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Abstract We consider a continuum percolation model on R
d , d ≥ 1. For t, λ ∈

(0,∞) and d ∈ {1, 2, 3}, the occupied set is given by the union of independent
Brownian paths running up to time t whose initial points form a Poisson point process
with intensity λ > 0. When d ≥ 4, the Brownian paths are replaced by Wiener
sausages with radius r > 0. We establish that, for d = 1 and all choices of t , no
percolation occurs, whereas for d ≥ 2, there is a non-trivial percolation transition in t ,
provided λ and r are chosen properly. The last statement means that λ has to be chosen
to be strictly smaller than the critical percolation parameter for the occupied set at time
zero (which is infinite when d ∈ {2, 3}, but finite and dependent on r when d ≥ 4).
We further show that for all d ≥ 2, the unbounded cluster in the supercritical phase
is unique. Along the way a finite box criterion for non-percolation in the Boolean
model is extended to radius distributions with an exponential tail. This may be of
independent interest. The present paper settles the basic properties of the model and
should be viewed as a springboard for finer results.
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1 Introduction

Notation For every d ≥ 1, we denote by Lebd the Lebesgue measure on Rd . || · || and
|| · ||∞ stand for the Euclidean norm and supremum norm on R

d , respectively. For
any set A, the symbols Ac and A refer to the complement set and the closure of A,
respectively. The open ball with centre z and radius r with respect to the Euclid-
ean norm is denoted by B(z, r), whereas B∞(z, r) stands for the same ball with
respect to the supremum norm. Furthermore, for every 0 < r < r ′, we denote
by A(r, r ′) = B(0, r ′)\B(0, r) and A∞(r, r ′) = B∞(0, r ′)\B∞(0, r) the annulus
delimited by the balls of radii r and r ′ with respect to the Euclidean norm and supre-
mum norm, respectively. For all I ⊆ R

+, we denote by BI the set {Bt , t ∈ I }. The
symbol Pa denotes the law of a Brownian motion starting at a. Finally, Pa1,a2 denotes
the law of two independent Brownian motions starting at a1 and a2, respectively.

1.1 Overview

For λ > 0, let (Ωp,Ap, Pλ) be a probability space on which a Poisson point process
E with intensity λ × Lebd is defined. Conditionally on E , we fix a collection of
independent Brownian motions {(Bx

t )t≥0, x ∈ E} such that for each x ∈ E , Bx
0 = x

and (Bx
t −x)t≥0 is independent of E . We study for t, r ≥ 0 the occupied set (see Fig. 1

below):

Ot,r :=
{⋃

x∈E
⋃

0≤s≤t B(Bx
s , r), if r > 0,⋃

x∈E Bx[0,t], if r = 0.
(1.1)

In the rest of the paper, we write Ot instead of Ot,0. From now on we will denote by
P the probability measure on the space where Ot,r is defined, see Remark 1.1.

Remark 1.1 A more rigorous definition of the model described above can be done
along similar lines as in Section 1.4 of [13] for the Boolean percolation model. One
consequence of that construction is the ergodicity of Ot,r with respect to shifts in
space.

Two points x and y of Rd are said to be connected in Ot,r if and only if there
exists a continuous function γ : [0, 1] �→ Ot,r such that γ (0) = x and γ (1) = y. A
subset ofOt,r is connected if and only if all of its points are pairwise connected. In the
following a connected subset ofOt,r is called a component. A component is bounded
if it is contained in B(0, R) for some R > 0. Otherwise, the component is said to be
unbounded. A cluster is a connected component which is maximal in the sense that
it is not strictly contained in another connected component. Clusters will be denoted
by C all over this work. We say that our model percolates ifOt,r contains at least one
unbounded cluster.
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Fig. 1 Simulations of Ot in the
case d = 2, at small,
intermediate and large times

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

We are interested in the percolative properties of the occupied set: is there an
unbounded cluster for large t? Is it unique? What happens for small t? Since an
elementary monotonicity argument shows that t �→ Ot,r is non-decreasing, the first
and the third questionmay be rephrased as follows: is there a percolation transition in t?
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1.2 Results

We fix λ > 0.

Theorem 1.2 (No percolation for d = 1) Let d = 1. Then, for all t ≥ 0, the set Ot

has almost surely no unbounded cluster.

Theorem 1.3 (Percolation phase transition and uniqueness for d ∈ {2, 3}) Suppose
that d ∈ {2, 3}. There exists tc = tc(λ, d) > 0 such that for t < tc, Ot has almost
surely no unbounded cluster, whereas for t > tc, Ot has almost surely a unique
unbounded cluster.

Let d ≥ 4, r > 0, and let δr be the Dirac measure concentrated on r . We denote by
λc(δr ) the critical value forO0,r such that for all λ < λc(δr ) the setO0,r almost surely
does not contain an unbounded cluster, and such that for λ > λc(δr ) it does, see also
(2.5). It follows from Theorem 2.1 that λc(δr ) > 0 and limr→0 λc(δr ) = ∞.

Theorem 1.4 (Percolation phase transition and uniqueness for d ≥ 4) Suppose that
d ≥ 4, and let r > 0 be such that λ < λc(δr ). Then, there exists tc = tc(λ, d, r) > 0
such that for t < tc, Ot,r has almost surely no unbounded cluster, whereas for t > tc,
it has almost surely a unique unbounded cluster.

1.3 Discussion

Motivation and related models Our model fits into the class of continuum percolation
models, which have been studied by both mathematicians and physicists. Their first
appearance can be traced back (at least) to Gilbert [6] under the name of random plane
networks. Gilbert was interested in modelling infinite communication networks of
stations with range R > 0. This was done by connecting any pair of points of a Poisson
point process onR2 whenever their distance is less than R. Another application, which
is mentioned in this work, is the modelling of a contagious infection. Here, each
individual gets infected when it has distance less than R to an infected individual.

A subclass of continuum percolation models follows the following recipe: attach
to each point of a point process (e.g. a Poisson point process) a random geometric
object, e.g. a disc of random radius (Boolean model) or a segment of random length
and random orientation (Poisson sticks model or needle percolation). Our model also
falls into this class: we attach to each point of a Poisson point process a Brownian path
(a path of aWiener sausagewhen d ≥ 4). It could actually be seen as amodel of defects
randomly distributed in a material that propagate at random, see Menshikov et al. [10]
for other physical motivations of continuum percolation. One can think, for example,
of an (infinite) piece of wood containing (homogeneously distributed) worms, where
each worm tunnels through the piece of wood at random, and we wonder when the
latter “breaks”.

The informal description above is reminiscent of (and actually, borrowed from) the
problem of the disconnection of a cylinder by a random walk, which itself is linked
to interlacement percolation [17]. The latter is given by the random subset obtained
when looking at the trace of a simple random walk on the torus (Z/NZ)d started from
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the uniform distribution and running up to time uNd , as N ↑ ∞. Here u plays the role
of an intensity parameter for the interlacements set. However, even though the model
of random interlacements and our model seem to share some similarities, there is an
important difference: in the interlacement model, the number of trajectories which
enter a ball of radius R scales like cRd−2 for some c > 0, whereas in our case it
is at least of order Rd . Nevertheless, we expect that a continuous version of random
interlacement should arise as a scaling limit of our model as (1) time goes to infinity,
(2) intensity goes to 0 and (3) the product of both quantities stays constant.

For d ≥ 4, our model actually appears in C̆erný et al. [2] and describes the target
detection area of a network of mobile sensors initially distributed at random and mov-
ing according to Brownian dynamics. However, in this work the focus is on numerical
computations of coverage probabilities rather than on percolation. In a similar spirit,
Kesidis et al. [8] provide formulas for the detection time of a particle positioned at the
origin (explicitly for d = 3, bounds for d = 2). Percolation properties for a network of
mobile sensors have also been studied by Peres et al. [15,16]. Nonetheless, instead of
looking atOt,r , which contains all paths up to time t of the field of Brownian motions,
they look at ∪x∈EB(Bx

t , r) at each fixed time t . This is an example of a dynamic
Boolean model, as introduced by van den Berg et al. [18].

Finally, another motivation to study such a model is that it should arise as the
scaling limit of a certain class of discrete dependent percolation models, more pre-
cisely percolation models for a system of independent finite-time random walks
initially homogeneously distributed on Z

d . This could also be seen as a system of
non-interacting ideal polymer chains.
Comments on the Results First of all notice that we investigated a phase transition in
t . It would also be possible to play with the intensity λ instead. Indeed, multiplying
the intensity λ by a factor η changes the typical distance between two Poisson points
by a factor η−1/d . Thus, by scale invariance of Brownian motion, the percolative
behaviour of the model is the same when we consider the Brownian paths up to time
η−2/d t instead. Hence, tuning λ boils down to tuning t .

Moreover, it is worthwhile mentioning that Theorem 1.3 is stated only in the case
r = 0, which is the case of interest to us. The result is the same when r > 0, up to
minor modifications. However, if d ≥ 4 the paths of two independent d-dimensional
Brownian motions starting at different points do not intersect. Hence, in this case r
has to be chosen positive; otherwise, no percolation phase transition occurs.

We finish with a complementary result to Theorem 1.4: if d ≥ 4 and r is such that
λ > λc(δr ), then O0,r already contains an unbounded component; therefore, there is
percolation at all times. In that case, van den Berg et al. [18] proved a stronger result:
almost surely, for all t ≥ 0, the set ∪x∈EB(Bx

t , r) contains an unbounded component.
Open Questions The results proven in this article answer the first questions typically
askedwhen studying anewpercolationmodel.However, there are stillmanychallenges
left open. We mention some of them:

(1) How does the vacant set, that is the complement of Ot,r in R
d , look like? For

instance, what is the tail behaviour of the distance from the origin to Ot,r?
(2) What is the behaviour of tc(r) as r ↓ 0 for d ≥ 4?
(3) How rigorous can one make the relation to random interlacement?
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(4) How rigorous can one make the relation to the system of independent finite-time
random walks, which are initially homogeneously distributed on Z

d?
(5) If d ≥ 4, what happens if the radii of the Wiener sausages decrease with time?
(6) Is there percolation at criticality?

Question (6) is probably the most challenging. Question (2) is tackled in [4].

Sketch of the proofs • The main idea to prove non-percolation at small times is to
dominate Ot,r by a Boolean percolation model with radius distribution given by the
maximal displacement of a Brownian motion before time t . Standard results on the
Boolean model yield non-percolation at small times.

It is important tomention that in the case d ≥ 4, additional work is required. Indeed,
we need to discard the possibility that (1) λ is supercritical for all t > 0 and (2) λ is
subcritical at t = 0, which means proving continuity of the critical intensity of the
Boolean model w.r.t. the radius distribution at δr . This is obtained in Proposition 2.2,
which requires a renormalization procedure (see Lemma 2.3) and extends a finite
box criterion for non-percolation in the Boolean model to radius distributions with an
exponential tail. To our knowledge such a criterion has only been proved for bounded
radii. Moreover, we suspect that this could be extended to radius distributions with
sufficiently thin polynomial tails.

• To establish the existence of a percolation phase, we distinguish between two
cases:
(1) For d ∈ {2, 3}, we use a coarse-graining argument. More precisely, we divide

R
d into boxes andwe consider an edge percolationmodel of the coarse-grained

graph whose vertices are identified with the centres of the boxes and the edges
connect nearest neighbours. An edge connecting nearest neighbours, say x and
x ′ in Zd , is said to be open if (1) both boxes associated with x and x ′ contain at
least one point of the Poisson point process, say y and y′, and (2) the Brownian
motions starting from y and y′ intersect each other. A domination result by
Liggett et al. [9] finally shows that percolation in that coarse-grained model
occurs if one suitably chooses the size of the boxes and let time run for long
enough. This implies percolation of our original model.

(2) For d ≥ 4, our strategy is to construct a (d − 1)-dimensional supercritical
Boolean model included in Ot,r .

• The difficulty in the uniqueness proof lies in extending theBurton–Keane argument
to the continuous setting. For this purpose, we exploit ideas from Meester and
Roy [12,13]. The case d = 3 turns out to be the most delicate one and requires
new ideas such as a careful cutting-and-glueing procedure on the Brownian paths.

1.4 Outline of the Paper

We shortly describe the organization of the article. In Sect. 2 we introduce the Boolean
percolationmodel and prove some of its properties. In Sect. 3.1 we prove Theorem 1.2.
The proofs of Theorems 1.3 and 1.4 are given in Sects. 3.2–5. Section 3.2 (resp. Sect. 4)
deals with the existence of a non-percolation (resp. percolation) phase. In Sect. 5 the
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uniqueness of the unbounded cluster is established. The “Appendix” provides a proof
of a technical lemma which is needed in Sect. 2.

2 Preliminaries on Boolean Percolation

The model of Boolean percolation has been discussed in great detail in Meester and
Roy [13], andwe refer to this source for a discussionwhich goes beyond the description
we are giving here.

2.1 Introduction to the Model

Let � be a probability measure on [0,∞), and let χ be a Poisson point process on
R
d × [0,∞) with intensity (λ ×Lebd) ⊗ �. We denote the corresponding probability

measure by Pλ,�. A point (x, r(x)) ∈ χ is interpreted to be the open ball in R
d with

centre x and radius r(x). Furthermore, we let E be the projection of χ onto R
d . For

A ⊆ R
d , let

Σ(A) =
⋃

x∈E∩A

B(x, r(x)). (2.1)

Boolean percolation deals with properties of the random setΣ := Σ(Rd). We denote
by C(y), with y ∈ R

d , the cluster of Σ which contains y. If y /∈ Σ , then C(y) = ∅.
Theorem 2.1 (Gouéré [7], Theorem 2.1) Let d ≥ 2. For all probability measures �

on (0,∞) the following assertions are equivalent:

(a) ∫ ∞

0
xd �(dx) < ∞. (2.2)

(b) There exists λ0 ∈ (0,∞) such that for all λ < λ0,

Pλ,�

(
C(0) is unbounded

) = 0. (2.3)

Moreover, if (a) holds, then, for some c = c(d) > 0, (2.3) is satisfied for all

λ < c

(∫ ∞

0
xd�(dx)

)−1

. (2.4)

It is immediate from Theorem 2.1 that

λc(�) := inf
{
λ > 0: Pλ,�

(
C(0) is unbounded

)
> 0
}

> 0. (2.5)

Moreover, from the remark on page 52 of [13] it also follows that λc(�) <

∞ if �((0,∞)) > 0. A more geometric fashion to characterize (2.5) is via
crossing probabilities. For that fix N1, N2, . . . , Nd > 0, and for A ⊆ R

d let
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CROSS(N1, N2, . . . , Nd ; A) be the event that the set Σ(A) ∩ [0, N1] × [0, N2] ×
· · ·× [0, Nd ] contains a component C such that C ∩{0}× [0, N2]× · · ·× [0, Nd ] �= ∅
and C ∩ {N1} × [0, N2] × · · · × [0, Nd ] �= ∅. The critical value λCROSS with respect
to this event is defined by

λCROSS(�) = inf

{
λ > 0: lim sup

N→∞
Pλ,�

(
CROSS

(
N , 3N , . . . , 3N ;Rd

))
> 0

}
.

(2.6)
Under the assumption that � has compact support, Menshikov et al. [10] proved that

λc(�) = λCROSS(�). (2.7)

2.2 Continuity of λc(�)

Given two probability measures ν and μ on R, we write ν � μ, if μ stochastically
dominates ν.

Proposition 2.2 Let � be a probability measure on [0,∞)with bounded support, and
let (�n)n∈N be a sequence of probability measures on [0,∞) such that �n → � weakly
as n → ∞ and � � �n for each n ∈ N. Moreover, assume that

• there are c > 0 and R0 > 0 such that for all n ∈ N, �n([R,∞)) ≤ e−cR for all
R ≥ R0;

• there is a probability measure �′ on [0,∞) with a finite moment of order d such
that �n � �′ for all n ∈ N.

Then,
lim
n→∞ λc(�n) = λc(�). (2.8)

The proof of Proposition 2.2 relies on the following two lemmas whose proofs are
given in the appendix and at the end of this section, respectively.

Lemma 2.3 Let N ∈ N, λ > 0, and let � be a probability measure on [0,∞) such
that there are constants c = c(�) > 0 and R0 > 0 such that �([R,∞)) ≤ e−cR for
all R ≥ R0. There is an ε = ε(c, d) > 0 such that if

Pλ,�

(
CROSS

(
N , 3N , . . . , 3N ;Rd

))
≤ ε, (2.9)

then Pλ,�(∃ y ∈ R
d :Lebd(C(y)) = ∞) = 0.

Lemma 2.4 Choose η > 0 and �′ according to Proposition 2.2, then for all N ∈ N

lim
M→∞ Pλ,�′

(
∃ y∈B∞(0, M)c ∩ E s.t. B(y, r(y)) ∩ [0, N ] × [0, 3N ]d−1 �= ∅

)
=0.

(2.10)

We start with the proof of Proposition 2.2 subject to Lemmas 2.3–2.4.
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Proof of Proposition 2.2 The idea of the proof is due to Penrose [14]. First, note that

lim sup
n→∞

λc(�n) ≤ λc(�), (2.11)

since � � �n for all n ∈ N. Thus, we may focus on the reversed direction in (2.11).
Second, fix λ < λc(�) and let ε > 0 be chosen according to Lemma 2.3. By (2.7)
there is N ∈ N such that

Pλ,�

(
CROSS

(
N , 3N , . . . , 3N ;Rd

))
≤ ε/3. (2.12)

We consider the following coupling (Ω̂, P̂) of {Pλ,�n }n∈N and Pλ,�:

• the points of E are sampled according to Pλ;
• by Skorokhod’s embedding theorem, for each x ∈ E , the radii {rn(x)}n∈N and
r(x) can be coupled in such a way that they have respective distributions {�n}n∈N
and �, and rn(x) −−−→

n→∞ r(x) a.s.

The configurations obtained via this coupling are denoted by

Σn :=
⋃
x∈E

B(x, rn(x)), n ∈ N, and Σ∞ :=
⋃
x∈E

B(x, r(x)). (2.13)

Let M > 0 and consider the events

En =
{
Σ̂ := (Σk)k∈N∪{∞}:Σn ∈ CROSSM

}
, n ∈ N ∪ {∞},

where
CROSSM = CROSS(N , 3N , . . . , 3N ;B∞(0, M)).

Since the number of points in B∞(0, M) ∩ E is finite a.s., we may conclude that

lim
n→∞1En = 1E∞ a.s. (2.14)

Note that the convergence in (2.14) is not true for every possible realization, but indeed
on a set of probability one. Hence, by the dominated convergence theorem,

lim
n→∞ P̂(En) = P̂(E∞).

Therefore,

lim
n→∞ Pλ,�n

(
CROSSM

)
= Pλ,�

(
CROSSM

)
,

so that for all n ∈ N large enough,

Pλ,�n

(
CROSSM

)
≤ 2ε/3. (2.15)

Whence, Lemma 2.4 and the fact that �n � �′ for all n ∈ N yield that there is n0 ∈ N

such that for all n ≥ n0,

123

Author's personal copy



J Theor Probab

Pλ,�n

(
CROSS

(
N , 3N , . . . , 3N ;Rd

))
≤ ε. (2.16)

Thus, as a consequence of Lemma 2.3, there is no unbounded component under Pλ,�n

for all n ≥ n0. Consequently, λ < λc(�n) for all n ≥ n0, from which Proposition 2.2
follows. ��

The proof of Lemma 2.3 is given in “Appendix 1”.

Proof of Lemma 2.4 Fix M > 0, and divide B∞(0, M)c into a disjoint family of
annuli. Basic properties of Poisson point processes and a straightforward calculations
yield the result. We omit the details. ��

3 Proof of a Non-Percolation Phase

In this section we denote by �t,r the law of the random variable sup0≤s≤t ‖B0
s ‖ + r ,

and �t = �t,0. Let us also define

Σt,r =
⋃
x∈E

B
(
x, 4 sup

0≤s≤t
‖Bx

s − x‖ + r

)
(3.1)

and observe that Ot,r ⊆ Σt,r . (3.2)

3.1 Proof of Theorem 1.2

Let t > 0. Note thatΣt has the same law as the occupied set in the Boolean percolation
model with radius distribution �2t . Basic properties of Brownian motion show that �2t
has a finite moment of order d. Thus, by Theorem 3.1 in [13], almost surely, the setΣt

does not contain an unbounded cluster. Finally, the inclusion in (3.2) yields the result.

3.2 Theorems 1.3–1.4: No Percolation for Small Times

In this section we show that there is a tc = tc(λ, d) > 0 (tc = tc(λ, d, r) > 0 when
d ≥ 4) such thatOt (Ot,r when d ≥ 4) does not percolate when t < tc. The proof for
d ∈ {2, 3} appears in Sect. 3.2.1, whereas the proof for d ≥ 4 appears in Sect. 3.2.2.
Both proofs rely on the results of Sect. 2.

3.2.1 No Percolation for d ∈ {2, 3}

Recall (2.4) in Theorem 2.1. The inclusion in (3.2) and the fact that

lim
t→0

∫ ∞

0
xd �2t (dx) = 0 (3.3)

are enough to conclude.
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3.2.2 No Percolation for d ≥ 4

Note that �2t,r → δr weakly as t → 0. Moreover, one readily checks that the assump-
tion of Proposition 2.2 are met (with �′ = �1,r ); therefore, λc(�2t,r ) → λc(δr ) as
t → 0. Hence, there is a t0 > 0 such that λ < λc(�2t,r ) holds for all t < t0. Finally,
we conclude with (3.2).

4 Theorems 1.3–1.4: Percolation for Large Times

In this sectionwe establish thatOt (Ot,r when d ≥ 4) percolates, when t is sufficiently
large. The proof for d ∈ {2, 3} appears in Sect. 4.1,whereas the proof for d ≥ 4 appears
in Sect. 4.2.

4.1 Proof of the Percolation Phase in d ∈ {2, 3}

The proof proceeds according to the strategy described at the end of Sect. 1.3, which
relies on the introduction of a coarse-grainedmodel.We nowdefine this coarse-grained
model more rigorously. Let R > 0 and t > 0 to be chosen later. Fix x ∈ Z

d . When
| E ∩ B∞(2Rx, R) |≥ 1, we define the point z(R,x), which is almost surely uniquely
determined, via

‖z(R,x) − 2Rx‖ = inf
z∈E∩B∞(2Rx,R)

‖z − 2Rx‖. (4.1)

We denote by B(R,x) the Brownian motion starting at z(R,x). For all pairs of nearest
neighbours (x, y) ∈ Z

d ×Z
d , we say that the edge {x, y}, which connects x and y, is

open if

(i) | E ∩ B∞(2Rx, R) |≥ 1, (4.2)

(ii) | E ∩ B∞(2Ry, R) |≥ 1 and (4.3)

(iii) B(R,x)
[0,t] ∩ B(R,y)

[0,t] �= ∅. (4.4)

We let X{x,y} = 1{the edge {x, y} is open}. We omit the dependence on R and t not
to burden the notation.

Lemma 4.1 Let ε > 0. There exist R > 0 and t > 0 such that for any couple of
nearest neighbours (x, y) ∈ Z

d × Z
d , P(X{x,y} = 1) ≥ 1 − ε.

The proof of Lemma 4.1 is deferred to the end of this section. We first show how one
deduces the existence of a percolation phase from it.

Proof of the existence of a percolation phase Note that if (x, x ′) and (y, y′) are pairs
of nearest neighbour points inZd such that {x, x ′}∩{y, y′} = ∅, then X{x,x ′} and X{y,y′}
are independent. Therefore, the coarse-grained percolationmodel is a 2-dependent per-
colationmodel. Thus,Theorem0.0ofLiggett et al. [9] yields thatwemay stochastically
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minorate the coarse-grained percolationmodel by a Bernoulli bond percolationmodel,
whose parameter, say p∗, can be chosen arbitrarily close to 1, provided P(X{x,y} = 1)
is sufficiently close to 1. Let pc(Zd) be the critical percolation parameter for Bernoulli
bond percolation. Then, by Lemma 4.1, there are R0 > 0 and t0 > 0 such that
p∗ > pc(Zd) for all R ≥ R0 and t ≥ t0. In that case, the coarse-grained model
percolates, and so does Ot . ��
Consequently, it remains to prove Lemma 4.1.

Proof of Lemma 4.1 By independence of the events in (i)–(iii), we have

P(X{x,y} = 1) = E
[
1
{ | E ∩ B∞(2Rx, R) |≥ 1

| E ∩ B∞(2Ry, R) |≥ 1

}
P
(
B(R,x)

[0,t] ∩ B(R,y)
[0,t] �= ∅∣∣ E )].

(4.5)
To proceed, we fix R > 0 large enough such that

P(| E ∩ B∞(2Rx, R) |≥ 1) = 1 − e−λ(2R)d ≥ 1 − ε. (4.6)

Furthermore, P(B(R,x)
[0,t] ∩ B(R,y)

[0,t] �= ∅| E ) decreases when ‖z(R,x) − z(R,y)‖ increases

and ‖z(R,x) − z(R,y)‖ ≤ R
√
4(d − 1) + 16 when ‖x − y‖ = 1. Thus,

P
(
B(R,x)

[0,t] ∩ B(R,y)
[0,t] �= ∅

∣∣∣ E ) ≥ P
(
B(R,x)

[0,t] ∩ B(R,y)
[0,t] �= ∅

∣∣∣‖z(R,x)−z(R,y)‖ = R
√
4(d−1)+16

)
(4.7)

= P
z1,z2

(
B(1)

[0,t] ∩ B(2)
[0,t] �= ∅

)
, (4.8)

for any choice of z1 and z2 such that ‖z1 − z2‖ = R
√
4(d − 1) + 16. By Theorem 9.1

(b) in Mörters and Peres [11], there exists t large enough such that for all such choices
of z1 and z2,

P
z1,z2

(
B(1)

[0,t] ∩ B(2)
[0,t] �= ∅

)
≥ 1 − ε. (4.9)

The combination of (4.5), (4.6), (4.8) and (4.9) yields the result. ��

4.2 Proof of the Percolation Phase for d ≥ 4

Throughout the proof, z always denotes the dth coordinate of x = (ξ, z) ∈ R
d . We

further define
H0 =

{
(ξ, z) ∈ R

d : z = 0
}

. (4.10)

The main idea is to show percolation for a Boolean model onH0. More precisely, we
use that for each x ∈ E , Bx will eventually hit H0. From this we deduce that for t
large enough, the traces of the Wiener sausages which hitH0 dominate a supercritical
(d − 1)-dimensional Boolean percolation model and therefore percolate.
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We now formalize this strategy. In this proof, we write a d-dimensional Brownian
motion B as (BI, BII) where BI and BII stand for a one- and (d − 1)-dimensional
standard Brownian motion, respectively. For each k ∈ N, let

Sk :=
{
(ξ, z) ∈ R

d : k − 1 < z ≤ k
}

, (4.11)

so that (Sk)k∈Z is a partition of Rd−1 × (0,∞). We fix k ∈ N and consider

Ek = {ξ : ∃ z ∈ R s.t. (ξ, z) ∈ Sk ∩ E} . (4.12)

Note that (Ek)k≥0 are i.i.d. Poisson point processes with parameter λ×Lebd−1. Given
Ek , we construct a random set Pk

t in the following way:

• Thinning: each ξ ∈ Ek is kept if τ0(zξ ) ≤ t , where zξ is such that (ξ, zξ ) ∈ Sk ∩E
(there is almost surely only one choice), and τ0(z) is the first hitting time of
the origin by a one-dimensional Brownian motion starting at z. We choose all
Brownian motions to be independent. Otherwise, ξ is discarded.

• Translation: each ξ ∈ Ek that was not discarded after the previous step is translated
by BII(τ0(zξ )).

Note that zξ is uniformly distributed in (k − 1, k). Moreover, zξ , τ0(zξ ) and BII are
independent of ξ . Thus, Pk

t is the result of a thinning and a translation of Ek and
both operations depend on random variables which are independent of Ek . Therefore,
(Pk

t )k≥0 is a collection of i.i.d. Poisson point processes with parameter λpkt ×Lebd−1,
where

pkt =
∫ k

k−1
P
0
(

inf
0≤s≤t

BI
s ≤ −z

)
dz ≥ P

0

(
sup

0≤s≤t
BI
s ≥ k

)
. (4.13)

By independence of the Pk
t ’s, the set Pt :=⋃∞

k=1 Pk
t is a Poisson point process with

parameter λ
∑

k≥1 p
k
t × Lebd−1.

Let us now consider the Boolean model generated by Pt with deterministic radius
r . Observe that

∞∑
k=1

pkt ≥
∞∑
k=0

P
0

(
sup

0≤s≤t
BI
s ≥ k

)
− P

0

(
sup

0≤s≤t
BI
s ≥ 0

)
≥ E

0

[
sup

0≤s≤t
BI
s

]
− 1.

(4.14)
Note that the right-hand side of (4.14) tends to infinity as t → ∞. Thus, by the

remark on page 52 in [13], there exists t0 > 0 large enough such that the Boolean
model generated by Pt percolates for all t ≥ t0. Finally, note that Pt is stochastically
dominated by Ot ∩ H0, in the sense that Pt has the same distribution as a subset of
Ot ∩ H0. This completes the proof.

5 Theorems 1.3–1.4: Uniqueness of the Unbounded Cluster

We fix t, r, λ ≥ 0 such that t > tc(λ, d, r). In the following we denote by N∞
the number of unbounded clusters in Ot,r , which is almost surely a constant as a
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consequence of Remark 1.1. For all d ≥ 2, the proof of uniqueness consists of (1)
excluding the case N∞ = k with k ∈ N\{1} and (2) excluding the case N∞ = ∞.
Section 5.1 contains the proof of uniqueness for Wiener sausages (r > 0) in d ≥ 4,
whereas Sect. 5.2 contains the proof of uniqueness in d ∈ {2, 3}.

5.1 Uniqueness in d ≥ 4

5.1.1 Excluding 2 ≤ N∞ < ∞

In what follows we write for each A ⊆ R
d ,

Ot,r (A) =
⋃

x ∈ E∩A

⋃
0≤ s ≤ t

B (Bx
s , r
)
, (5.1)

which is the union of Wiener sausages started at points of E restricted to A.
We proceed by contradiction. Let us assume that N∞ is almost surely equal to a

constant k ∈ N\{1}.
For R2 > R1 > 0, let us define ER1,R2 as follows:

ER1,R2 = {all unbounded clusters of Ot,r (B(0, R1)
c) intersect B(0, R2)

}
. (5.2)

First, we note that there exist R1 and R2 such that

P(ER1,R2) > 0. (5.3)

Indeed, fix R1 > 0 and note that by monotonicity in R2,

P(ER1,R2) ≥ P
(
ER1,R2 ∩ {E ∩ B(0, R1) = ∅}) R2→∞−→ P (E ∩ B(0, R1) = ∅) > 0.

(5.4)
Therefore, we can find R2 > 0 such that P(ER1,R2) > 0. Next, we consider the event,

LR1,R2 =
{ |B(0, R1) ∩ E | = 1 and for x ∈ B(0, R1) ∩ E ,

A(R2 − 3r/2, R2 − r/2) ⊂⋃0≤s≤t B(Bx
s , r) ⊂ B(0, R2)

}
, (5.5)

which is independent of ER1,R2 and has positive probability, see Remark 5.1 below.
The independence is due to the fact that ER1,R2 and LR1,R2 depend on different points
of E and on different Brownian paths. Note that on ER1,R2 ∩ LR1,R2 all unbounded
clusters ofOt,r (B(0, R1)

c) are connected insideB(0, R2). This is enough to conclude
the proof.

Remark 5.1 A sketch of the proof that LR1,R2 has positive probability goes as follows.
Let ε ∈ (0, r/8). By boundedness, A(R − 3r/2, R2 − 3r/2+ ε) can be covered by a
finite number of balls of radius ε. Moreover, a Brownian motion starting in B(0, R1)

has a positive probability of visiting all these balls before time t and before leaving
B(0, R2 − r). Consequently, on the aforementioned event, LR1,R2 is satisfied.
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5.1.2 Excluding N∞ = ∞

We assume that N∞ = ∞. We show that this assumption leads to a contradiction.
The proof is based on ideas in Meester and Roy [12, Theorem 2.1], where a technique
developed in Burton and Keane [1] is extended to a continuous percolation model. In
the proof we use the following counting lemma, which is due to Gandolfi et al. [5].

Lemma 5.2 (Lemma 4.2 in [5]) Let S be a set, R be a non-empty finite subset of S
and K > 0. Suppose that

(a) for all z ∈ R, there is a family (C1
z ,C

2
z , . . . ,C

nz
z ), nz ≥ 3, of disjoint non-empty

subsets of S , which do not contain z and are such that |Ci
z | ≥ K, for all z and for

all i ∈ {1, 2, . . . , nz},
(b) for all z, z′ ∈ R one of the following cases occurs (where we abbreviate Cz =

∪nz
i=1C

i
z for all z ∈ R):

(i) ({z} ∪ Cz) ∩ ({z′} ∪ Cz′) = ∅;
(ii) there are i, j ∈ {1, 2, . . . , nz} such that {z′}∪Cz′ \C j

z′ ⊆ Ci
z and {z}∪Cz\Ci

z ⊆
C j
z′;

(iii) there is i ∈ {1, 2, . . . , nz} such that {z′} ∪ Cz′ ⊆ Ci
z;

(iv) there is j ∈ {1, 2, . . . , nz′ } such that {z} ∪ Cz ⊆ C j
z′ .

Then, |S | ≥ K (|R| + 2).

Step 1 Preparation for Lemma 5.2. In the same manner as in Sect. 5.1.1, one can show
that there are δ > 0 and R ∈ N such that the event

ER(2Rz) :=
⎧⎨
⎩
there exists an unbounded cluster C such that C ∩ B∞(2Rz, R)c

contains at least three unbounded clusters, |C ∩ B∞(2Rz, R) ∩ E | ≥
1 and any cluster which intersects B∞(2Rz, R) belongs to C

⎫⎬
⎭

(5.6)
has probability at least δ, for all z ∈ Z

d . We call each unbounded cluster in
C ∩ B∞(2Rz, R)c a branch. To proceed, we fix K > 0 and choose M > 0 such
that the event

ER,M (2Rz) = ER(2Rz)∩
⎧⎨
⎩
there are at least three different branches of B∞(2Rz, R)

which contain at least K points in E ∩ (B∞(2Rz,RM)\
B∞(2Rz, R))

⎫⎬
⎭,

(5.7)
has probability at least δ/2 for all z ∈ Z

d , see Fig. 2.
Let L > M + 2 and define the set1

R =
{
z ∈ Z

d :B∞(2Rz,RM) ⊆ B∞(0,LR), ER,M (2Rz) occurs
}

. (5.8)

Note that ∣∣∣{z ∈ Z
d :B∞(2Rz,RM) ⊆ B∞(0,LR)

}∣∣∣ ≥ (L − M − 2)d , (5.9)

1 The elements of R play the role of trifurcation points in the discrete percolation setting.
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Fig. 2 The plot represents a configuration in ER,M (0) with K = 3, see (5.6)–(5.7). The thick lines belong
to the branches. The symbol right tilted triangle indicates a connection to infinity

so that we obtain by stationarity

E(|R|) ≥ (L − M − 2)dδ

2
. (5.10)

Step 2 Application of Lemma 5.2 and contradiction We identify each z ∈ R with a
Poissonpoint inB∞(2Rz, R)∩C . Inwhat followswewriteΛz insteadofB∞(2Rz, R).
Let nz be the total number of branches of Λz which contain at least K Poisson points
in B∞(2Rz, R). For i ∈ {1, . . . , nz}, let Bi

z be the branch which is the i th closest to
2Rz among all branches of B∞(2Rz, R), see Eq. (5.7).

A point x is said to be connected to a set A through the set Λ if there exists a
continuous function γ : [0, 1] �→ Λ ∩ Ot,r such that γ (0) = x and γ (1) ∈ A. We

denote it by x
Λ←→ A. Finally, we define

Ci
z = E∩B(0,LR)∩Bi

z =
{
x ∈ E ∩ B∞(0,LR) : x

Λc
z←→ Bi

z

}
, i ∈ {1, . . . , nz} .

(5.11)
Now we proceed to check that the conditions of Lemma 5.2 are fulfilled. Here S =
B∞(0,LR)∩E . First note that by the definition of a branch, we have that for all z ∈ R:

• |Ci
z | ≥ K ,

• Ci
z ∩ C j

z = ∅ for all i, j ∈ {1, . . . , nz} with i �= j and
• z /∈ Cz .

Hence, Assumption (a) of Lemma 5.2 is met.

We now claim that the collection {Ci
z}z∈R,i∈{1,...,nz} satisfies also Assumption (b)

of Lemma 5.2. At this point we would like to emphasize two facts to be used later:

a. Due to (5.6), z
Λz←→ Ci

z for all i ∈ {1, . . . , nz}.
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b. If C̃ is an unbounded cluster such that C̃ ∩ Λz �= ∅, then z
Λz←→ C̃ .

Suppose that ({z} ∪ Cz) ∩ ({z′} ∪ Cz′) �= ∅. We consider three different cases:

(1) If z′ ∈ Cz , then there exists a unique i ∈ {1, . . . , nz} such that z′ ∈ Ci
z .We consider

two subcases:
• If z ∈ Cz′ , then there exists a unique i ′ ∈ {1, . . . , nz′ } such that z ∈ Ci ′

z′
and we claim that {z′} ∪ Cz′ \Ci ′

z′ ⊆ Ci
z and {z} ∪ Cz\Ci

z ⊆ Ci ′
z′ . Indeed, pick

x ′ ∈ Cz′ \Ci ′
z′ . Then there exists a unique j ′ �= i ′ such that x ′ Λc

z′←→ C j ′
z′ . Note

that x ′ Λc
z′∩Λc

z←→ C j ′
z′ , since otherwise, due to b., z

Λc
z′←→ C j ′

z′ (by first connecting

z to x ′ in Λc
z′ and then x ′ to C j ′

z′ in Λc
z′ ), which contradicts the uniqueness of

i ′.
Finally,we have that x ′ Λc

z←→ C j ′
z′ , z

′ Λz′⊂Λc
z←→ C j ′

z′ , z
′ Λc

z←→ Ci
z . A concatenation

of all these paths gives x ′ Λc
z←→ Ci

z , that is x ′ ∈ Ci
z . This proves the first

inclusion that we claimed. The second inclusion follows by symmetry.
• If z /∈ Cz′ , then we claim that {z′} ∪ Cz′ ⊆ Ci

z .

Indeed, take x ′ ∈ Cz′ , then there exists a unique j ′ such that x ′ Λc
z′←→ C j ′

z′ . As

before we have that x ′ Λc
z′∩Λc

z←→ C j ′
z′ (this time the contradiction follows from

z /∈ Cz′). The conclusion follows in the same way as in the previous case.
(2) If z ∈ Cz′ , then one may conclude as in (1).
(3) Suppose that there exist i, i ′ such that Ci

z ∩ Ci ′
z′ �= ∅. Take x ′ ∈ Ci

z ∩ Ci ′
z′ . Then,

x ′ Λc
z←→ Ci

z and x ′ Λc
z′←→ Ci ′

z′ . We distinguish between two cases:

• The path x ′ Λc
z←→ Ci

z intersects Λz′ : due to b. we have that z′
Λc

z←→ Ci
z . Hence

z′ ∈ Cz , which reduces to Case (1).

• Otherwise, x ′ Λc
z∩Λc

z′←→ Ci
z : due to a., we have z

Λz⊂Λc
z′←→ Ci

z . Finally, a concate-

nation of the previous two paths with x ′ Λc
z′←→ Ci ′

z′ yields that z ∈ Cz′ , which
reduces to Case (2).

Hence, by Lemma 5.2

E
(|B∞(0,LR) ∩ E |) ≥ K (E(|R|) + 2) , (5.12)

so that, by (5.10),

E
(|B∞(0,LR) ∩ E |) ≥ K

(
(L − M − 2)dδ/2 + 2

)
. (5.13)

On the other hand, since E is a Poisson point process with intensity measure λ×Lebd ,

E
(|B∞(0,LR) ∩ E |) = λ(2LR)d . (5.14)
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Thus, combining (5.13) and (5.14) yields

∀L > M + 2, K
(
(L − M − 2)dδ/2 + 2

)
≤ λ(2LR)d . (5.15)

Note that M depends on K , so in order to get a contradiction one can choose L = 2M
and let K go to infinity in (5.15).

5.2 Uniqueness in d ∈ {2, 3}

5.2.1 Excluding {2 ≤ N∞ < ∞}

There is no straightforwardway to adapt the proof of Sect. 5.1 to the three-dimensional
setting because of clear geometrical reasons: if an annulus is crossed by all the
unbounded clusters, then a three-dimensional Brownian motion travelling around it
does not necessarily connect them. Let us briefly describe how we proceed in this
case. Assume 2 ≤ N∞ < ∞. For R large enough and ε small enough we show that,
with positive probability, all the unbounded clusters intersect B(0, R) and contain a
Brownian path crossing A(R − ε, R). Afterwards, we show that, still with positive
probability, we can reroute the (say first) excursions inside A(R − ε, R) of each of
these Brownian paths such that they intersect each other and, as a consequence, merge
all the unbounded clusters into a single one. This leads to the desired contradiction,
since our construction provides a set of configurations of positive probability on which
N∞ = 1.

Remark 5.3 It is possible to adapt the proof of Sect. 5.1 to the two-dimensional setting.
However, the forthcoming proof applies to the case of dimension two and three. So, we
decided not to comment further on this adaptation and only present a unified argument
for both cases.

We now assume t > tc and give the proof in full detail. To make it more accessible,
we assume w.l.o.g. that N∞ = 2, see Remark 5.7. Let R > 0 and denote by N R∞ the
number of unbounded clusters in Ot\B(0, R), which we denote by {Ci (R), 1 ≤ i ≤
N R∞} (though it has little relevance, let us agree that clusters are indexed according to
the order in which one finds them by radially exploring the occupied set from 0). We
also consider extended clusters, defined by

Cext
i (R) =

⋃
x ∈ E : Bx[0,t]∩Ci (R) �= ∅

Bx[0,t], (5.16)

i.e. Cext
i (R) is the union of all Brownian paths up to time t which have a non-empty

intersection with Ci (R).
We define a notion of good extended cluster in five steps.
Definition of a good extended cluster in five steps Let Cext = Cext(R) be an extended
cluster. We define the following events:
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Step 1. Intersection with a large ball. Set

ER := {
Cext ∩ B(0, R) �= ∅} . (5.17)

Step 2. Choice of a path in the extended cluster. Consider

Cross = {y ∈ E ∩ Cext: ∃ s ∈ [0, t], (‖y‖ − R)
(∥∥By

s
∥∥− R

)
< 0
}
, (5.18)

that is the set of points in E∩Cext whose associated Brownianmotions cross ∂B(0, R).
Note that Cross �= ∅ on ER . Let x be such that

‖x‖ = inf
y∈Cross ‖y‖. (5.19)

This way of picking x is arbitrary. Any other way would serve our purpose as well.
Step 3. First excursion through an annulus. For a fixed ε > 0, consider the annulus
AR,ε := A(R − ε, R). Define

I (x) := 1
{
inf
{
s ≥ 0: ∥∥Bx

s

∥∥ = R
}

< inf
{
s ≥ 0: ∥∥Bx

s

∥∥ = R − ε
}}

. (5.20)

We introduce the following entrance and exit times:

σ out = inf
{
s ≥ 0: ∥∥Bx

s

∥∥ = R − I (x)ε
}
,

σ in = sup
{
s ≤ σ out: ∥∥Bx

s

∥∥ = R + (I (x) − 1)ε
}
, (5.21)

i.e. Bx
[σ in,σ out] is the first excursion of Bx through AR,ε, see Fig. 3. The reason for

this definition is that we do not want to exclude the possibility that x is located inside
B(0, R). By choosing ε small enough we guarantee that the Brownian motion started
at x crosses AR,ε, that is, σ in ≤ σ out ≤ t . Further, we consider the event on which
Bx

[0,σ in)
or Bx

(σ out,t] is already connected to Cext, i.e. we introduce

Econn
ε :=

{(
Bx

[0,σ in)
∪ Bx

(σ out,t]
)

∩ Cext �= ∅
}

. (5.22)

Summing up, we set

ER,ε = ER ∩
{
σ in ≤ σ out ≤ t

}
∩ Econn

ε . (5.23)

Step 4. Restriction on the time spent to cross the annulus. For T ∈ (0, t) set

ER,ε,T = ER,ε ∩
{
σ out − σ in ≥ T

}
. (5.24)

Step 5. Staying away from the boundary of the annulus during the excursion.
Since σ in is not a stopping time, the law of Bx

[σ in,σ out] is not that of a Brownian
motion. This is why we will work instead with Bx

[σ in+δ,σ out−δ] for a fixed δ ∈ (0, T/8)
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Fig. 3 In this picture the points marked with star are xi , i = 1, 2. The symbols filled square and filled
triangle refer to the times σ in and σ out , respectively. The symbol open circle represents the times σ in + δ

and σ out − δ, respectively. Finally, the times symbol indicates that Condition (5.22) is fulfilled using the
paths started at the points marked by filled circles

(the restriction to time σ out − δ is only for aesthetic reasons). This subpath, when
conditioned on both endpoints, is a Brownian bridge conditioned to stay in AR,ε and
whose density with respect to a Brownian motion is explicit and tractable. For a fixed
ε ∈ (0, ε/2) set

ER,ε,T,ε := ER,ε,T ∩
{
Bx

σ in+δ
, Bx

σ out−δ
∈ AR,ε,ε

}
, (5.25)

where AR,ε,ε := A(R − ε + ε, R − ε) ⊂ AR,ε.
Having disposed of the notion of good extended cluster, let

ẼR,ε,T,ε,n =
{
N R∞ = n, Cext

i ∈ ER,ε,T,ε, 1 ≤ i ≤ n
}
.

By monotonicity arguments and the initial assumption that N∞ = 2, there exist
positive constants R, T, c, ε̄ < ε/2 and n0 ≥ 2 such that

P(ẼR,ε,T,ε,n0) > c > 0. (5.26)

For simplicity we consider n0 = 2, see Remark 5.7. For i ∈ {1, 2}, we denote by
xi , σ in

i and σ out
i the objects defined in (5.19) and (5.21) when Cext = Cext

i .
The rest of the proof consists in mergingCext

1 andCext
2 into a single unbounded cluster

by resampling Bx1
[σ in

1 ,σ out
1 ] and Bx2

[σ in
2 ,σ out

2 ] with excursions that do intersect each other.

Thus, we require that a rerouting of the excursions does not disconnect them from
their respective cluster, hence Step 3. This task is easier when both excursions have
time length deterministically bounded from below, hence Step 4. Conditioned on both
endpoints, Bx

[σ in,σ out] is a Brownian excursion, the law of which is not absolutely
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continuous with respect to that of Brownian motion. As a consequence, we cannot
directly use our knowledge on the intersection probabilities of two Brownian motions,
hence Step 5.
Connecting C1 and C2 inside the annulus The strategy announced above translates
into the following lower bound for P(N∞ = 1):

P
(
ẼR,ε,T,ε,2

)× P
({

Bx1[
σ in
1 +δ,σ out

1 −δ
]⋂ Bx2[

σ in
2 +δ,σ out

2 −δ
] �= ∅

}
,

⋂
i=1,2

{
Bxi

σ in
i +2δ

, Bxi
σ out
i −2δ

∈ AR,ε,ε

} ∣∣∣ ẼR,ε,T,ε,2

)
.

(5.27)

The reason for the 2δ in (5.27) is that the property mentioned in Step 5 only holds on
time intervals which exclude neighbourhoods of the endpoints.
Additional Notation At this point we would like to introduce some notations for ease
of readability.
First, let us introduce some events of interest. Let s > r ≥ 0. For a set D ⊂ R

d , we
denote by

S[r,s](D) :=
{
Π ∈ C ([0,∞),Rd): Π[r,s] ⊆ D

}
, (5.28)

the set of all continuous paths which are contained in D during the time interval [r, s],
and by

Lr,s(D) :=
{
Π ∈ C ([0,∞),Rd) : Πr ,Πs ∈ D

}
, (5.29)

the set of all continuous paths which lie in the set D at times r, s.
In the same fashion we also define for s1 > r1 ≥ 0 and s2 > r2 ≥ 0

I[s1,r1],[s2,r2] :=
{
Π(1),Π(2) ∈ C ([0,∞),Rd) : Π

(1)
[s1,r1]

⋂
Π

(2)
[s2,r2] �= ∅

}
, (5.30)

the set of all pairs of continuous paths which, when restricted to the respective time
intervals [r1, s1] and [r2, s2], have a non-empty intersection.
Secondly, we slightly modify our previous notation: Pa

t now denotes the law of a
Brownian motion starting at a and running from time 0 up to time t . If we consider
Brownian bridges instead ofBrownianmotions, we substitute the letter a by a = (a; a)

containing the starting and ending positions of theBrownian bridge.When considering
two independent copies of a Brownian motion (resp. Brownian bridge), we add a
superscript/subscript, i.e. Pa1,a2

t1,t2 (resp. Pa1,a2
t1,t2 ). Finally, we will refer to a Brownian

bridge as W .
Observation For i ∈ {1, 2}, conditionally on Ti := σ out

i − σ in
i and the endpoints

(Bxi
σ in
i +δ

, Bxi
σ out
i −δ

) = (ai , bi ), B
xi
[σ in

i +δ,σ out
i −δ] is a Brownian bridge running from ai to

bi in a time interval of length τi := Ti − 2δ ≥ 3T
4 , conditioned to stay inAR,ε (recall

the definitions of σ in
i and σ out

i , i ∈ {1, 2}).
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The observation above together with (5.27) yields

P(N∞ = 1) ≥ P
(
ẼR,ε,T,ε,2

)
inf

τ1,τ2≥3T/4
a1,a2∈A2

R,ε,ε

P
a1,a2
τ1,τ2

(
Li

δ,τi−δ(AR,ε,ε),S i[0,τi ](AR,ε), 1 ≤ i ≤ 2, I[0,τ1],[0,τ2]
)

(5.31)

and the superscript i ∈ {1, 2} refers to the i th copy of the corresponding processes.
Since P(ẼR,ε,T,ε,2) > 0, by Steps 1–5, it is enough to prove that

inf
τ1,τ2≥3T/4

a1,a2∈A2
R,ε,ε

P
a1,a2
τ1,τ2

(
Li

δ,τi−δ(AR,ε,ε), S i[0,τi ]
(AR,ε

)
, 1 ≤ i ≤ 2, I[0,τ1],[0,τ2]

)
> 0.

(5.32)
Proof of Equation (5.32) We fix a1, a2 ∈ AR,ε,ε and τ1, τ2 ≥ 3T/4. The left-hand
side of (5.32) may be bounded from below by

P
a1,a2
τ1,τ2

(
Li

δ,τi−δ(AR,ε,ε) , S i[0,τi ](AR,ε), 1 ≤ i ≤ 2, I[0,τ1−δ],[0,τ2−δ]
)
, (5.33)

which equals, by the Markov property applied at times τi − δ, i ∈ {1, 2},

E
a1,a2
τ1,τ2

( ∏
i=1,2

1
{Li

δ,τi−δ(AR,ε,ε), S i[0,τi−δ](AR,ε)
}
1
{I[0,τ1−δ],[0,τ2−δ]

}
Φδ(W

(i)
τi−δ; ai )

)

(5.34)
where

Φδ(a) := P
a
δ (S[0,δ](AR,ε)), a = (a, a) ∈ (Rd)2, (5.35)

is the probability that a Brownian bridge going from a to a within the time interval
[0, δ] stays in AR,ε. To bound (5.34) from below we use the following three lemmas,
whose proofs may be found in the appendix of [3].

Lemma 5.4 (Positive probability for a Brownian bridge to stay inside the annulus)
There exists c > 0 such that for all a ∈ A2

R,ε,ε, Φδ(a) ≥ c.

Lemma 5.5 (Substitution of the Brownian bridge by a Brownian motion) Let τ > 0
and δ ∈ (0, τ ). There exists c > 0 such that for all a = (a, a) ∈ A2

R,ε,ε,

dPa
τ (W[0,τ−δ] ∈ · , Lδ,τ−δ(AR,ε,ε))

dPa
τ (B[0,τ−δ] ∈ · , Lδ,τ−δ(AR,ε,ε))

≥ c. (5.36)

Lemma 5.6 (Two Brownian motions restricted to be inside the annulus do intersect)
Let τ1, τ2 > 0 and 0 < δ < τ1∧τ2

2 . There exists c > 0 such that for all a1, a2 ∈ AR,ε,ε

P
a1,a2
τ1,τ2

(
Li

δ,τi−δ(AR,ε,ε) , S i[0,τi−δ](AR,ε), 1 ≤ i ≤ 2, I[0,τ1−δ],[0,τ2−δ]
)

≥ c.

(5.37)
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We now explain how to get (5.32) by applying Lemmas 5.4–5.6 to (5.34). Since the
Wτi−δ’s, i ∈ {1, 2}, appearing in (5.34) are inAR,ε,ε, Lemma 5.4 yields that, for some
c > 0, (5.34) is greater than or equal to

c2 Pa1,a2
τ1,τ2

(
Li

δ,τi−δ(AR,ε,ε) , S i[0,τi−δ](AR,ε), 1 ≤ i ≤ 2, I[0,τ1−δ],[0,τ2−δ]
)
.

(5.38)
Next, a change of measure argument together with the bound on the Radon–Nikodym
derivative provided in Lemma 5.5 yields, for a possibly different constant c > 0, that
(5.38) is at least

c P
a1,a2
τ1,τ2

(
Li

δ,τi−δ(AR,ε,ε) , S i[0,τi−δ](AR,ε), 1 ≤ i ≤ 2, I[0,τ1−δ],[0,τ2−δ]
)
, (5.39)

which is positive by Lemma 5.6. To deduce (5.32) from it, it is enough to note that all
the previous estimates are uniform in a1, a2 ∈ AR,ε,ε. This finally yields the claim.

Remark 5.7 If n0 > 2 in (5.26), then one follows the same scheme and ends up
connecting more than two excursions in an annulus. Using the same proof as for two
excursions, one can connect Bx1

[σ in
1 ,σ out

1 ] to Bxi
[σ in

i ,σ out
i ] during the time interval [σ in

1 +
(i − 1)δ/n0, σ in

1 + iδ/n0], where δ ∈ (0, T ), for all 1 ≤ i ≤ n0. The same argument
applies when we assume N∞ = k > 2 a.s.

5.2.2 Excluding N∞ = ∞

Let us assume that the number N∞ of unbounded clusters in Ot is almost surely
equal to infinity. In the same fashion as in Sect. 5.1.2 we show that this leads to a
contradiction. For z ∈ Z

d , we define the event

ER(2Rz) :=
⎧⎨
⎩
there exists an unbounded cluster C such that C ∩ B∞(2Rz, R)c

contains at least three unbounded clusters and any unbounded
cluster which intersects B∞(2Rz, R) equals C

⎫⎬
⎭ .

(5.40)
Note that for all k ≥ 3,

ER(2Rz) ⊇
{
there exists k unbounded clusters in C ∩ B∞(2Rz, R)c

and all of them are connected inside B∞(2Rz, R)

}
. (5.41)

Hence, Remark 5.7 and a short decomposition argument yield that the last event in
(5.41) has positive probability for R large enough. Consequently, so does ER(2Rz).
From now on, the proof works similarly as that of Sect. 5.1.2. Thus, to avoid repetitions
we just point out the differences with the proof in Sect. 5.1.2.
The identification done in Step 2. of Sect. 5.1.2 has to be changed. For each z ∈ Z

d , we
replace the Poisson point inside B∞(2Rz, R) that was used to connect the “external”
clusters by what we call an intersection point. This point is just an arbitrarily chosen
point z̃ ∈ B∞(2Rz, R) contained in all the clusters. The collection of such points z̃
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constitute the set R in the present case. Finally, at the moment of applying Lemma
5.2, we define

Ci
z =

{
x ∈ {E ∩ B∞(0,LR)} ∪ {intersection points} : x

Λc
z←→ Bi

z

}
, i = 1, . . . , nz

and

S = B∞(0, LR) ∩ (E ∪ {intersection points}) .

The contradiction is now obtained in a similar fashion as in (5.15), subject to minor
modifications. We omit the details.
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6 Appendix: Proof of Lemma 2.3

The proof consists of two steps. In the first step a coarse-graining procedure is intro-
duced,which reduces the problemof showing subcriticality of a continuous percolation
model to showing subcriticality of an infinite range site percolation model onZd . This
coarse-graining was essentially already introduced in [13, Lemma 3.3], where � was
supposed to have a compact support. To overcome the additional difficulties arising
from the long-range dependencies in the coarse-grained model, we use a renormaliza-
tion scheme, which is similar to the one in Sznitman [17, Theorem 3.5].
Step 1. Coarse-graining
We fix N ∈ N. For n ∈ N, a sequence of vertices z0, z1, . . . , zn−1 in Z

d is called
a ∗-path when ‖zi − zi−1‖∞ = 1 for all i ∈ {1, 2, . . . , n − 1}. Furthermore, a site
z = (z( j), 1 ≤ j ≤ d) ∈ Z

d is called open when there is an occupied cluster Λ of Σ

such that

(i) Λ ∩
d∏
j=1

[z( j)N , (z( j) + 1)N ) �= ∅ and

(ii) Λ ∩
( d∏

j=1

[(z( j) − 1)N , (z( j) + 2)N )

)c

�= ∅. (6.1)

Otherwise, z is called closed. It was shown in [13, Lemma 3.3] that to obtain Lemma
2.3 it suffices to show that

Pλ,�

(
0 is contained in an infinite ∗-path of open sites

)
= 0. (6.2)
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To prove (6.2) we introduce a renormalization scheme.
Step 2. Renormalization

• New notation and a first bound We start by introducing new notations. We fix
integers R > 1 and L0 > 1, both to be determined, and we introduce an increasing
sequence of scales via

Ln+1 = Rn+1Ln, n ∈ N0. (6.3)

Moreover, for i ∈ Z
d , we introduce a sequence of increasing boxes via

�n(i) =
d∏
j=1

[i( j)Ln, (i( j) + 1)Ln) ∩ Z
d and

�n (i) =
d∏
j=1

[(i( j) − 1)Ln, (i( j) + 2)Ln) ∩ Z
d .

(6.4)

We further abbreviate �n = �n(0) and �n = �n(0). Thus, �n(i) is the union of
boxes �n( j) such that ‖ j − i‖∞ ≤ 1. Moreover, for n ∈ N, we introduce the events

An(i) =
{
there is a ∗-path of open sites from �n(i) to ∂int �n (i)

}
(6.5)

and we write An instead of An(0). Here, ∂intΔ refers to the inner boundary of a set
Δ ⊆ Z

d with respect to the ‖ · ‖∞-norm. The idea of the renormalization scheme
is to bound the probability of An+1 in terms of the probability of the intersection of
events An(i) and An(k), where i ∈ Z

d and k ∈ Z
d are thought to be far apart. By

the assumption on the radius distribution �, the events An(i) and An(k) can then be
treated as being almost independent. This will result in a recursion inequality which
relates the probabilities of the events An , n ∈ N, at different scales. For that, we fix
n ∈ N and let

H1 =
{
i ∈ Z

d : �n(i) ⊆ �n+1,�n(i) ∩ ∂int�n+1 �= ∅
}

and

H2 =
{
k ∈ Z

d : �n(k) ∩
{
z ∈ Z

d : dist(z,�n+1) = Ln+1

2

}
�= ∅

}
.

(6.6)

Here, dist(z,�n+1) denotes the distance of z from the set �n+1 with respect to the
supremumnorm.Note that here and in the rest of the proof, for notational convenience,
we pretend that expressions like Ln+1/2 are integers. Observe that if An+1 occurs,
then there are i ∈ H1 and k ∈ H2 such that both An(i) and An(k) occur. Hence,

Pλ,�(An+1) ≤
∑

i∈H1,k∈H2

Pλ,�(An(i) ∩ An(k))

≤ c1R
2(d−1)(n+1) sup

i∈H1,k∈H2

Pλ,�(An(i) ∩ An(k)),
(6.7)

where c1 = c1(d) > 0 is a constant which depends only on the dimension.
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• Partition of An(i) ∩ An(k) We fix i ∈ H1 and k ∈ H2. Let z ∈ �n(i) and note
that to decide if z is open, it suffices to know the trace of the Boolean percolation
model on

d∏
j=1

[(z( j) − 1)N , (z( j) + 2)N ). (6.8)

In a similar fashion one sees that the area which determines An(i) is given by

d∏
j=1

[((i( j) − 1)Ln − 1)N , ((i( j) + 2)Ln + 2)N ]

⊆
d∏
j=1

[(i( j) − 2)LnN , (i( j) + 3)LnN )
def= DET(�n(i))

(6.9)

and likewise for An(k). Here, we used that by our choice of R and L0 the relation
Ln ≥ 2 holds for all n ∈ N. We introduce

D(x, r(x)) := {B(x, r(x)) ∩ DET(�n(i)) �= ∅, B(x, r(x)) ∩ DET(�n(k)) �= ∅}
(6.10)

and
Un(i, k) :=

⋃
x∈E

D(x, r(x)), (6.11)

so that

Pλ,�(An(i) ∩ An(k)) = Pλ,�(An(i) ∩ An(k)|Un(i, k)
c) Pλ,�(Un(i, k)

c)

+ Pλ,�(An(i) ∩ An(k)|Un(i, k)) Pλ,�(Un(i, k)).
(6.12)

• Analysis of the first term on the right-hand side of (6.12) We claim that under
Pλ,�(·|Un(i, k)c) the events An(i) and An(k) are independent. To see that, note
that the Poisson point process χ on R

d × [0,∞) with intensity measure ν =
(λ × Lebd) ⊗ � (see Sect. 2.1) is a Poisson point process under Pλ,�(·|Un(i, k)c)
with intensity measure

1{there is no (x, r(x)) ∈ χ such that D(x, r(x)) occurs} × ν. (6.13)

However, on Un(i, k)c, the events An(i) and An(k) depend on disjoint subsets of
R
d × [0,∞). Consequently, they are independent under Pλ,�(·|Un(i, k)c). Hence,

Pλ,�(An(i) ∩ An(k)|Un(i, k)
c) Pλ,�(Un(i, k)

c)

= Pλ,�(An(i)|Un(i, k)
c) Pλ,�(An(k)|Un(i, k)

c) Pλ,�(Un(i, k)
c)

≤ Pλ,�(An)
2 Pλ,�(Un(i, k)

c)−1.

(6.14)

For the last inequality in (6.14) we used the fact that Pλ,�(An(i)) does not depend on
i ∈ Z

d .
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• Analysis of the second term on the right-hand side of (6.12) To bound the second
term on the right-hand side of (6.12) it will be enough to bound Pλ,�(Un(i, k))
from above, since the other term is less than one. Note that

Pλ,�(Un(i, k))

≤
∑

�∈3Zd

Pλ,�

(∃x ∈ E ∩ N �n+1 (�) : B(x, r(x)) ∩ DET(�n(i)) �= ∅
and B(x, r(x)) ∩ DET(�n(k)) �= ∅

)
.

(6.15)

Here, the set N �n+1 (�) is the set {x ∈ R
d : x = zN , z ∈ �n+1(�)}. We first treat

the term � = 0 in the sum in (6.15). Note that for all n ∈ N,

dist(DET(�n(i)),DET(�n(k)) ≥
( Ln+1

2
− 8Ln

)
N ≥ Ln+1

3
N , (6.16)

provided R and L0 are chosen accordingly. Thus, if there is a Poisson point whose
corresponding ball intersects DET(�n(i)) and DET(�n(k)), then its radius is at least
Ln+1N/6. This yields

Pλ,�

(∃x ∈ E ∩ N�n+1 : B(x, r(x)) ∩ DET(�n(i)) �= ∅
and B(x, r(x)) ∩ DET(�n(k)) �= ∅

)

≤ Pλ,�

(
∃x ∈ E ∩ N�n+1 : r(x) ≥ Ln+1N/6

)
. (6.17)

We may bound the right-hand side of (6.17) by

1 − exp
{− λLebd(N�n+1)�([Ln+1N/6,∞))

}
, (6.18)

which is at most λLebd(N�n+1)�([Ln+1N/6,∞)). By our assumption on the radius
distribution, for R and L0 large enough, there is a constant c2 = c2(�) > 0 such
that the last term may be bounded from above by λ(3Ln+1N )de−c2Ln+1N/6. The case
� > 0 is treated in a similar manner. Thus, the left-hand side of (6.15) is at most

λ(3Ln+1N )de−c2Ln+1N/6 +
∞∑

m=1

∑
�∈3Zd

‖�‖∞=m

λ(3Ln+1N )d × e−c2(3(m−1)+1/2)Ln+1N .

(6.19)
This is bounded from above by

c3λ(3Ln+1N )de−c2Ln+1N/6 (6.20)

for some constant c3 > 0 which is independent of R, L0 and N . Hence, we have
bounded the second term on the right-hand side of (6.12). In particular, by the above
considerations, we deduce that for all n ∈ N and for a suitable choice of R and L0,
Pλ,�(Un(i, k)c) ≥ 1/2.
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• Analysis of the recursion scheme Equation (6.7) in combination with (6.12) and
the arguments following it shows that

Pλ,�(An+1) ≤ 2c1R
2(d−1)(n+1)

(
Pλ,�(An)

2 + c3λ(3Ln+1N )de−c2Ln+1N/6
)
.

(6.21)

To proceed, we put
an = 2c1R

2(d−1)n Pλ,�(An), n ∈ N. (6.22)

Claim 6.1 For R large enough, for all n ∈ N and for all L0 ≥ 2R4(d−1)+1, the
inequality an ≤ L−1

n implies that an+1 ≤ L−1
n+1.

Proof Let n ∈ N and assume that an ≤ L−1
n . Then,

an+1 = 2c1R
2(d−1)(n+1)Pλ,�(An+1)

≤ 4c21R
4(d−1)(n+1)

[
Pλ,�(An)

2 + c3λ(3Ln+1N )de−c2Ln+1N/6
]

= a2n R
4(d−1) + 4c21c3R

4(d−1)(n+1)λ(3Ln+1N )de−c2Ln+1N/6. (6.23)

Thus, it is enough to show that

a2n R
4(d−1) ≤ (2Ln+1)

−1 and 4c21c3R
4(d−1)(n+1)(3Ln+1N )de−c2Ln+1N/6

≤ (2Ln+1)
−1. (6.24)

For that, note that by our assumption on an ,

a2n R
4(d−1)2Ln+1 ≤ 2L−2

n R4(d−1)Ln+1 = 2R4(d−1) Rn+1

RnLn−1
≤ 2R4(d−1)+1L−1

0 .

(6.25)
Thus, choosing L0 ≥ 2R4(d−1)+1 yields the first desired inequality. The second term
on the right-hand side of (6.23) may be bounded from above using similar considera-
tions. This yields Claim 6.1. ��
Hence, to use the claim, we need that Pλ,�(A0) ≤ L−1

0 . Observe that

Pλ,�(A0) = Pλ,�

(
there is a ∗ -path of open sites from [0, L0)

d to ∂int[−L0, 2L0)
d
)

≤ Pλ,�

(
there is z ∈ ∂int[−L0, 2L0)

d , which is open
)

≤ c4L
d−1
0 Pλ,�(0 is open),

(6.26)
where c4 = c4(d) > 0 does only depend on the dimension. Equation (3.64) in [13]
shows that

Pλ,�(0 is open) ≤ 2dPλ,�

(
CROSS

(
N , 3N , . . . , 3N ;Rd

))
. (6.27)
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Therefore, if the right-hand side of (6.27) is smaller than (4dc1c4Ld
0)

−1, we get from
(6.26) that Pλ,�(A0) ≤ (2c1L0)

−1, thus a0 ≤ L−1
0 . Note that an infinite ∗-path of

open sites containing zero implies An for all n ∈ N. Thus, Claim 6.1 finally yields

Pλ,�

(
0 is contained in an infinite ∗-path of open sites

)
≤ lim

n→∞ Pλ,�(An) = 0.

(6.28)
Consequently, Lemma 2.3 holds for ε ≤ (4dc1c4L

d+1
0 )−1.
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