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Spectral behavior of contractive noise
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We study the behavior of the spectra corresponding to quantum systems subjected to a contractive noise, i.e.,
the environment reduces the accessible phase space of the system, but the total probability is conserved. We find
that the number of long-lived resonances grows as a power law in h̄, but surprisingly there is no relationship
between the exponent of this power law and the fractal dimension of the corresponding classical attractor. This is
in disagreement with the predictions of the fractal Weyl law which has been established for open systems, where
the probability is lost under the effect of a projective opening.
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I. INTRODUCTION

In recent years there has been a great interest in the study
of open quantum systems. The motivation for this upsurge can
be found in the recent development of quantum computation
and information [1,2] (even though some related aspects
were under investigation long ago, as in scattering theory,
for example). The noise coming from the environment has
always been the major drawback for any realistic attempt to
implement a quantum computer and a serious obstacle for
quantum information purposes. At the same time we have
realized that we know much less about quantum open systems
than about their closed counterparts. Therefore, their study has
become an extremely active topic in fundamental physics [3].

It is in this context and for the case of scattering systems that
the fractal Weyl law for the number of long-lived resonances
was conjectured and tested by means of several examples [4].
The classical invariant distribution in these cases, i.e., the
fractal hyperbolic set of all the trajectories nonescaping in
the past and future (the repeller), plays a fundamental role
with respect to the quantum spectrum of quasibound states
(the resonances). Indeed, the aforementioned law says that [5]
the number of resonances that decay at the slowest pace (the
long-lived ones) grows as h̄−(1+dH ), where dH is the partial
Hausdorff dimension of the repeller. We can trace back these
studies to the proposal and proof of a fractal Weyl upper bound
for a Hamiltonian flow showing a fractal trapped set [6].
Later, results that seem to strongly support the validity of
the conjectured law have been obtained for different kinds
of systems ranging from smooth to hard-wall potentials [7].
But it is in open quantum maps that the fractal Weyl law
was more easily tested [8]. In these systems, paradigmatic in
the quantum chaos literature, the resonances have been found
to grow as h̄−d , where d is the partial fractal dimension of
the repeller. However, explorations of the spectral behavior of
quantum systems having different kinds of invariant classical
distributions associated with them are very scarce. In this sense
it is very interesting to ask what happens in the case of a
nonprojective kind of opening, i.e., a contractive environment,
for example. Here we will focus on dissipative quantum
operations, whose action can be interpreted as a phase space
contraction leading to dissipative dynamics [9]. There were
very few attempts to study the spectral properties of this kind
of system in previous works. The only antecedent we were
able to find in the literature is the paper by Ermann and

Shepelyansky [10]. But in this case only the spectrum of a
discretized Perron-Frobenius operator was considered. For this
approximation to the classical problem (i.e., not a quantization
of it), the authors found that the behavior of the corresponding
long-lived resonances follows the fractal Weyl law.

In this work we analyze the dissipative baker map. To obtain
the quantum counterpart we have implemented a standard
procedure in which the noise superoperator is written in
terms of appropriately defined Kraus operators [11]. For this
model, all classical initial conditions fall asymptotically on a
strange attractor. At the quantum level, this is represented by
a resonance with eigenvalue 1 and the rest of the spectrum
lying inside the unit circle. In sharp contrast to what has been
found for the discretized classical dynamics, the number of
long-lived resonances of the superoperator grows as a power
law in h̄, but the exponent is rather insensitive to the dimension
of the fractal invariant set.

This paper is organized as follows: In Sec. II we present
the definition and details of the model we have used to study
this kind of spectrum. In Sec. III the numerical results are
analyzed, and we present an interpretation of them supported
by further studies. Finally, we draw the conclusions in Sec. IV.

II. MODEL SYSTEM

One of the simplest models one can think of for studying
complex systems are chaotic maps. Regardless of their
simplicity they capture all the essential features of chaotic
behavior and their quantization allows these advantages to be
extended to quantum mechanics. All this turned them into
paradigmatic models for quantum chaos and the theory of
dissipative systems [12–15]. We have investigated the spectral
behavior of the dissipative baker map. The classical map is
defined on the two-torus T 2 = [0,1) × [0,1) by

B(q,p) =
{

(2q,ε p/2) if 0 � q < 1/2,

(2q − 1,(ε p + 1)/2) if 1/2 � q < 1.
(1)

This transformation is an area-contracting, piecewise-linear
map. The map contracts the torus in the p direction by a factor
ε, stretches the unit square by a factor of 2 in the q direction,
squeezes it by the same factor in the p direction, and then
stacks the right half onto the left one. Any initial distribution
falls asymptotically into a fractal set, the strange attractor.

When quantizing this system any state |ψ〉 must sat-
isfy periodic boundary conditions on the torus, for both
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the position and momentum representations. This amounts
to taking 〈q + 1|ψ〉 = ei2πχq 〈q|ψ〉 and 〈p + 1|ψ〉 =
ei2πχp 〈p|ψ〉, with χq ,χp ∈ [0,1). This implies a Hilbert
space of finite dimension N = (2πh̄)−1. The discrete
set of position and momentum eigenstates is given
by |qj 〉 = |(j + χq)/N〉 (j = 0,1, . . . ,N − 1), and |pk〉 =
|(k + χp)/N〉 (k = 0,1, . . . ,N − 1), labeled by the corre-
sponding eigenvalues qj ,pk . They are related by a discrete
Fourier transform, i.e.,

(GN )kj ≡ 〈pk|qj 〉 = 1√
N

exp

(−i2π

N
(j + χq)(k + χp)

)
.

Throughout the paper we assume a phase space with an-
tisymmetric boundary conditions (χq = χp = 1/2). For an
even-N -dimensional Hilbert space, the quantum baker map
is defined in the momentum representation in terms of the
discrete Fourier transform as [16,17]

BN =
(

GN/2 0
0 GN/2

)
G−1

N , (2)

with BN a unitary matrix that represents the quantum dynamics
of the closed baker map.

As discussed in Ref. [9], quantum dissipative processes can
be described by nonunital quantum operations. In this work
the dissipative noise is implemented by an N2 × N2 Kraus
superoperator of the form

M =
N−1∑
μ=0

Aμ ⊗ Aμ†, (3)

where

Aμ =
N−1∑
i=μ

√(
i

i − μ

)
εi−μ(1 − ε)μ|pi−μ〉〈pi | (4)
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0

FIG. 1. Husimi representation of the invariant state of the quan-
tum dissipative baker map for (from top to bottom) ε = 0.8,0.6,0.4
and N = 180 (left column), and the corresponding classical attractors
(right column).
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FIG. 2. Eigenvalues of the quantum dissipative baker map $ in
the complex plane for three different values of the dissipation. From
left to right: ε = 0.8,0.6,0.4. In all cases N = 180.

are operators accounting for transitions toward the momen-
tum state |pi=0〉. The coupling constant ε coincides with
the dissipation parameter of the corresponding classical
map. M is a trace-preserving (

∑
μ A†

μAμ = 1) and nonunital
(
∑

μ AμA†
μ �= 1) superoperator, which describes a process in

which phase space volume is not preserved. Superoperators of
this type are obtained from the integration of master equations
derived from modeling a microscopic interaction of a system
(an oscillator, a large spin, etc.) with a thermal bath at zero
temperature representing the environment [18–20].

To describe the noisy evolution of the density matrix of the
system we compose M, modeled by its Kraus superoperator
form, with the unitary map (2), according to

$ = (BN ⊗ B
†
N ) ◦ M. (5)

An evolution of the density matrix specified in this way is
known in the literature as a quantum operation [1,2].

III. RESULTS

The spectrum obtained by the diagonalization of the super-
operator of Eq. (5) consists of a leading eigenvalue λ = 1 and
N2 − 1 complex eigenvalues λ [with |λ| = exp(−γ

2 )] inside the
unit circle [1,2]. Due to its non-normality, $ has distinct left ψL

λ

and right ψR
λ eigenoperators corresponding to each eigenvalue.

As expected, the Husimi function of the invariant state ψR
0 ,

having eigenvalue λ = 1, closely follows the fractal structure
of the attractor corresponding to the classical dissipative
map. This is shown in Fig. 1, for several values of ε. In
the classical case the dissipation parameter ε determines the
dimension of the attractor, d = 1 + ln(2)/[ln(2) − ln(ε)] [21].
In the quantum case ε is related to the quantum phase space

Δ N

)

)γ
Δ γ

0 6 12 18

0.05

0

γ

FIG. 3. Density of states �N (γ )/�γ as a function of γ for
different values of N [90 (�),100 (�),150 (•),180 (	)] and two
values of the dissipation ε = 0.8 (left) and ε = 0.6 (right). The
densities are normalized according to

∫ 18
0 [�N (γ )/�γ ] = 1.
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FIG. 4. Log-log plot for the fraction of long-lived resonances
(with γ < γcut) as a function of N2 for ε = 0.8 and eight values of
the cutoff valuein the range 4 � γcut � 20. The fitted slopes are in
the interval 0.76 � β � 0.82.

contraction rate [9]. We have verified that, as N increases, the
phase space representation of ψR

0 reveals finer details of the
attractor, reflecting the quantum-to-classical correspondence.

As a first approach to analyzing the behavior of the
resonances, in Fig. 2 we show different spectra of $ for
three values of the dissipation parameter ε = 0.8,0.6,0.4
and a Hilbert space dimension N = 180. We notice that the
longest-lived eigenvalues, although they change their positions
in the complex plane, more or less keep their moduli, while
the radius rλ of the dense circle where most of the eigenvalues
concentrate strongly shrinks for increasing values of the
dissipation. However, this radius cannot be directly related to
the parameter ε, in contrast to what is observed in Ref. [10] for
the spectra of the discretized Perron-Frobenius operator. This
gives to the quantum version a seemingly more contractive
character in spectral terms.

To better show this point the differential radial density
distributions defined as �N(γ )

�γ
are plotted in Fig. 3, for

different values of N . These densities, normalized according
to

∫ 18
0

�N(γ )
�γ

= 1, are practically N independent for the dimen-
sions we are considering. They present a relative maximum
at a decay rate γ 
 −2 ln ε, and then they smoothly increase
at larger values of γ . These profiles are very different from
the ones obtained in Ref. [10] for the spectrum of the
Perron-Frobenius operator, which peak around γ = −2 ln ε,
that is, the global relaxation rate to the strange attractor, and
decay rapidly for larger γ .

ln N
N
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ln N
10 1198
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FIG. 5. Log-log plot for the fraction of long-lived resonances
(with γ < γcut) as a function of N2 for ε = 0.8 (	), 0.6 (•), and
0.4 (�), with (a) γcut = 20, (b) γcut = 15.2, and (c) γcut = 9.2. The
fitted slopes are β = 0.83,0.75,0.78 for (a), β = 0.87,0.76,0.82 for
(b), and β = 0.84,0.82,0.77 for (c).
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FIG. 6. Overlap |(ψR
λ ψR

0 )| as a function of γ for different values
of the dissipation parameter ε = 0.8,0.6,0.4 (from left to right) and
N = 180.

We now come to the central point of this paper. We want
to see how the differences between a full quantization and a
discretization procedure of phase space which are suggested
by the comparison of the corresponding spectra affect the
adherence to the fractal Weyl law. Figure 4 displays the fraction
of long-lived resonances Nγ<γcut

N2 as a function of N2 for ε = 0.8
and values of γcut ranging from 4 to 20. It can be clearly seen
that this fraction scales as Nγ<γcut

N2 ∝ (N2)−β with an exponent
β ∼ 0.8 fairly independent of the cutoff value γcut used to dis-
tinguish between the long-lived states and the short-lived ones.

The existence of a power law dependence for Nγ<γcut
N2 and the

insensitivity of the exponent to the choice of the cutoff value
γcut are fundamental properties of the fractal Weyl law which
was originally conjectured for projective openings. However,
in the case of our contractive noise the exponent which fits
the numerical results cannot be related in a direct way to the
dimension of the classical attractor. This dimension is equal to
d = 1.756 for ε = 0.8 and thus the relation β = 2 − d does
not hold.

Moreover, the exponent β turns out to be almost insensitive
to the value of the dissipation parameter ε. This remarkable
fact can be appreciated in Fig. 5 where Nγ<γcut

N2 (N2) is shown
for different values of the coupling constant ε = 0.8,0.6,0.4
(and three choices of γcut). In all cases the data follow a power
law, with β ∼ 0.8, independently of the fractal dimension of
the corresponding classical attractor (d = 1.756 for ε = 0.8,
d = 1.576 for ε = 0.6, and d = 1.431 for ε = 0.4).

For comparison we have applied the superoperator formal-
ism to the well-studied case of an open Baker map subjected

q0

p

1

1

FIG. 7. Husimi representations of the (a) left and (b) right
eigenstates for the excited state closest to the unit circle, |λ| =
0.5845 (upper panel), and for a state with a large decay rate,
|λ| = 9.278 × 10−5 (lower panel); ε = 0.8,N = 180.
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FIG. 8. Husimi representation for the projector of Eq. (6), with
λcut = 0.1348 (or γcut = 4), ε = 0.8, and N = 180.

to a projective opening [22,23] modeled by a nonunitary
operator Uopen, by defining $open = Uopen ⊗ U

†
open. Since the

eigenvalues of $open are just products of two eigenvalues of
Uopen, the fraction of long-lived resonances of $open will be
(Nll

N
)2 (where Nll

N
is the fraction of long-lived resonances of

Uopen) and will scale with N2 as does the fraction of resonances
of Uopen with N . This was verified (for values of N in the same
range as for the contractive case), confirming the validity of
the fractal Weyl law in the open system.

In order to shed more light on these results we turn to
analyzing the eigenvectors. To characterize the eigenstates
of $, we consider the overlap of the right eigenstates with
the invariant state, by defining the measure |(ψR

λ ψR
0 )| =

|Tr(ψR†
λ ψR

0 )|. Figure 6 displays the dependence of this measure
with respect to γ , for different values of ε. It is clear that
the overlap is on average larger for slow-decaying states, and
decreases as the decay rate increases. But it is always small,
thus giving further support to the strong contraction of the
spectrum we have observed.

The distinction between slow- and fast-decaying states
is also noticeable if we look at their distributions in phase
space. For this, we compute the Husimi representation of the
right and left eigenstates of $, 〈z|ψR,L

λ |z〉 = Tr(ψR,L†
λ ,|z〉〈z|),

where |z〉 are coherent states centered at z = (q,p). As shown
in Fig. 7 for a typical slow-decaying state(upper panel), the
Husimi density of the right eigenstate reasonably follows the
structure of the attractor (although being much more localized
than the invariant state), while the left one has a delocalized
pattern. For a state with a large decay rate (lower panel), the
probability pattern becomes difficult to associate with the
attractor.

Although the long-lived eigenfunctions are morphologi-
cally different from the invariant state, we have verified that
they have support on the phase space region corresponding to
the classical attractor by making use of a recently developed
representation especially suited for open systems [24]. We

have built the sum
1∑

λ=λcut

〈z|ψR
λ |z〉〈z|ψL

λ |z〉
〈ψL

λ |ψR
λ 〉 (6)

and obtained the distribution shown in Fig. 8, indicating a clear
localization of the long-lived states on the attractor region in
the semiclassical limit.

In view of these results we have found that, although the
classical support of the long-lived resonances is the classical
attractor, their number scales with N at a different pace than
that predicted by the fractal Weyl law.

IV. CONCLUSIONS

We have studied the spectra of a paradigmatic model of the
theories of quantum chaos and dissipative systems, the baker
map with dissipation, by following a standard quantization pro-
cedure based on the Kraus representation of superoperators. In
contrast to what happens for the discretized Perron-Frobenius
operator in Ref. [10], we found that the standard fractal Weyl
law does not hold in this case (we underline that in Ref. [10]
there was no intention of quantizing the classical system). Even
if the fraction of long-lived resonances does scale with the
dimension following a power law which is roughly insensitive
to the cutoff value of the decay rate considered for the statistics,
the exponent (which is approximately constant) is not directly
related to the fractal dimension of the classical attractor. We
checked that the same behavior is present when the baker is
replaced with the cat map [25].

In order to give an interpretation for this intriguing result,
we investigated the morphology of the eigenstates of the
system. In particular we built the Husimi representation of
the projector constituted by the eigenfunctions with slow
escape rate [24]. We found that its density concentrates on the
attractor region, strongly suggesting that one should expect,
as for the projective case, a connection between the statistics
of these long-lived resonances and the fractal dimension of
the strange attractor.

A possible cause for the lack of such natural connection
might be in the nonorthogonality of the eigenfunctions
localized on the strange attractor. In fact, the fractal Weyl
law supposes the quasiorthogonality of the eigenfunctions
supported by the fractal set, since it is based on a Planck-cell
partitioning of this set. This works in the case of projective
openings, but might not be the case for contractive ones. This
is an open problem and we are currently studying [25] the
degree of nonorthogonality induced by a contractive dynamics
as an explanation for the apparent nonvalidity of the standard
Weyl law revealed by the present numerical investigation.
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M. Zworski, ibid. 137, 381 (2007).

[7] J. A. Ramilowski, S. D. Prado, F. Borondo, and D. Farrelly,
Phys. Rev. E 80, 055201(R) (2009); A. Eberspächer, J. Main,
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