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Abstract
We investigate ionization processes induced by positron impact on H2 by studying the
momentum distributions of the receding ion. To this end, we employ classical trajectory Monte
Carlo techniques. The investigation of the recoil ion momentum distribution allows us to shed
new light on some known phenomena like the familiar ‘electron capture to the continuum’
peak of electron momentum spectroscopy, and also to unveil new structures which—up to our
knowledge—have never been reported in the literature. We propose that some of these new
effects represent fingerprints of a strong orientation of low-energy electrons into the direction
of motion of the electron–positron centre of mass. We analyse the mechanisms that might give
rise to these effects, and relate them to structures in the electron and positron momentum
distributions. We also discuss how these theoretical predictions can be put to test in actual
positron reaction microscopic experiments.

(Some figures may appear in colour only in the online journal)

1. Introduction

For several years, reaction microscopes have been used
extensively and with great success to study inelastic collisions
of photons and ions with atomic and molecular targets (e.g.
[1, 2] and references therein). These novel techniques make
it possible to measure the momenta of different fragments
resulting from the collision, and even to determine fully
differential cross sections to obtain kinematically complete
pictures of the process. In this context, the ongoing
experimental progress towards the use of reaction microscopes
in conjunction with positron and positronium impact [3, 4]
promises new research possibilities in a field where the
extremely valuable study of differential cross sections (e.g.
[5, 6] and references therein) has been mainly devoted to total
and single differential cross sections and over very limited
ranges.

The aim of this paper is to use classical trajectory Monte
Carlo (CTMC) techniques in order to explore the possibility

that the newly developed positron reaction microscopy would
reveal some completely unforeseen structures of the positron-
impact ionization cross section, or even similar or akin to those
already observed with the traditional electron and momentum
spectroscopy [7]. For instance, in 1998 the UCL group [8–10]
measured positron-impact ionization processes in a forward
collinear geometry (i.e. with the electron and the positron
moving in the forward direction) and provided undubitable
evidence of a peak in the electron energy distribution. This
effect had been predicted by Brauner and Briggs [11] in
1986 as equivalent to the well-known ‘electron capture to the
continuum’ (ECC) cusp of ion–impact collisions.

But when it comes to ionization or charge–exchange
collisions, one of the distinguishing features of the reaction
microscope is its ability to measure the energy and angular
distribution of all or some of the outgoing particles, but
mainly of the recoiling ion, simultaneously over the full 4π

solid angle. This means that, instead of scanning the collision
region by rotating the analyser as in any standard spectroscopy
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technique, all the collision events can be detected at once,
which greatly increases the accuracy and reduces measuring
times. The distribution of the recoil-ion momentum (RIM)
KR carries a great deal of information about the collision
process, and represents an obvious choice to be the first
to be explored with a positron reaction microscope [6].
Following this experimental lead, in this paper we investigate
the ionization cross section dσ/dKR for positron impact,
pinpointing its main structures and characteristics.

2. Theory and computational procedure

Let us study the ionization of hydrogen-like atoms of effective
nuclear charge Z by the impact of energetic positrons. To this
end we employ CTMC simulations [12, 13]. This method is
well known and has been successfully applied to a variety
of collision processes with electrons, positrons and ions in
a great variety of situations, with incident velocities ranging
from tenths to tens of atomic units [14, 15].

We numerically solve Hamilton’s canonical equations
for the three-body system for more than 108 trajectories by
means of a modified middle-point code with adaptive step-
size control [12, 13]. The initial conditions for each trajectory
are characterized by six pseudo-random variables: the impact
parameter of the incoming positron, three Euler angles fixing
the plane and orientation of the target Kepler orbit in space,
and the eccentricity and eccentric angle that define the shape
of the target orbit and the initial position of the electron along
this orbit, respectively [16]. The energy of the initial target
orbit, whose centre of mass is initially at rest in the laboratory
reference frame, is εi = −Z2 × 13.6 eV. In the laboratory
reference frame, the velocity of the positron of energy E (given
in eV) is v = √

E/13.6 atomic units. From this point on,
atomic units will be used throughout the paper except where
explicitly indicated. The velocity of the centre of mass of
the whole system reads vCM = v/(M + 2), where M is the
mass of the target nucleus. The total energy in the centre-
of-mass reference frame reads ECM = μT v2/2 + εi, where
μT = (M + 1)/(M + 2) is the reduced mass of the initial
positron–target configuration [17].

The equations of motion are integrated until the momenta
k+, k− and KR of the positron, the electron and the nucleus
in the laboratory reference frame converge, and the direct,
ionization and positronium formation channels can be neatly
separated according to energy criteria. It is noteworthy that
low-energy ionization and high-excited capture events are
difficult to separate. In the present work, trajectories evolution
has been computed and monitored to long times until
convergence was achieved with a relative error in energy of
about 0.1%.

After convergence is achieved the differential cross
section in a general set of variables x1, . . . , xN is evaluated
by the formula

dσ

dx1, . . . , dxN
= Ni(x1, . . . , xN )/�x1, . . . ,�xN

N/(πb2
max)

,

where Ni(x1, . . . , xN ) is the number of events of interest
such that the variables x1, . . . , xN are in the neighborhood

�x1, . . . ,�xN of their given values. The events are normalized
to the incident flux N/πb2

max, where N is the total number
of trajectories and bmax is the maximum impact parameter
evaluated. The standard deviation limit for these cross sections
is given by [18]

�σ

σ
=

[
(N − Ni)

NNi

]1/2

.

For future convenience, we introduce the momentum

K = MRvCM − KR, (1)

which is related to the motion with respect to the residual target
(of mass MR) of the centre of mass of all the other particles
in the final state. For instance, for a direct process (elastic or
excitation collisions), MR = M +1 and K is the momentum of
the positron with respect to the target; while for positronium
formation or single ionization, K is associated with the motion
of the centre of mass of the electron–positron system (being
it bound or in the continuum, respectively) with respect to the
residual target ion of mass MR = M.

Within the ionization channel we also introduce the
momenta k associated with the motion of the electron relative
to the positron, so that

k± = vCM ± k + K/2 . (2)

The pair (k, K) is one of the three different sets of Jacobi
momenta usually used to describe the kinematics of a three-
body system in the centre-of-mass reference frame [19].

Let us note that the axial symmetry around the initial
direction of motion of the positron reduces the number of
relevant parameters of the cross section for the recoil-ion

dσ

dK
≡ dσ

dKR
(3)

to only two. For instance, let us consider the decomposition of
the vectors K or KR into their components parallel (K||, KR ||)
and perpendicular (K⊥, KR⊥) to vCM,

K|| = MRvCM − KR ||, K⊥ = −KR⊥ . (4)

The parallel recoil momentum is a scalar magnitude while
the perpendicular component is a two-dimensional vector
in the plane perpendicular to vCM. The recoil momentum
distributions are independent of the choice of the plane in
which the perpendicular component lies. Thus,

dσ

dK
= 1

2πK⊥

dσ

dK⊥ dK||
≡ dσ

dKR
= 1

2πKR ⊥

dσ

dKR ⊥ dKR ||
. (5)

In this case K⊥ and KR⊥ refer to the magnitude of the vectors
in the plane perpendicular to vCM.

Another possible choice is to use the modulus and
azimuthal angle with respect to v of either K or KR. We define
the angles θ and θR such that cos θ = K̂ · v̂ and cos θR = K̂R · v̂,
respectively:

dσ

dK
= 1

2πK2 sin θ

dσ

dK dθ
≡ dσ

dKR
= 1

2πK2
R sin θR

dσ

dKR dθR
.

(6)
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Figure 1. Distribution of the final (RIM) KR for 104 trajectories
corresponding to the ionization of H2 molecules by 50 eV positron
impact. KR|| and KR⊥ are the components of KR parallel and
perpendicular to the initial projectile velocity v, respectively.

3. Ionization

Let us start our analysis by calculating a simple distribution of
the final (RIM) KR for the single ionization of H2 molecules by
the impact of 50 eV positrons (initial velocity v ≈ 1.92 au).
Here, we model the molecule as a hydrogen-like atom with
an effective charge Z given by the corresponding ionization
energy, εi = −15.603 eV. A simple CTMC calculation
performed over only 104 ionization trajectories is shown
in figure 1.

Some characteristics of this figure immediately strike the
eye.

• KR lies ‘within’ an ‘outer’ sphere centred at about the
initial velocity of the positron.

• The edge of this ‘outer’ sphere is extremely sharp, i.e. the
cross section dσ/dKR does not vanish at the border of this
sphere, but seems to attain a finite value.

• The RIM distribution increases with increasing values of
the azimuthal angle θ .

• There seems to be a sudden drop in the RIM distribution
within a concentric ‘inner’ sphere.

• There is an almost absolute lack of ionization events when
the RIM lies just below the inner sphere in the vicinity of
the collision axis of symmetry.

In the following sections we analyse these effects in full
detail.

4. Ionization threshold

The confinement of KR within a sphere in momentum space
can be easily explained as a restriction imposed by energy
conservation. In the centre-of-mass reference frame it reads

ECM = K2/2μP + k2, (7)

where μP = 2M/(M + 2) is the reduced mass associated with
the motion of the electron–positron pair with respect to the
recoiling ion. This equation limits the range of values that K
(or KR) can attain. For instance, since in the ionization channel

Figure 2. RIM distribution for positronium formation to bound
states in 50 and 100 eV e+ + H2 collisions.

k is a real positive number, the associated Jacobi momenta K
are confined within a sphere of radius K◦ = √

2μPECM, namely

K � K◦ =
√

2μPECM, (8)

as shown in figure 1. Note that while this condition is very
simply written in terms of the magnitude of the Jacobi
momentum K, the equivalent expression in terms of the
recoil momentum, i.e. |KR − μPv/2| � K◦, involves both the
magnitude KR and angle θR in a slightly more complex and
cumbersome form,

K2
R − KRμPv cos θR � μPv2/2 + 2μPεi. (9)

4.1. Positronium formation

Now, what lies beyond this outer sphere in momentum space?
Resorting to (7) we see that for K > K◦ the electron–
positron systems attain a negative energy, i.e. the positronium
is formed [7]. To analyse this channel within the CTMC
method, let us ‘quantize’ the positronium bound states by
means of the procedure developed by Becker and MacKellar
[20]. Whenever the energy

ε = (
K2

◦ − K2
)
/2μP (10)

falls within the range

− 1

4

[
n

(
n − 1

2

)
(n − 1)

]−2/3

� ε < −1

4

[
n

(
n + 1

2

)
(n + 1)

]−2/3

, (11)

for a given natural number n, we redefine the modulus of the
momentum K as follows [12] :

K =
√

K2◦ + μP/2n2. (12)

We see in figure 2 that the RIM distribution for positronium
concentrates on spheres that are concentric with and external to
the outer sphere in figure 1. In particular, the sphere of largest

3
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Figure 3. Calculated CTMC total and angular differential cross sections for positronium formation to bound states of principal quantum
number n in 50 and 100 eV e+ + H2 collisions. More than 7 106 trajectories were evaluated. The differential cross sections for 50 eV have
been multiplied by a factor of 100 to improve visualization.

possible radius, K1s = √
2μP(ECM + 1/4), corresponds to

the formation of ground-state positronium. The radius of the
sphere systematically decreases as the electron is captured
to higher excited states of the positronium, asymptotically
approaching the threshold value K◦ as n → ∞.

Figure 3 shows the total cross section and angular
distributions for positronium formation in collisions of 50
and 100 eV positrons with H2 as a function of the angle
θP between the vector K and v. At the investigated energies
the electrons are predominantly captured to the ground state.
The total charge-exchange cross sections to higher excited
states follow the well-known Jackson–Schiff scaling rule
σn ∝ n−3, characteristic of long-range final state interactions
[21].

4.2. Longitudinal RIM distribution

The threshold shown in figure 1 was discovered 15 years ago
by Rodrı́guez, Wang and Lin [22, 23]. Five years later, this
finding was experimentally confirmed by Weber et al (2001)
[24] for swift proton–helium collisions. They measured the
ionization single differential cross section as a function of the
parallel component KR || of the RIM, and found that it clearly
attains a constant value at threshold. Unfortunately, a similar
measurement in a positron-impact ionization collision would
not produce a similar result, as it is shown in figure 4. This does
not mean that the RIM distribution vanishes at the threshold. In
contrast, we shall demonstrate that it attains a constant value as
proposed in section 3, but that this threshold structure cannot
be observed in the single differential cross section dσ/dKR||.
The reason for this discrepancy between ion- and positron-
impact collisions is that, due to the different mass ratios, in
the former case the limiting sphere can be approximated by a
plane in the region where the RIM distribution is larger, and
therefore the threshold structure can be observed directly in

Figure 4. CTMC cross section for the ionization of H2 molecules by
50 and 100 keV positron impact, single differential in the RIM
component �KR|| parallel to the initial projectile velocity v.

the single differential cross section dσ/dKR||. This is no longer
true for positron impact.

However, it should still be possible to observe the
threshold structure in KR|| by restricting the transversal
component KR⊥ to a narrow slit in momentum space. In
figure 5, we see how the threshold structure builds up for
diminishing acceptances �KR⊥. Unfortunately, this effect is
accompanied by a progressive worsening of the statistics, that
might even prevent the confirmation of this effect in future
reaction microscopy experiments. As shown in figure 5 for
the ionization of H2 molecules by 100 eV positrons, when
�KR⊥ is small enough for the threshold effect to be clearly
observable, the statistics have worsened by more than one
order of magnitude.

4
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Figure 5. Cross section for the ionization of H2 molecules by
100 keV positron impact, single differential in the RIM component
KR|| parallel to the initial projectile velocity v for different ranges in
the perpendicular component. The cross section smoothly vanishes
when no restriction is imposed as shown in the top panel, but the
threshold becomes sharper for decreasing acceptance in �KR⊥. In
the limit of perfect resolution the cross section will present a
discontinuity at the threshold.

Figure 6. Cross section for the ionization of H2 molecules by 50 and
100 keV positron impact, single differential in the modulus of the
Jacobi momentum K.

In spite of this shortcoming, we shall demonstrate
that the aforementioned effect for positron-impact ionization
collisions is likely to be observed in reaction microscope
experiments, and with a significative resolution. The basic
idea is to employ (1) to evaluate the single differential cross
section in the modulus of the Jacobi momentum K. In figure 6

we show the single differential cross section
dσ

K2 dK
=

∫
d�K

dσ

dK
, (13)

for the single ionization of H2 molecules by the impact of 50
and 100 keV positrons. We clearly see that the RIM distribution
gets a constant value at this K → K◦ threshold, and with no loss
of statistics, since every ionization event is contributing to this
cross section. It is obvious from the figure that the effect would
be much more visible for smaller impact energies. Actually for
100 eV the ratio of the threshold with respect to the maximum
of the RIM distribution is of the order of 20%, but it rises to
70% for an impact energy of 50 eV.

4.3. Final state interaction description

Where does this ‘non-zero’ value attained by the RIM
distribution at threshold come from? The fact that, due to
energy conservation, K reaches its limiting value K◦ when
the electron–positron system is at the k = 0 threshold,
obviously suggests that there has to be a relation between
both limits. Actually, as was demonstrated by Rodrı́guez et al
[22], the threshold in the momentum distribution of the
recoiling target ion is directly related to the divergence of
the ECC cusp structure at the origin of the distribution of
the companion Jacobi momentum k for the electron–positron
relative motion. This cusp-shaped peak was experimentally
discovered 40 years ago by Crooks and Rudd [25] in
energetic proton–hydrogen ionization collisions. Its presence
in positron-impact collisions was demonstrated in 1998 by
Kövér and Laricchia [8] in the ionization of H2 molecules, and
later corroborated by further experiments [9, 10], continuum
distorted wave (CDW) calculations [19, 26] and CTMC
simulations [13, 27]. In particular, CTMC is specially
well suited for describing the ECC peak whenever certain
precautions regarding convergence are taken [28].

On very general grounds, the fully differential cross
section for the ionization by positron impact can be written
as (see [7, 17, 21, 29–31] and references therein)

dσ

dk d�K
= F(k)

dσ̃

dk d�K
, (14)

where the distortion factor

F(k) = 2π/k

1 − exp(−2π/k)
, (15)

diverges as 2π/k when k → 0, while the reduced cross section
dσ̃ /dk d�K is a non-singular function of k at k = 0. This
divergence is associated with the long-range nature of the
electron-projectile Coulomb interaction in the final state [21].
Now, by using the energy conservation law (7) to change the
momentum in (14) from k to K we obtain

dσ

dK
= kF(k)

2μPK

∫
dσ̃

dk d�K
d�k, (16)

with k = √
(K2◦ − K2)/2μP. Thus, this RIM cross section

does not diverge or vanish for K ≈ K◦, but defines a finite
angle-dependent function

lim
K→K◦

dσ

dK
= 2π

2μPK◦
B(θ ), (17)

5
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with

B(θ ) =
∫

dσ̃

dk d�K

∣∣∣∣
k=0

d�k, (18)

as observed in figures 1, 5 and 6.

4.4. Continuation argument

We have demonstrated that the finite value achieved by the
RIM cross section at the threshold between the ionization and
the positronium formation channel is related to the appearance
of the ECC peak in the electron–positron momentum
distributions. Similarly, it can be easily demonstrated that it is
also related by continuation arguments to a well-known scaling
rule [32]. Actually, it can be shown that the cross section σn

for the formation of highly excited bound states of principal
quantum number n verifies

σn ∝ 1/n3 . (19)

This law, discovered by Oppenheimer in 1928 [33] and stated
by Jackson and Schiff in 1953 [34] for charge-exchange
processes in ion–atom collisions, can be generalized to the
case of positron impact and, with a different dependence on
n, to any set of bound states of arbitrary two-body potentials
[21].

Now, in the positronium formation channel, the
differential cross section as a function of the binding energy
εn = −1/4n2,

dσ

dεn
= σn

|dεn/dn| ≈ 2n3σn, (20)

tends to a constant value for n → ∞. Thus, by changing
variables from εn to K = √

K2◦ − εn we find out that also the
differential cross section as a function of the modulus of K does
not diverge or vanish. Thus, we see that by simple continuation
arguments, the ‘non-zero’ value of the RIM distribution at the
threshold can be related to the presence of an accumulation
point of positronium bound states at zero energy.

4.5. Dynamical entanglement

The previous result represents the simpler case of a
fragmentation process, where one ‘test’ particle (i.e. the
recoiling ion) balances the energy and momentum of a
continuous N-body system (i.e. the electron–positron pair)
on the verge of clustering. Actually, equation (14) is relating
the RIM differential cross section dσ/dKR = dσ/dK with
the distortion factor F(k), which is exclusively associated
with the electron–positron continuous system thorough the
r → 0 limit of the radial s wavefunction, namely |ψ0,k(r)|2 ≈

r→0
F(k)× (kr)2 [7]. Let us mention that this relation provides the
main clue for studying other fragmentation processes with non-
Coulombic two-body interaction [35, 36], as it might happen
in positronium collisions [7].

Thus, equation (14) describes a dynamical entanglement
of the test particle to the remaining system, as it was originally
proposed by Watson in 1952 [37]. This means that the recoil-
ion provides an indirect way of investigating the electron–
positron system without even measuring any of these two
particles. In particular, the K → K◦ limit of the RIM

Figure 7. Cross section for the ionization of H2 molecules by 50 and
100 keV positrons, differential in the orientation of the Jacobi
momentum K.

distribution dσ/dK is sensing the behaviour of the electron–
positron system in its very low-energy regime, i.e. k → 0. The
fact that dσ/dK goes to a constant value is related to the fact
that the cross section differential in their kinetic energy k2 also
reaches a constant value according to Wigner’s threshold law
[38].

5. Angular distribution

In figure 7 we show the single differential cross section

dσ

d�K
=

∫
K2 dσ

dK
dK, (21)

as a function of the angle θ subtended by the Jacobi momentum
K with respect to the initial direction v̂. In this figure it is
evident that the RIM distribution is strongly oriented, with a
drastic drop of more than three orders of magnitude between
the forward and backward directions for 50 eV and four orders
of magnitude for 100 eV. The width at half-maximum is of
the order of only 8o and 6o, respectively. This very sharp
angular dependence clearly indicates that the ionization occurs
preferably with the electron–positron centre of mass moving
in the forward direction in the final state, and the recoil-ion
lagging behind it, as suggested by figure 1.

6. Second threshold

The RIM distribution in figure 1 shows that the ionization
process is strongly suppressed within an inner sphere in the
neighborhood of the symmetry axis. This effect is also quite
evident in the contour plot of figure 8. The RIM distribution
does not only drops sharply for values of K larger than K◦ =√

2μPECM as described in section 3, but also within a
concentric ‘inner’ sphere with a given radius Kin. For both
cases of 50 and 100 eV, the radii of the inner and outer spheres
seem to be in a ratio K◦/Kin ≈ √

2. Resorting to the energy
conservation equation (7), we find that this condition occurs
whenever the velocity of the electron or the positron with

6
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Figure 8. Contour plot of the cross section for the ionization of H2 molecules by 50 eV positrons, doubly differential in the modulus K and
azimuthal angle θ of the Jacobi momentum K. Note that two different scales were used to highlight the threshold structure.

Figure 9. Cross section for the ionization of H2 molecules by 50 eV
positrons, single differential in the azimuthal angle θ of the Jacobi
momentum K. The curves correspond to values of the modulus K
larger or smaller than Kin.

respect to their centre of mass equals in modulus to that of
this same centre of mass relative to the recoiling ion, namely
K/μP = k. Actually, this condition corresponds to a relation

K◦
Kin

=
√

2(M + 1)

M
, (22)

between the radii of the outer and inner spheres. The situation
is such that, whenever the Jacobi momentum K is in this range,
the electron and positron velocities in a reference system
attached to their centre of mass are smaller than that of the

Figure 10. Projection of the cross section for the ionization of H2

molecules by 50 keV positron impact in the plane formed by the
Jacobi momentum K and the initial velocity v. k|| and k⊥ are the
components of the electron–positron relative momentum k parallel
and perpendicular to the direction of motion of the corresponding
centre of mass. The figures correspond to θ = 0◦ and θ = 45◦ as
indicated, within an uncertainty of 5◦.

recoiling ion. Up to our knowledge, no similar result has
ever been reported or investigated in ionization processes. We
assume that this surprising effect might be related to a strong
orientation of low-energy electrons into the direction of motion
of the electron–positron centre of mass, already observed in our
most recent CTMC calculations of the electron and positron
momentum distributions [39, 40].

As it is shown in figure 1, there is a notorious depletion
of the RIM distribution just below the inner sphere in the
vicinity of the forward direction. This is clearly seen in figure 9,
where the RIM distribution gets a minimum at θ = 0, when

7
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the modulus of the Jacobi impulse K is restricted to values
inside the inner sphere, while it rises sharply when K > Kin.
This means that the inner sphere is more sharply defined when
the electron–positron centre of mass moves in the forward
direction. This result is consistent with CTMC calculations of
the electron momentum distribution [30, 39, 40]. This means
that the orientation effect of low-energy electrons described in
the previous section is much stronger when θ is smaller. This
can actually be observed in figure 10, where the distribution
of the electron–positron relative momentum is more sharply
focused for θ = 0◦ than for θ = 45◦.

7. Conclusions

In this paper, we have used the classical trajectory Monte
Carlo (CTMC) model in order to find and describe the
main characteristics of the recoil-ion momentum (RIM)
distributions in positron-impact ionization processes. Some of
them are similar to well-known effects observed in ion-impact
ionization collisions. This is the case of the threshold between
the ionization and positronium formation channels described
in section 4. Others, mainly the possible existence of an inner
sphere and the accompanying depletion of ionization events
along the collision axis, as studied in section 6, have not been
discussed previously in the literature. We have also analysed
the mechanisms that might give rise to these different effects,
and related them to structures in the electron and positron
momentum distributions.

Naturally, these theoretical predictions should have to
sustain the validation or refutation of RIM experiments,
that might be put at reach imminently by positron reaction
microscopic techniques. In particular, we have paid special
attention to those structures that should be much easier to
visualize in actual RIM experiments. In particular, we have
shown how to define a single differential cross section that
displays the threshold much more conspicuously than the
actual distribution in the RIM. Certainly, this might represent a
good first candidate to be measured in future positron reaction
microscopic experiments.

Many if not all the effects described in this paper clearly
show that the full three-body dynamics plays a dominant role
in the description of positron-impact ionization processes.
These are fully taken into account in CTMC calculations. On
the other hand, high-order perturbative quantum theories
like the CDW approximation have been very successful in
describing most of the features of the electron and positron
momentum distribution in ion [19, 41, 42] and positron
[19, 26, 43, 44] impact ionization collisions. However, up to
our knowledge, the strong orientation of the electron–positron
dipole, which is responsible for the appearance of the inner
sphere and the accompanying depletion at θ = 0, is not
described within any available quantum mechanical model
[30, 31]. Much theoretical research along this line would be
certainly needed in order to get a full and comprehensive
picture of positron-impact reactions.
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and L J Dubé (New York: Academic) p 287

[43] Della Picca R, Fiol J and Barrachina R O 2005 Nucl. Instrum.
Methods B 233 270–5

[44] Della Picca R, Fiol J, Barrachina R O and Rodrı́guez V D
2006 Nucl. Instrum. Methods B 247 52–7

9

http://dx.doi.org/10.1016/j.nimb.2008.10.075
http://dx.doi.org/10.1016/j.nimb.2005.03.081
http://dx.doi.org/10.1103/PhysRev.31.349
http://dx.doi.org/10.1103/PhysRev.89.359
http://dx.doi.org/10.1103/PhysRev.73.1002
http://dx.doi.org/10.1088/1742-6596/199/1/012022
http://dx.doi.org/10.1088/0953-4075/44/7/075205
http://dx.doi.org/10.1088/0953-4075/24/14/005
http://dx.doi.org/10.1016/j.nimb.2005.03.120
http://dx.doi.org/10.1016/j.nimb.2006.01.039

	1. Introduction
	2. Theory and computational procedure
	3. Ionization
	4. Ionization threshold
	4.1. Positronium formation
	4.2. Longitudinal RIM distribution
	4.3. Final state interaction description
	4.4. Continuation argument
	4.5. Dynamical entanglement

	5. Angular distribution
	6. Second threshold
	7. Conclusions
	Acknowledgments
	References

