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Currents in defective coupled ratchets
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Transport phenomena in a one-dimensional system of interacting particles is studied. This system is embedded
in a periodic and left-right asymmetric potential driven by a force periodic in time and space. When the density
(number of particles per site) is an integer, directional current of the particles is collective; that is, it involves the
whole system since all the sites are equivalents. On the other hand, when the system has a defect, a new localized
or noncollective current appears due to the migration of defects from one site to another. We show here how this
“defective” (defects generated) current can be controlled by white noise.
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I. INTRODUCTION

A ratchet system consists of a set of particles far from
equilibrium that may show a directional current, even though
the acting forces have zero mean value (see the comprehensive
reviews [1] and [2]). The particles may be interacting or
not. These systems can be classified as deterministic [3],
stochastic [4] (Brownian), and inertial [5,6] (underdamped)
or overdamped and have the peculiarities to present different
regimes, so that the variation of some parameters can generate,
for instance, a current reversal. Since the first pioneering
works [7,8], ratchets have become an object of interest in many
fields [9], as they provide models for transport in biological
systems [10–13] and inspire the design and construction of
(classical or quantum) artificial devices [14] (and references
therein).

In this work, we analyze the dynamics of a deterministic
coupled ratchet, the same as in Ref. [15], but with a novelty:
The number of particles here is not a multiple of the number
of minima of the ratchet potential; that is, the density, the
number of particles per site, can be a rational number.
In previous papers where the density was an integer, the
configurations were equivalent to perfect lattices and the
transport effects were collective and extended phenomena.
Here, with noninteger densities the system will have some
kind of disorder (broken symmetries) and as a consequence a
new noncollective localized transport regime associated with
the migration of defects will appear. We remark that this
type of disorder is quite different from the one described
in Ref. [16], where defects were introduced in the ratchet
potential, and it is not comparable to the punctual defects
(interstitials or vacancies) that can occur in perfect lattices.
The defective configurations to consider generate metastable
states in infinite arrays [17] and become equilibrium states
when periodic boundary conditions are imposed. The sys-
tem is based in an overdamped, driven Frenkel-Kontorova
model [18] that is widely used to describe phenomena such
as dislocations, Josephson junction arrays [19–21], proton
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transport in biological molecules and icelike crystals [22],
nonlinear DNA dynamics [23], tribology, interfacial slip and
microscopic models of friction (nanotribology) [24], and
models for collective ratchets [25–27].

In previous papers [5,15,28], we showed that with integer
densities, the system has different regimes in different regions
of parameters space. The relevant parameters were density
(always an integer), coupling constant, and external force.
The different regimes were characterized by different orbits
corresponding to different behavior, for instance, the flow
direction changed across the boundary between two regions in
parameters space. We also showed that a moderate amount of
noncorrelated noise induces regime transitions. For instance,
choosing adequate parameters, white noise caused an inversion
in the current direction.

The paper is organized as follows: In the following
section, a description of the model is given; Sec. III is
devoted to determining the possible currents of the stationary
orbits according to the density of particles regardless of the
interaction and the shape of the ratchet potential. In Sec. IV
we determine the regions in the parameter space where these
currents occur. The effect of white Gaussian noise is discussed
in Sec. V, and finally, in the last section, the conclusions are
drawn. The Appendix is devoted to showing the dimensionless
equation of motion.

II. THE MODEL

The system under study consists of N interacting particles
placed in a one-dimensional ring of length L subject to a
periodic potential Vα(x) and driven by an external force in the
overdamped regime.

The time evolution of the ith particle is given by the
equation

ηẋi(t) + ∂Vα(xi)

∂xi

+ ∂V osc(xi−1,xi,xi+1)

∂xi

= F dr(xi,t) + σ ξi(t). (1)

In Eq. (1), xi(t) represents the coordinate of the ith particle,
i = 1,2, . . . ,N with the conventions xN+1 = x1 and x0 = xN .
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These are measured in the counterclockwise direction along a
ring of length L, therefore fulfilling the periodicity condition
xi+L = xi . Vα(x) is a one-dimensional, left-right asymmetric
periodic potential defined by

Vα(x)=
{

Vo

(
cos

[
π
α

( (α+1)x
d

)])
, for 0 � x

d
� α

(α+1)

−Vo

(
cos

{
π

[
(α + 1

)
x
d

− α
]})

, for α
(α+1) � x

d
� 1

(2)

and the periodicity constraint Vα(x + d) = Vα(x) outside the
interval (0,d). Thus, the total length of the circle is L = sd,
where s is the number (even) of minima and d is the linear
distance between consecutive minima of the ratchet. α (α >

0) controls the left-right asymmetry. Solutions for α > 1 in
which the minima of the wells of the ratchet are displaced in
the counterclockwise direction are equal to the time-reversed
solutions, with α < 1 in which the minima are displaced in the
opposite (clockwise) direction.

The coupling potential is

V osc(xi−1,xi,xi+1) = 1
2k[(xi−1 − xi)

2 + (xi − xi+1)2]. (3)

In addition, the particles are driven by an external periodic
force F dr(xi,t) given by the gradient of a time-dependent
potential with a spatial periodicity that is twice that of Vα:

F dr(xi,t) = −ε
∂V dr(xi,t)

∂xi

= −ε sin(ωt)
∂ sin(πxi/d)

∂xi

. (4)

With this choice, consecutive wells alternate in time as absolute
minima. The driving is a longitudinal standing wave over the
ring. If the applied force is only Eq. (4), that is without the
static ratchet potential Eq. (2) and without interactions, then

in the overdamped regime, the particles oscillate around their
initial position.

The last term in Eq. (1) represents a Gaussian white noise
source satisfying the condition 〈ξi(t)ξi(t ′)〉 = δ(t − t ′). The
factor σ is equal to

√
2kBT (where kB is the Boltzmann

constant) so that the last term in the equation corresponds
to a thermal bath of temperature T .

We solve the dimensionless Eq. (1) (as described in the
Appendix). We define four dimensionless quantities, �k =
k(sd/N)2/2Vo, �ε = ε/2Vo, �T = kBT /2Vo, and �η =
(ηd2)/(2Voτ ), where N is the number of particles and τ =
2π/ω is the period of driving force Eq. (4). �k is a measure of
the average potential elastic energy per particle in units of the
depth of the periodic potential. The parameter �ε compares
the energy provided by the external driving with the depth
of the ratchet potential 2Vo. The parameter �T compares
the energy delivered by the thermal bath also with the depth
of the ratchet potential. The last parameter �η compares the
average energy dissipated by the damping force with the depth
of the ratchet potential. All the calculations that we report were
made for �η = 1 and α = 1/3. The space spanned by the other
parameters (mainly the strength interaction k, the amplitude ε

and the temperature T ) is explored in order to have a general
picture of the dynamics of the system. We consider that the
particles cannot interpenetrate, i.e., they preserve their relative
order in the ring. This fact introduces elastic collisions that
can be taken into account by renaming the particles wherever
they intersect. For identical particles, an elastic collision is an
exchange of velocities.

In Fig. 1 we show the effect of the driving. According to
the values of the parameters �k , �ε, the particles can move
backward [Fig. 1(a)] or forward [Fig. 1(b)]. In addition, Fig. 2
shows the position of the eight particles as a function of time

0 1 2 3 4
x

0 1 2 3 4
x

t=0

t=τ/8

t=τ/4

t=3τ/8

t=τ/2

t=5τ/8

t=3τ/4

t=7τ/8

(b)(a)

FIG. 1. (Color online) Position x on the ring for N = 8 particles and total potential V (x,t) = Vα(x) + εV dr(x,t). We have marked a particle
[light gray (orange)] with an arrow to display its evolution. The parameters �k and �ε correspond to velocities (a) v̄ < 0 and (b) v̄ > 0.
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FIG. 2. (Color online) Time evolution for N = 8. The position
on the ring x for each particle as a function of time t . (a) and (b)
correspond to the parameters �k and �ε of Figs. 1(a) and 1(b),
respectively.

corresponding to cases (a) and (b) shown in Fig. 1. Time here
runs from the start to t = 4τ , allowing us to verify that the
system reaches the steady state very quickly.

III. THE POSSIBLE CURRENTS

In this section we show how the continuity constraint
(conservation of the number of particles) and the symmetries
in time and space of the potentials characterize the possible
stationary currents.

The velocity is defined by

v̄ = s lim
no→∞

nw(no)

no

, (5)

where s is the number of sites and nw(no) is the number of
turns around the ring after no oscillations of the driving force
Eq. (4). The particle current will be

j̄ = v̄ρ, (6)

where N is the number of particles and ρ = N/s is the density
of particles.

In the present work, we will restrict our discussion to
defective systems where there is only one extra particle in
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FIG. 3. When the density ρ is an integer [panel (a), ρ = 5], the
static equilibrium configuration (�ε = 0) shows an equal number
of particles per site (perfect lattice). When ρ is not an integer, the
configuration is defective [panel (b), ρ = 5.25]. The arrow indicates
an extra particle in the second site (an interstitial). In panel (c), the
static (ratchet) potential, with α = 1/3, is plotted.

one site (see Fig. 3). In other words, N = (sl) + 1, where l is
an integer and therefore ρ is not an integer.

To simplify the description we imagine the ratchet potential
deep enough so that most of the time the particles lie at the
bottom of the potential—the sites—and the dynamics reduces
to transitions between “states,” which are fully described
by giving the number of particles lying in each site. All
potentials are invariant under translation in twice the intersite
distance, and the external potential is also invariant under
time translations in one period. We assume that the stationary
dynamics has the maximum residual symmetry.

In order to distinguish and classify the dynamics we now
imagine taking an instantaneous picture at each half-period
in time exactly when the external potential is in phase with
the ratchet potential. Then from the symmetry arguments it
follows that the occupation number distribution along sites
will be n,m,n,m,n,m . . . n,m for the nondefect ratchet, while
in the defective one with one excess or missing particle the
distribution will only differ in one site where the (plus or
minus) defect sits as, for instance, n,m,n + 1,m,n,m . . . n,m.
In the next half-period, the occupation number distribution will
be m,n,m,n,m,n . . . m,n for the perfect ratchet, and for the
defective one there are two cases: (a) If the defect remains in the
same site, m,n,m + 1,n,m,n . . . m,n. (b) If the defect migrates
m,n + 1,m,n,m,n . . . m,n or m,n,m,n + 1,m,n . . . m,n.

To derive the particle currents we finally argue that as a
consequence of the overdamping assumptions in each half-
period particles will migrate from sites where the external
potential is maximum toward sites where it is minimum (this
will not necessarily be the case if inertia was important).
Therefore, if n > m a fraction r of the n − m particles will
migrate to the left and n − m − r will go to the right, so that
the net flux of particles φp across all but one intersite separation
in a full period will be

φp = n − m − 2r (7)

with r � n − m so that −(n − m) � φp � n − m. The defect
can also move to the adjacent site adding 1 (or −1 if it is
a hole) to the flux in that particular intersite. So finally the
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mean current per period for a ratchet with s sites will take the
possible values

j̄ = −p,−p + 2, . . . ,0,2, . . . p − 2,p, (8)

where p = n − m for perfect ratchet or if the defect does not
migrate, or p = n − m ± 2/s if the defect migrates. Therefore,
the total current will have two contributions j̄ = j̄c + j̄d . The
collective current (j̄c = l integer) and that due to the migration
of the defect (j̄d = ±2/s) so that the velocities are |v̄| = |l ±
2/s|(s/N ). When the current is only due to the migration of the
defect l = 0, j̄ = ±2/s and v̄ = ±2/N . In such a case, there
is an alternative way to determine the current. Since the defect
has v̄d = ±2 and ρd = 1/s, it the turns out that j̄d = ±2/s.

Consequently, this analysis allows us to establish a neces-
sary but not sufficient condition that the currents must satisfy.
These arguments apply regardless of the interaction and the
particular shape of the ratchet potential.

IV. STATIONARY ORBITS AND THEIR CURRENTS

In a previous paper [15], we found the separatrices and
the phase diagram in the plane (�k − �ε) for ρ = 2 without
noise. It is displayed in Fig. 4(a) for N = 8 particles in s = 4
wells. The regions are labeled with the values of v̄ of the

FIG. 4. (a) Phase diagram of the dynamics in the plane �k vs
�ε for �T = 0 and ρ = 2 from Ref. [15]. (b) Phase diagram of the
dynamics in the plane �k vs �ε for �T = 0 and ρ = 9/4.

FIG. 5. Time evolution for N = 9, s = 4, (a) deterministic orbit,
�T = 0, �k = 0.7348, �ε = 3.0, v̄ = 2/9; (b) noisy orbit �T =
0.15, �k = 0.7348, �ε = 3.0; (c) deterministic orbit �T = 0 �k =
0.7348, �ε = 3.35, v̄ = −2/9. By adding white Gaussian noise to
(a) we obtain (b), which reproduces (c), inverting the current.

corresponding stationary orbit and the numbers on each region
indicate the mean velocity v̄. The corresponding currents are

FIG. 6. (a) Phase diagram of the dynamics in the plane �k vs
�ε for �T = 0 and ρ = 5 from Ref. [28]. (b) Phase diagram of the
dynamics in the plane �k vs �ε for �T = 0 and ρ = 21/4.
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collective and take the values 0,±2, and 4. The regions that
correspond to velocities in opposite directions are separated
by regions of null velocity.

By adding a particle to the system, the corresponding
diagram is shown in Fig. 4(b) (N = 9 and s = 4). The values
of the currents in each region are 0,±0.5,±1.5,±2.5,4.5.
The values (±0.5) correspond to transport provided by just
the migration of the defect while the others have an additional
collective contribution.

The region in which the perfect system (N = 8,s = 4) had
zero mean velocity is split now in regions with different speeds;
in particular, the two contiguous regions (v̄ = 2/9, v̄ = −2/9)
are due to the defect migrating. The orbit characteristics (for
a particle) in both regions are shown in Figs. 5(a) and 5(c),
respectively.

A similar phenomena is observed if a particle is removed.
In this case, the current is provided by the vacancy migration
in the opposite direction of the particles.

We also analyzed the cases for N = 20 [28] and N = 21,

observing the same phenomenon. Here the parameters �ε and
�k are chosen close to their values for N = 20 where the speed
was zero [see Fig. 6(a)], and we can see the regions of collective
currents 0,1,±2,3,±4,5,6, and 8. The diagram for N = 21
is displayed in Fig. 6(b). There are pure collective currents
(1,2,3,4,5,6), currents having collective and defective contri-
bution (1.5,±2.5,3,5,±4.5,5.5,6.5,7.5,8.5), and the regions
j̄ = j̄d = ±0.5 that correspond to pure defect migration. The
latter, again, appear where the system N = 20 showed a region
with zero current.

V. THE EFFECT OF NOISE

In this section we study the effect of adding white Gaussian
noise to a defective system in parameter space such that there
are no collective currents (i.e., the parameters correspond to
jc = 0). For N = 9, the orbits shown in Figs. 5(a) and 5(c)
belong to systems whose parameters �ε and �k correspond
to the regions of v̄ = ±2/9, respectively. The addition of
Gaussian white noise to the system maintaining the values of

FIG. 7. Time evolution for N = 21, s = 4. (a) Deterministic orbit
�T = 0, �k = 0.1487, �ε = 1.561, v̄ = 2/21; (b) deterministic
orbit �T = 0, �k = 0.1487, �ε = 1.59, v̄ = −2/21.

0 0.1 0.2 0.3 0.4 0.5
Π

T

-0.3

-0.2

-0.1

0

0.1

0.2

<v>

(b)

(c)

(d)

FIG. 8. Time evolution for N = 21, s = 4. Average mean ve-
locity v̄ vs noise intensity �T for the parameters �k = 0.1487 and
�ε = 1.561. The arrows [labeled by (b), (c), and (d)] indicate the
values of noise corresponding to the typical orbits displayed in
Figs. 9(b)–9(d), respectively.

the parameters unchanged causes a reversion in the direction
of the current as can be seen in Figs. 5(a) and 5(b).

Similar effects are observed for N = 21. Figures 7(a) and
7(b) display the deterministic orbits for v̄ = ±2/21. With
the parameters �k = 0.1487 and �ε = 1.561 fixed, v̄ = 2/21
[Fig. 9(a)] and the addition of noise to the system generates
different velocities. Figure 8 shows the velocity 〈v̄〉 of the
particles as a function of the noise. The bracket indicates a
mean value of over 20 realizations. Here we see that initially
(for low noise) the velocity increases, reaches a maximum
and then decreases, passes through zero, and then reverses.
The noisy trajectories shown in Fig. 9 correspond to the noise
values indicated by the arrows in Fig. 8.

This behavior in the presence of a moderate level of noise is
related to what happens in stochastic resonators and stochastic
ratchets. While the deterministic dynamics is in general robust
against added noise, this can still induce transitions between

FIG. 9. Position on the ring of one particle as a function of t/τ for
N = 21, s = 4. (a) The orbit for the deterministic system �T = 0.
(b) Typical orbit corresponding to the maximum (�T = 0.02048).
(c) Typical orbit v̄ = 0 (�T = 0.068445). (d) Typical orbit for which
the noise induces a current inversion (�T = 0.120125).
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the different stationary trajectories of the deterministic system.
In the case of stochastic resonance, a bistable system perturbed
by a monochromatic force, the deterministic system has two
types of paths: small-amplitude librations around each of
the minimum and beyond a certain value of the disturbance,
high-amplitude librations between the minima. The addition
of an optimal noise in conditions of small-amplitude librations
leads to the dynamics of large- amplitude librations. In the
case of stochastic ratchets, the deterministic system presents
both small-amplitude librations and a directional rotation
depending on the values of the parameters. Noise added to
the system in libration conditions produces a transition to
directional rotation. In the defective ratchet system with N =
9, the addition of noise to the deterministic system with j̄ = j̄d

induces a transition to stationary trajectory with j̄ = −j̄d . This
can be seen clearly in Fig. 5. For N = 21, transitions caused by
noise are not restricted to the stationary orbit with j̄ = −j̄d but
also to others sufficiently close in parameter space [compare
Figs. 4(b) and 6(b)]. Then, noisy trajectories are composed
by pieces of deterministic trajectories, some of which have
collective currents. That is why the average current shown in
Fig. 8 takes absolute values greater than j̄d

VI. CONCLUSIONS

The inclusion of defects in a system introduces different
regimes of transport from those observed in a perfect lattice.
While for a perfect lattice the possible currents are integers
and purely collective j̄ = j̄c = p, in defective systems there
appear new currents with two components, j̄ = j̄c + j̄d =
±(p + 2/s) (collective and defective) or only defective j̄ =
j̄d = ±2/s.

We remark that in the thermodynamic limit (N → ∞,s →
∞, such that N/s remain finite), the current j̄d vanishes. In
contradistinction the collective current remains finite in this
limit (since the “defective” current is just a single-particle
effect).

In parameter space for a perfect lattice, there are regions that
correspond to a null velocity between regions with transport
in opposite directions. In the defective systems such regions
correspond to purely defective currents ±j̄d . That is, there
is a separatrix between regions of opposite currents. When
white Gaussian noise is added to a defective system lying in
a parameter space region such that only defective currents are
possible, then an inversion of the current may occur.

We finally remark again that our considerations made for a
system with an additional particle in the perfect lattice (self-
interstitial) also apply to the system with a single particle less
[i.e., N = (sl) − 1, vacancy] with obvious variations.
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APPENDIX

The equation of motion is

mẍi(t) + ηẋi(t) + Vo

d
f (s/d) + k[(xi − xi−1) + (xi − xi+1)]

= ε

d
g(x/d,ωt) +

√
2ηkBT ξi(t), (A1)

where f (s/d) represents the dependence on the coordinates of
the ratchet force, g(x/d,ωt) represents the dependence on the
coordinates and the time of driving force, and 〈ξi(t)ξi(t ′)〉 =
δ(t − t ′). This equation depends on seven parameters: mass
(m), damping coefficient (η), the depth of ratchet potential
2Vo, the linear distance between consecutive minima of the
ratchet potential (d), the amplitude of driving force (ε), the
period of the driving force (τ = 2π/ω), the elastic constant
(k), and the magnitude of the white noise (

√
2ηkBT ). There

are three independent dimensions: longitude, time, and energy.
We take d as the unit of longitude, τ the unit of time, and 2Vo

the unit of energy. In such way we define five adimensional
parameters as

�m = md2

2Voτ 2
, (A2)

�η = ηd2

2Voτ
, (A3)

�ε = ε

2Vo

, (A4)

�k = kd2s2

2VoN2
, (A5)

�T = kBT

2Vo

, (A6)

and by replacing the parameters in Eq. (A2) we obtain

�mẍi(t) + �ηẋi(t) + (1/2)f (x) + �k(N/s)2[(xi − xi−1)

+ (xi − xi+1)] = �εg(x,t) +
√

2
√

�η

√
�T ξi(t), (A7)

where the positions are measured in units of d and the time is
measured in units of τ . For overdamped dynamics �m ≪ �η,
that is m ≪ ητ , we neglect the inertial term. In the present
work we fix �η = 1, assuming overdamped dynamics.
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