2 \leq d+1$. Therefore, $s t(u, S)$ is a top generated subcomplex of S with $k+1$ facets and at most $d+2$ vertices. By construction, $S=s t(u, S)+\eta$. We shall show that $V_{\eta} \subset V_{s t(u, S)}$. Since $B=s t(u, B)+\eta$, by strong connectivity there is a ridge $\sigma \in B$ in $\operatorname{st}(u, B) \cap \eta$ (see $\S 2.2$). By the minimality of η we must have $\eta=w * \sigma$ for some vertex w. Now, $\sigma \in \operatorname{st}(u, B) \cap \eta \subset \operatorname{st}(u, S) \cap \eta$; but $s t(u, S) \cap \eta \neq \sigma$ since, otherwise, $S=\operatorname{st}(u, S)+\eta \searrow \operatorname{st}(u, S) \searrow u$, contradicting the fact that S has the homotopy type of a sphere. We conclude that $w \in s t(u, S)$ since every face of η not contained in σ contains w. Thus, $\left|V_{S}\right|=\left|V_{s t(u, S)} \cup V_{\eta}\right|=\left|V_{s t(u, S)}\right| \leq d+2$.

This last proposition shows that, in the non-pure setting, requesting the minimality of $f(S)$ is strictly more restrictive than requesting that of $\left|V_{S}\right|$. For example, a vertex-minimal $N H$-sphere can be constructed from any $N H$-sphere S and a vertex $u \notin V_{S}$ by the formula $\tilde{S}:=\Delta_{S}+u * S$. It is easy to see that if S is not minimal, neither is \tilde{S}.

Remark 3.3. By Proposition 3.2, a d-dimensional minimal $N H$-sphere S may be written $S=\Delta^{d}+u * l k(u, S)$ for some $u \notin \Delta^{d}$. Note that for any decomposition $S=B+L$, the vertex u must lie in L (since this last complex is top generated). In particular, $l k(u, S)$ is a minimal $N H$-sphere by Remark 3.1.

As we mentioned above, the Alexander duals play a key role in characterizing minimal NH -spheres. We now turn to prove Theorem 1.1 (i). We derive first the following corollary of Proposition 3.2.

Corollary 3.4. If S is a minimal NH-sphere then $\left|V_{S^{*}}\right|<\left|V_{S}\right|$ and $\operatorname{dim}\left(S^{*}\right)<\operatorname{dim}(S)$.
Proof. $V_{S^{*}} \subsetneq V_{S}$ follows from Proposition 3.2 since if $S=\Delta^{d}+u * l k(u, S)$ then $u \notin S^{*}$. In particular, this implies that $\operatorname{dim}\left(S^{*}\right) \neq \operatorname{dim}(S)$ since S^{*} is not a simplex by Alexander duality.

Theorem 3.5. Let K be a finite simplicial complex and let τ be a simplex (possibly empty) disjoint from K. Then, K is a minimal NH -sphere if and only if K^{τ} is a minimal NH -sphere. That is, the class of minimal NH -spheres is closed under taking Alexander dual.

Proof. Assume first that K is a minimal $N H$-sphere and set $d=\operatorname{dim}(K)$. We proceed by induction on d. By Proposition 3.2, we can write $K=\Delta^{d}+u * l k(u, K)$ for some vertex $u \notin \Delta^{d}$. If $\tau=\emptyset$ then, by Lemma 2.2, $K^{*}=l k(u, K)^{\rho}$ for $\rho=V_{K} \backslash V_{s t(u, K)}$. By Remark 3.3, $l k(u, K)$ is a minimal $N H$-sphere. Therefore, $K^{*}=l k(u, K)^{\rho}$ is a minimal $N H$-sphere by inductive hypothesis. If $\tau \neq \emptyset, K^{\tau}=\partial \tau * \Delta_{K}+\tau * K^{*}$ by formula (*). In particular, K^{τ} is an $N H$-sphere by Lemma 2.3 and the case $\tau=\emptyset$. Now, by Alexander duality,

$$
\operatorname{dim}_{h}\left(K^{\tau}\right)=\left|V_{K} \cup V_{\tau}\right|-\operatorname{dim}_{h}(K)-3=\left|V_{K}\right|+\left|V_{\tau}\right|-\operatorname{dim}_{h}(K)-3=\operatorname{dim}_{h}\left(K^{*}\right)+\left|V_{\tau}\right| .
$$

On the other hand,

$$
\mathrm{f}\left(K^{\tau}\right)=\mathrm{f}\left(\partial \tau * \Delta_{K}+\tau * K^{*}\right)=\mathrm{f}(\partial \tau)+\mathrm{f}\left(K^{*}\right)=\left|V_{\tau}\right|+\operatorname{dim}_{h}\left(K^{*}\right)+2
$$

where the last equality follows from the case $\tau=\emptyset$. This shows that K^{τ} is minimal.

Assume now that K^{τ} is a minimal $N H$-sphere. If $\tau \neq \emptyset$ then $K=\left(K^{\tau}\right)^{*}$ and if $\tau=\emptyset$ then $K=\left(K^{*}\right)^{V_{K} \backslash V_{K^{*}}}$ (see $\S 2.3$). In any case, the result follows immediately from the previous implication.

Proof of Theorem 1.1 (\boldsymbol{i}). Suppose first that K is a minimal $N H$-sphere. By Theorem 3.5, every non-empty complex in the sequence $\left\{K^{*(m)}\right\}_{m \in \mathbb{N}_{0}}$ is a minimal $N H$-sphere. By Corollary 3.4, $\left|V_{K^{*(m+1)}}\right|<\left|V_{K^{*(m)}}\right|$ for all m such that $K^{*(m)} \neq\{\emptyset\}$. Therefore, $K^{*\left(m_{0}\right)}=\{\emptyset\}$ for some $m_{0}<\left|V_{K}\right|$ and hence $K^{*\left(m_{0}-1\right)}=\partial \Delta^{d}$ for some $d \geq 1$.

Assume now that $K^{*(m)}=\partial \Delta^{d}$ for some $m \in \mathbb{N}_{0}$ and $d \geq 1$. We proceed by induction on m. The case $m=0$ corresponds to the trivial case $K=\partial \Delta^{d}$. For $m \geq 1$, the result follows immediately from Theorem 3.5 and the inductive hypothesis.

4. Minimal $\mathbf{N H}$-balls

We now develop the notion of minimal NH -ball. The definition in this case is a little less straightforward than in the case of spheres because there is no piecewise-linear-equivalence argument in the construction of non-pure balls. To motivate the definition of minimal $N H$-ball, recall that for a non-empty simplex $\tau \in K$ and a vertex $a \notin K$, the elementary starring (τ, a) of K is the operation which transforms K in $(\tau, a) K$ by removing $\tau * l k(\tau, K)=s t(\tau, K)$ and replacing it with $a * \partial \tau * l k(\tau, K)$. Note that when $\operatorname{dim}(\tau)=0$ then $(\tau, a) K$ is isomorphic to K.

Lemma 4.1. Let B be a combinatorial d-ball. The following statements are equivalent.
(1) $\left|V_{B}\right| \leq d+2$ (i.e. B is vertex-minimal).
(2) B is an elementary starring of Δ^{d}.
(3) $B \subset \partial \Delta^{d+1}$.
(4) There is a combinatorial d-ball L such that $B+L=\partial \Delta^{d+1}$ and $B \cap L=\partial L$.

Proof. We first prove that (1) implies (2) by induction on d. Since Δ^{d} is trivially a starring of any of its vertices, we may assume $\left|V_{B}\right|=d+2$ and write $B=\Delta^{d}+u * l k(u, B)$ for some vertex $u \notin \Delta^{d}$. Since $l k(u, B)$ is necessarily a vertex-minimal ($d-1$)-combinatorial ball then $\operatorname{lk}(u, B)=(\tau, a) \Delta^{d-1}$ by inductive hypothesis. It follows from an easy computation that B is isomorphic to $(u * \tau, a) \Delta^{d}$.

We next prove that (2) implies (4). We have

$$
B=(\tau, a) \Delta^{d}=a * \partial \tau * l k\left(\tau, \Delta^{d}\right)=a * \partial \tau * \Delta^{d-\operatorname{dim}(\tau)-1}=\partial \tau * \Delta^{d-\operatorname{dim}(\tau)} .
$$

Letting $L:=\tau * \partial \Delta^{d-\operatorname{dim}(\tau)}$ we get $B+L=\partial \Delta^{d+1}$ and

$$
B \cap L=\partial \tau+\partial \Delta^{d-\operatorname{dim}(\tau)}=\partial\left(\tau * \partial \Delta^{d-\operatorname{dim}(\tau)}\right)=\partial L
$$

Finally, (4) trivially implies (3) and (1) trivially follows from (3).

Definition. An $N H$-ball B is said to be minimal if there exists a minimal $N H$-sphere S that admits a decomposition $S=$ $B+L$.

Note that if B is a minimal $N H$-ball and $S=B+L$ is a decomposition of a minimal $N H$-sphere then, by Remark 3.1, $l k(v, B)$ is a minimal $N H$-ball for every $v \in B \cap L$ (see $\S 2.2$). Note also that the intersection of all the facets of B is non-empty since $\mathcal{N}(B) \subsetneq \mathcal{N}(S)=\partial \Delta^{k+1}$. Therefore, $\mathcal{N}(B)$ is a simplex. The converse, however, is easily seen to be false.

The proof of Theorem 1.1 (ii) will follow the same lines as its version for NH -spheres.
Proposition 4.2. If B is a d-dimensional minimal $N H$-ball then $\left|V_{B}\right| \leq d+2$.
Proof. This follows immediately from Proposition 3.2 since $\operatorname{dim}(B)=\operatorname{dim}(S)$ for any decomposition $S=B+L$ of an NH -sphere.

Corollary 4.3. If B is a minimal $N H$-ball then $\left|V_{B^{*}}\right|<\left|V_{B}\right|$ and $\operatorname{dim}\left(B^{*}\right)<\operatorname{dim}(B)$.

Proof. We may assume $B \neq \Delta^{d} . V_{B^{*}} \subsetneq V_{B}$ by the same reasoning made in the proof of Corollary 3.4. Also, if $\operatorname{dim}(B)=$ $\operatorname{dim}\left(B^{*}\right)$ then $B^{*}=\Delta^{d}$. By formula $(*), B=\left(B^{*}\right)^{\rho}=\partial \rho * \Delta^{d}$ where $\rho=V_{B} \backslash V_{B^{*}}$, which is a contradiction since $\left|V_{B}\right|=$ $d+2$.

Remark 4.4. The same construction that we made for minimal $N H$-spheres shows that vertex-minimal $N H$-balls need not be minimal. Also, similarly to the case of non-pure spheres, if $B=\Delta^{d}+u * l k(u, B)$ is a minimal $N H$-ball which is not a simplex then for any decomposition $S=B+L$ of a minimal $N H$-sphere we have $u \in L$. In particular, $\operatorname{since} l k(u, S)=l k(u, B)+l k(u, L)$ is a valid decomposition of a minimal $N H$-sphere, then $l k(u, B)$ is a minimal $N H$-ball (see Remark 3.3).

Theorem 4.5. Let K be a finite simplicial complex and let τ be a simplex (possibly empty) disjoint from K. Then, K is a minimal NH -ball if and only if K^{τ} is a minimal NH -ball. That is, the class of minimal NH -balls is closed under taking Alexander dual.

Proof. Assume first that K is a minimal $N H$-ball and proceed by induction on $d=\operatorname{dim}(K)$. The case $\tau=\emptyset$ follows the same reasoning as the proof of Theorem 3.5 using the previous remarks. Suppose then $\tau \neq \emptyset$. Since by the previous case K^{*} is a minimal NH -ball, there exists a decomposition $\tilde{S}=K^{*}+\tilde{L}$ of a minimal NH -sphere. By Proposition 3.2 and Proposition 4.2, either K^{*} is a simplex (and $V_{\tilde{S}} \backslash V_{K^{*}}=\{w\}$ is a single vertex) or $V_{\tilde{S}}=V_{K^{*}} \subset V_{K}$. Let $S:=K^{\tau}+\tau * \tilde{L}$, where we identify the vertex w with any vertex in $V_{K} \backslash V_{K^{*}}$ if K^{*} is a simplex. We claim that $S=K^{\tau}+\tau * \tilde{L}$ is a valid decomposition of a minimal NH -sphere. On one hand, formula ($*$) and Lemma 2.3 imply that K^{τ} is an NH -ball and that

$$
S=\partial \tau * \Delta_{K}+\tau * K^{*}+\tau * \tilde{L}=\partial \tau * \Delta_{K}+\tau * \tilde{S}
$$

is an NH -sphere. Also,

$$
\begin{aligned}
K^{\tau} \cap(\tau * \tilde{L}) & =\left(\partial \tau * \Delta_{K}+\tau * K^{*}\right) \cap(\tau * \tilde{L}) \\
& =\partial \tau * \tilde{L}+\tau *\left(K^{*} \cap \tilde{L}\right) \\
& =\partial \tau * \tilde{L}+\tau * \partial \tilde{L} \\
& =\partial(\tau * \tilde{L})
\end{aligned}
$$

This shows that $S=K^{\tau}+\tau * \tilde{L}$ is valid decomposition of an $N H$-sphere. On the other hand,

$$
f(S)=f(\partial \tau)+f(\tilde{S})=\operatorname{dim}(\tau)+1+\operatorname{dim}(\tilde{L})+2=\operatorname{dim}_{h}(S)+2
$$

which proves that S is minimal. This settles the implication.
The other implication is analogous to the corresponding part of the proof of Theorem 3.5.
Proof of Theorem 1.1 (ii). It follows the same reasoning as the proof of Theorem 1.1 (i) (replacing $\{\emptyset\}$ with \emptyset).
If $K^{*}=\Delta^{d}$ then, letting $\tau=V_{K} \backslash V_{\Delta^{d}} \neq \emptyset$, we have $K=\left(K^{*}\right)^{\tau}=\partial \tau * \Delta^{d}=(\tau, v) \Delta^{d+\operatorname{dim}(\tau)}$. This shows that Theorem 1.1 (ii) characterizes all complexes which converge to vertex-minimal balls.

5. Further properties of minimal $\mathbf{N H}$-balls and $\mathbf{N H}$-spheres

In this final section we briefly discuss some characteristic properties of minimal NH -balls and NH -spheres.
Proposition 5.1. In a minimal $N H$-ball or $N H$-sphere, the link of every simplex is a minimal $N H$-ball or $N H$-sphere.
Proof. Let K be a minimal $N H$-ball or $N H$-sphere of dimension d and let $\sigma \in K$. We may assume $K \neq \Delta^{d}$. Since for a non-trivial decomposition $\sigma=w * \eta$ we have $l k(\sigma, S)=l k(w, l k(\eta, S))$, by an inductive argument it suffices to prove the case $\sigma=v \in V_{K}$. We proceed by induction on d. We may assume $d \geq 1$. Write $K=\Delta^{d}+u * l k(u, K)$ where, as shown before, $l k(u, K)$ is either a minimal $N H$-ball or a minimal $N H$-sphere. Note that this in particular settles the case $v=u$. Suppose then $v \neq u$. If $v \notin l k(u, K)$ then $\operatorname{lk}(v, K)=\Delta^{d-1}$. Otherwise, $l k(v, K)=\Delta^{d-1}+u * \operatorname{lk}(v, l k(u, K))$. By inductive hypothesis, $l k(v, l k(u, K))$ is a minimal $N H$-ball or $N H$-sphere. By Lemma 2.2,

$$
\operatorname{lk}(v, K)^{*}=\operatorname{lk}(v, \operatorname{lk}(u, K))^{\rho}
$$

and the result follows from Theorem 3.5 and Theorem 4.5.
For any vertex $v \in K$, the deletion $K-v:=\{\sigma \in K \mid v \notin \sigma\}$ is again a minimal $N H$-ball or $N H$-sphere. This follows from Proposition 5.1, Theorem 3.5, Theorem 4.5 and the fact that $l k\left(v, K^{*}\right)=(K-v)^{*}$ for any $v \in V_{K}$ (see [6, Lemma 3.7 (1)]). We can also show that minimal NH -balls are (non-pure) vertex-decomposable as defined by Björner and Wachs [4]. Recall that a complex K is vertex-decomposable if
(1) K is a simplex or $K=\{\emptyset\}$, or
(2) there exists a vertex $v \in K$ (called shedding vertex) such that
(a) $K-v$ and $l k(v, K)$ are vertex-decomposable and
(b) no facet of $l k(v, K)$ is a facet of $K-v$.

Thus, if $B=\Delta^{d}+u * \operatorname{lk}(u, B)$ is a minimal $N H$-ball which is not a simplex then u is a shedding vertex by Remark 4.4 and an inductive argument on $\operatorname{dim}(B)$. In particular, minimal NH -balls are collapsible (see [4, Theorem 11.3]).

We next make use of Theorem 3.5 and Theorem 4.5 to compute (up to isomorphism) the number of minimal NH -spheres and NH -balls in each dimension.

Proposition 5.2. Let $0 \leq k \leq d$.
(1) There are exactly $\binom{d}{k}$ minimal NH -spheres of dimension d and homotopy dimension k. In particular, there are exactly 2^{d} minimal NH -spheres of dimension d .
(2) There are exactly 2^{d} minimal NH -balls of dimension d .

Proof. We first prove (1). An NH -sphere with $d=k$ is homogeneous by [6, Proposition 2.7], in which case the result is obvious. Assume then $0 \leq k \leq d-1$ and proceed by induction on d. Let $\mathcal{S}_{d, k}$ denote the set of minimal $N H$-spheres of dimension d and homotopy dimension k. If $S \in \mathcal{S}_{d, k}$ it follows from Theorem 3.5, Corollary 3.4 and Alexander duality that S^{*} is a minimal NH -sphere with $\operatorname{dim}\left(S^{*}\right)<d$ and $\operatorname{dim}_{h}\left(S^{*}\right)=d-k-1$. Therefore, there is a well defined application

$$
\mathcal{S}_{d, k} \xrightarrow{f} \bigcup_{i=d-k-1}^{d-1} \mathcal{S}_{i, d-k-1}
$$

sending S to S^{*}. We claim that f is a bijection. To prove injectivity, suppose $S_{1}, S_{2} \in \mathcal{S}_{d, k}$ are such that $S_{1}^{*}=S_{2}^{*}$. Let $\rho_{i}=V_{S_{i}} \backslash V_{S_{i}^{*}}(i=1,2)$. Since $\left|V_{S_{1}}\right|=d+2=\left|V_{S_{2}}\right|$ then $\operatorname{dim}\left(\rho_{1}\right)=\operatorname{dim}\left(\rho_{2}\right)$ and, hence, $S_{1}=\left(S_{1}^{*}\right)^{\rho_{1}}=\left(S_{2}^{*}\right)^{\rho_{2}}=S_{2}$. To prove surjectivity, let $\tilde{S} \in \mathcal{S}_{j, d-k-1}$ with $d-k-1 \leq j \leq d-1$. Taking $\tau=\Delta^{d-j-1}$ we have $\tilde{S}^{\tau} \in \mathcal{S}_{d, k}$ and $f\left(\tilde{S}^{\tau}\right)=\tilde{S}$ (see §2.3). Finally, using the inductive hypothesis,

$$
\left|\mathcal{S}_{d, k}\right|=\sum_{i=d-k-1}^{d-1}\left|\mathcal{S}_{i, d-k-1}\right|=\sum_{i=d-k-1}^{d-1}\binom{i}{d-k-1}=\binom{d}{k} .
$$

For (2), let \mathcal{B}_{d} denote the set of minimal $N H$-balls of dimension d and proceed again by induction on d. The very same reasoning as above gives a well defined bijection

$$
\mathcal{B}_{d} \backslash\left\{\Delta^{d}\right\} \xrightarrow{f} \bigcup_{i=0}^{d-1} \mathcal{B}_{i} .
$$

Therefore, using the inductive hypothesis,

$$
\left|\mathcal{B}_{d} \backslash\left\{\Delta^{d}\right\}\right|=\sum_{i=0}^{d-1}\left|\mathcal{B}_{i}\right|=\sum_{i=0}^{d-1} 2^{i}=2^{d}-1 .
$$

Finally, we give a direct combinatorial description of minimal $N H$-balls and $N H$-spheres. This description (and its proof) was suggested by an anonymous referee. We are very grateful to him/her for this contribution.

Let $V=\left\{v_{1}, \ldots, v_{t}\right\} \neq \emptyset$ and W be disjoint sets of vertices. Given a collection $\mathcal{H}=\left\{H_{1}, \ldots, H_{t}\right\}$ of subsets of W, we let $K(V, W, \mathcal{H}) \subset \Delta(V \cup W)$ be the simplicial complex whose facets are the simplices $\eta_{i}:=\left(V \backslash\left\{v_{i}\right\}\right) \cup H_{i}$ for $1 \leq i \leq t$. Note that

$$
V_{K(V, W, \mathcal{H})}= \begin{cases}V \cup W & t \geq 2 \\ H_{t} & t=1\end{cases}
$$

Proposition 5.3. Let K be a simplicial complex. Then

(1) K is a minimal $N H$-sphere of dimension d and homotopy dimension k if and only if K is isomorphic to $K(V, W, \mathcal{H})$ for vertex sets $V=\left\{v_{1}, \ldots, v_{k+2}\right\}$ and $W=\left\{w_{1}, \ldots, w_{d-k}\right\}$ and a collection $\mathcal{H}=\left\{H_{1}, \ldots, H_{k+2}\right\}$ satisfying $\emptyset=H_{1} \subseteq H_{2} \subseteq \cdots \subseteq$ $H_{k+2}=W$.
(2) K is a minimal $N H$-ball of dimension d if and only if K is isomorphic to $K(V, W, \mathcal{H})$ for vertex sets $V=\left\{v_{1}, \ldots, v_{t}\right\}(t \leq d+1)$ and $W=\left\{w_{1}, \ldots, w_{d+2-t}\right\}$ and a collection $\mathcal{H}=\left\{H_{1}, \ldots, H_{t}\right\}$ satisfying $\emptyset \neq H_{1} \subseteq H_{2} \subseteq \cdots \subseteq H_{t}=W$.

Proof. We deal with (1) first. Let K be a minimal $N H$-sphere of dimension d and homotopy dimension k and let $\eta_{1}, \ldots, \eta_{k+2}$ be the facets of K. Since $\mathcal{N}(K)=\partial \Delta^{k+1}$ then, for all $1 \leq i \leq k+2$, there is a vertex $v_{i} \in \bigcap_{j \neq i} \eta_{j}$ (and then $v_{i} \notin \eta_{i}$). Set $V:=\left\{v_{1}, \ldots, v_{k+2}\right\}$ and let $W:=V_{K} \backslash V$. We further set $H_{i}:=V_{\eta_{i}} \cap W$. By relabeling the η_{i} 's we may assume that $\left|H_{1}\right| \leq\left|H_{2}\right| \leq \cdots \leq\left|H_{k+2}\right|$. Note that $\eta_{i}=\left(V \backslash\left\{v_{i}\right\}\right) \cup H_{i}$ and that $|W|=d-k$ by Proposition 3.2. It remains to show that $\emptyset=H_{1} \subseteq H_{2} \subseteq \cdots \subseteq H_{k+2}=W$. On one hand, $H_{1}=\emptyset$ since K has k-dimensional facets and $H_{k+2}=W$ since $\operatorname{dim}(K)=d$. On the other hand, if $H_{i} \nsubseteq H_{j}$ for some $i<j$, then, given that $\left|H_{i}\right| \leq\left|H_{j}\right|$, there are vertices $w_{i} \in H_{i} \backslash H_{j}$ and $w_{j} \in H_{j} \backslash H_{i}$. Let $\rho=V \backslash\left\{v_{i}, v_{j}\right\}$. Note that since the only facets of K containing ρ are η_{i} and η_{j} then $l k(\rho, K)=\left(v_{j} * \Delta\left(H_{i}\right)\right)+\left(v_{i} * \Delta\left(H_{j}\right)\right)$. Consider $L:=l k\left(H_{i} \cap H_{j}, l k(\rho, K)\right.$) (in particular, $L=l k(\rho, K)$ if $\left.H_{i} \cap H_{j}=\emptyset\right)$. Now, L is an $N H$-ball or $N H$-sphere, since $\rho \in K$, and it is disconnected, since it contains the edges $\Delta\left(\left\{w_{i}, v_{j}\right\}\right)$ and $\Delta\left(\left\{w_{j}, v_{i}\right\}\right)$ in different components. The only
possibility is that L is an NH -sphere of homotopy dimension 0 (see $\S 2.2$), but this cannot happen since there are two components of dimension at least one.

Assume now that $K=K(V, W, \mathcal{H})$ with the hypotheses as in the statement of (1). We will prove that K is a minimal $N H$-sphere by induction on d. The case $d=0$ is trivial to check. Suppose $d \geq 1$. Let $\eta_{i}=\left(V \backslash\left\{v_{i}\right\}\right) \cup H_{i}(1 \leq i \leq k+2)$ be the facets of K and note that $K=\eta_{k+2}+v_{k+2} * l k\left(v_{k+2}, K\right)$ since $\operatorname{dim}\left(\eta_{k+2}\right)=d$ and $\left|V_{K}\right|=d+2$. By Lemma 2.2 and Theorem 3.5 it suffices to prove that $l k\left(v_{k+2}, K\right)$ is a minimal $N H$-sphere. But one can easily check that $l k\left(v_{k+2}, K\right)$ is isomorphic to $K(\tilde{V}, \tilde{W}, \tilde{\mathcal{H}})$ where $\tilde{V}=V \backslash\left\{v_{k+2}\right\}, \tilde{W}=H_{k+1}$ and $\tilde{\mathcal{H}}=\left\{H_{1}, \ldots, H_{k+1}\right\}$. The result then follows from the inductive hypothesis.

We next settle (2). Let K be a minimal $N H$-ball of dimension d. Then, there is a minimal $N H$-sphere S that admits a decomposition $S=K+L$. By (1) we know that $S=K(\tilde{V}, \tilde{W}, \tilde{\mathcal{H}})$ for some $\tilde{V}=\left\{v_{1}, \ldots, v_{k+2}\right\}, \tilde{W}=\left\{w_{1}, \ldots, w_{d-k}\right\}$ and $\tilde{\mathcal{H}}=\left\{H_{1}, \ldots, H_{k+2}\right\}$ satisfying $\emptyset=H_{1} \subseteq H_{2} \subseteq \cdots \subseteq H_{k+2}=W$. Let $\eta_{i_{1}}, \ldots, \eta_{i_{q}}$ be the facets of L, where $\eta_{i}=\left(V \backslash\left\{v_{i}\right\}\right) \cup H_{i}$ as above. Since by dimensional reasons $H_{i_{1}}=\cdots=H_{i_{q}}=\emptyset$ we can relabel the v_{i} 's and H_{i} 's so $i_{j}=j$ for $1 \leq j \leq q$. Then, $V:=\tilde{V} \backslash\left\{v_{1}, \ldots, v_{q}\right\}, W:=\tilde{W} \cup\left\{v_{1}, \ldots, v_{q}\right\}$ and $\mathcal{H}:=\left\{H_{q+1} \cup\left\{v_{1}, \ldots, v_{q}\right\}, \ldots, H_{k+2} \cup\left\{v_{1}, \ldots, v_{q}\right\}\right\}$ satisfy the requirements of the statement.

The converse is similar to the case of minimal NH-spheres.

Acknowledgements

I am grateful to Gabriel Minian for many helpful remarks and suggestions during the preparation of the paper. I would also like to thank the referees for their comments which helped to improve the presentation of the article. In particular, I am grateful to the anonymous referee who suggested the alternative description of minimal NH -balls and NH -spheres included in Section 5.

References

[1] J.W. Alexander, A proof and extension of the Jordan-Brouwer separation theorem, Trans. Am. Math. Soc. 23 (4) (1922) 333-349.
[2] A. Björner, M. Tancer, Combinatorial Alexander duality - a short and elementary proof, Discrete Comput. Geom. 42 (4) (2009) $586-593$.
[3] A. Björner, M. Wachs, Shellable nonpure complexes and posets. I, Trans. Am. Math. Soc. 348 (4) (1996) 1299-1327.
[4] A. Björner, M. Wachs, Shellable nonpure complexes and posets. II, Trans. Am. Math. Soc. 349 (10) (1997) 3945-3975.
[5] N.A. Capitelli, E.G. Minian, Non-homogeneous combinatorial manifolds, Beitr. Algebra Geom. 54 (1) (2013) 419-439.
[6] N.A. Capitelli, E.G. Minian, A generalization of a result of Dong and Santos-Sturmfels on the Alexander dual of spheres and balls, J. Comb. Theory, Ser. A 138 (2016) 155-174.
[7] M.H.A. Newman, On the foundation of combinatorial analysis situs, Proc. Roy. Acad. Amsterdam 29 (1926) 610-641.
[8] C.P. Rourke, B.J. Sanderson, Introduction to Piecewise-Linear Topology, Springer-Verlag, 1972.
[9] J.H.C. Whitehead, Simplicial spaces, nuclei and m-groups, Proc. Lond. Math. Soc. 45 (1939) 243-327.

[^0]: E-mail address: ncapitel@dm.uba.ar.

