
December 26, 2013 International Journal of Computer Mathematics cpbal˙rev2˙subm

To appear in the International Journal of Computer Mathematics
Vol. 00, No. 00, February 2013, 1–24

RESEARCH ARTICLE

Clique-perfectness and balancedness of some graph classes

Flavia Bonomoa, Guillermo Duránb, Mart́ın D. Safec∗ and Annegret K. Waglerd

aCONICET and Departamento de Computación, FCEN, Universidad de Buenos Aires,

Argentina; bCONICET, Instituto de Cálculo, and Departamento de Matemática, FCEN,

Universidad de Buenos Aires, Argentina and Departamento de Ingenieŕıa Industrial, FCFM,

Universidad de Chile, Chile; cInstituto de Ciencias, Universidad Nacional de General

Sarmiento, Argentina; dCNRS and LIMOS, UFR Sciences et Techniques, Université Blaise

Pascal, France

(Received 00 Month 201X; final version received 00 Month 201X)

A graph is clique-perfect if the maximum size of a clique-independent set (a set of pairwise disjoint
maximal cliques) and the minimum size of a clique-transversal set (a set of vertices meeting every
maximal clique) coincide for each induced subgraph. A graph is balanced if its clique-matrix contains
no square submatrix of odd size with exactly two ones per row and column. In this work, we give linear-
time recognition algorithms and minimal forbidden induced subgraph characterizations of clique-
perfectness and balancedness of P4-tidy graphs and a linear-time algorithm for computing a maximum
clique-independent set and a minimum clique-transversal set for any P4-tidy graph. We also give a
minimal forbidden induced subgraph characterization and a linear-time recognition algorithm for
balancedness of paw-free graphs. Finally, we show that clique-perfectness of diamond-free graphs can
be decided in polynomial time by showing that a diamond-free graph is clique-perfect if and only if
it is balanced.

Keywords: balanced graphs; clique-perfect graphs; diamond-free graphs; P4-tidy graphs; paw-free
graphs; recognition algorithms

AMS Subject Classification: 05C17; 05C75; 05C85

1. Introduction

Perfect graphs were defined by Berge by requiring equality in the min-max type inequality
between two graph parameters: the clique number and the chromatic number. The clique
number ω(G) of a graph G is the largest size of a clique in G and the chromatic number
χ(G) is the minimum number of colors needed to color the vertices of G in such a way that
any two adjacent vertices receive different colors. Clearly, the min-max type inequality
ω(G) ≤ χ(G) holds for every graph G. A graph is perfect [3] if the clique number and
the chromatic number coincide for each induced subgraph. It is not difficult to see that
a perfect graph contains neither induced cycles C2k+1 for k ≥ 2, termed odd holes,
nor their complements, called odd antiholes. In 1961, Berge [3] formulated the Strong
Perfect Graph Conjecture (SPGC) asserting that a graph is perfect if and only if it has
neither odd holes nor odd antiholes. The proof of the validity of the SPGC took around
40 years along which the SPGC was proved to be true for graphs belonging to many

∗Corresponding author. Email addresses: fbonomo@dc.uba.ar (F. Bonomo), gduran@dm.uba.ar (G. Durán),
msafe@ungs.edu.ar (M.D. Safe), and wagler@isima.fr (A.K. Wagler)

1

December 26, 2013 International Journal of Computer Mathematics cpbal˙rev2˙subm

different graph classes. Early examples include [56], [59], and [62], where the SPGC was
verified for claw-free graphs, cographs, and planar graphs. The SPGC was proved to be
true for P4-tidy graphs, paw-free graphs, and diamond-free graphs in [44], [54], and [63],
respectively. The SPGC was shown to hold in its full generality in [22] and is now known
as the Strong Perfect Graph Theorem. The complexity of the perfect graph recognition
problem remained open until almost the same time as the SPGC. It was finally in [21]
that a polynomial-time recognition algorithm for perfect graphs was given.
Perfect graphs were also characterized in polyhedral terms. A clique-matrix of a graph

is a maximal clique vs. vertex incidence matrix; i.e., a clique matrix A = (aij) of a graph
G is a 0, 1-matrix having one row for each maximal clique of G and one column for each
vertex of G and such that aij = 1 if and only if the vertex corresponding to the jth
column belongs to the maximal clique corresponding to the ith row. The clique-matrix
of a graph is unique up to permutation of rows and columns. It was shown in [23] that
a graph is perfect precisely when its clique-matrix is perfect, where a 0, 1-matrix A is
perfect if the fractional set packing polytope P (A) = {x ∈ R

n
+ : Ax ≤ 1} has only

integral extreme points.

Theorem 1.1 ([23]). A graph is perfect if and only if it has a perfect clique-matrix.

The class of clique-perfect graphs was also defined by requiring equality in a min-max
type inequality between two graph parameters: the clique-independence number and the
clique-transversal number. The clique-independence number αc(G) of a graph G is the
maximum size of a clique-independent set (a set of pairwise disjoint maximal cliques) and
the clique-transversal number τc(G) is the minimum size of a clique-transversal set (a set
of vertices meeting every maximal clique). Clearly, these two graph parameters satisfy
the min-max type inequality αc(G) ≤ τc(G) for every graph G. A graph G is clique-
perfect if αc(H) = τc(H) for each induced subgraph H of G. The name ‘clique-perfect’
was coined by Guruswami and Pandu Rangan [46] but the equality between these two
parameters was implicitly studied since long before; e.g., in [6] (see Theorem 1.3 ahead).
The class of clique-perfect graphs is neither a subclass nor a superclass of the class of
perfect graphs [11]. Nevertheless, some graph classes are known to be clique-perfect. For
instance, bipartite graphs are clique-perfect by virtue of the celebrated König–Egerváry
Theorem given below. Recall that a graph is bipartite if its vertex set can be partitioned
into two (possibly empty) stable sets, amatching is a set of pairwise vertex-disjoint edges,
and a vertex cover of a graph is a set of vertices meeting every edge of the graph.

Theorem 1.2 (König–Egerváry Theorem [36, 50]). For each bipartite graph, the maxi-
mum size of a matching equals the minimum size of a vertex cover.

Notice that for each bipartite graph G, αc(G) coincides with the maximum size of a
matching plus the number of isolated vertices, while τc(G) coincides with the minimum
size of a vertex cover plus the number of isolated vertices. (A vertex is isolated if there
is no edge incident to it.) Hence, since the class of bipartite graphs is hereditary (i.e.,
closed under taking induced subgraphs), the König–Egerváry Theorem is equivalent to
the fact that bipartite graphs are clique-perfect. Further examples of subclasses of the
class of clique-perfect graphs are the classes of comparability graphs [1], complements of
forests [7], and distance-hereditary graphs [51]. Unlike perfect graphs, the problems of
characterizing clique-perfect graphs by forbidden induced subgraphs and determining the
computational complexity of recognizing clique-perfect graphs are still unsolved. Some
partial results in this direction were obtained in [8, 9, 13, 15, 52], where necessary and
sufficient conditions for a graph G to be clique-perfect in terms of forbidden induced
subgraphs as well as polynomial-time algorithms for deciding whether a given graph G is
clique-perfect were found when restricting G to belong to one of several different graph
classes. Interestingly, the problems of determining αc(G) and τc(G) are both NP-hard

2

December 26, 2013 International Journal of Computer Mathematics cpbal˙rev2˙subm

even if G is a split graph [19] and determining τc(G) is NP-hard even if G is a triangle-
free graph [37]. More NP-hardness results of this type for αc and τc were proved in [46].
Some polynomial-time algorithms for determining αc(G) and τc(G) when G belongs to
one of several different graph classes were devised in [1, 17, 19, 31–34, 46, 51].
As noticed in the preceding paragraph, the König–Egerváry Theorem can be restated

by saying that bipartite graphs are clique-perfect. Berge and Las Vergnas [6] generalized
this result by defining a superclass of bipartite graphs, known as the class of balanced
graphs, and proving that it consists of clique-perfect graphs only. In order to define
balanced graphs, we need to define the notion of balanced matrices. A 0, 1-matrix is
balanced [4] if it contains no square submatrix of odd size with exactly two ones per row
and per column or, equivalently, if it contains no edge vs. vertex incidence matrix of
a chordless odd cycle as a submatrix. Balanced matrices are well known in polyhedral
combinatorics because they lead to nice formulations for both set packing and set covering
problems [4, 41]. Precisely, a 0, 1-matrix is balanced if and only if each of its submatrices
is perfect or, equivalently, if each of its submatrices is ideal, where a 0, 1-matrix is ideal
if the fractional set covering polyhedron Q(A) = {x ∈ R

n
+ : Ax ≥ 1} has only integral

extreme points.
A graph is balanced if it has a balanced clique-matrix. Since balanced matrices are

perfect, it follows from Theorem 1.1 that the class of balanced graphs is a subclass of the
class of perfect graphs. Moreover, balanced graphs are also clique-perfect, as follows from
the aforesaid generalization of König–Egerváry Theorem due to Berge and Las Vergnas,
which we now state explicitly.

Theorem 1.3 ([6]). For each balanced graph G, αc(G) = τc(G).

Since the class of balanced graphs is hereditary, the above result implies that balanced
graphs are clique-perfect. Moreover, a maximum clique-independent set and a minimum
clique-transversal set of any given balanced graph can be found in polynomial time by
linear programming [31, 32]. See Figure 1 for a diagram of the inclusions among balanced
and clique-perfect graphs with some other graph classes, including perfect and bipartite
graphs. (Cographs and trivially perfect graphs will be defined later in Section 2.)
The name ‘balanced graphs’ appeared first in [5], but these graphs were already con-

sidered by Berge in [4]; for instance, he stated the following.

Theorem 1.4 ([4]). A graph G is balanced if and only if every odd cycle in G contains at
least one edge with the property that every maximal clique containing this edge contains
a third vertex of the cycle.

Moreover, it follows from Proposition 7 in [4] that balanced graphs belong to the class
of hereditary clique-Helly graphs; i.e., the class of graphs whose induced subgraphs satisfy
that the intersection of any nonempty family of pairwise intersecting maximal cliques is
nonempty. Hereditary clique-Helly graphs were characterized by Prisner [57] as those
graphs containing none of the graphs in Figure 2, which we call the pyramids, as induced
subgraphs. In particular, since balanced graphs are hereditary clique-Helly, no pyramid
can be an induced subgraph of a balanced graph.
A characterization of balanced graphs in terms of forbidden induced subgraphs was

given in [10]. For each graph G and each subset W of its vertex set, let NG(W) =
⋂

w∈W NG(w) if W is nonempty; whereas, NG(∅) = V (G). Similarly, if e is an edge with
endpoints v and w,NG(e) = NG(u)∩NG(w). An extended odd sun [10] is a graphG having
an odd cycle C such that for each edge e ∈ E(C) (i.e., joining two consecutive vertices
of C) there is a clique We such that We ⊆ NG(e)− V (C), NG(We) ∩NG(e) ∩ V (C) = ∅,
|We| ≤ |NG(e) ∩ V (C)|, and V (G) = V (C) ∪

⋃

e∈E(C)We. The extended odd suns with
the smallest number of vertices are C5 and the pyramids. Moreover, every odd hole is
an extended odd sun (by letting We = ∅ for each e). Notice that C3 is not an extended

3

December 26, 2013 International Journal of Computer Mathematics cpbal˙rev2˙subm

Figure 1. Examples of graphs in the intersections among several graph classes discussed in this work

Figure 2. The pyramids

odd sun, since otherwise we would be forced to choose We = ∅ for each edge e, but
then N(We) ∩N(e) ∩ V (C) = {v} where v is the only vertex non-incident to e (because
N(We) = N(∅) = V (C) and N(e) = {v}). The characterization of balanced graphs by
forbidden induced subgraphs is the following.

Theorem 1.5 ([10]). A graph is balanced if and only if it contains no induced extended
odd sun.

Nevertheless, as already noticed in [10], extended odd suns do not constitute a minimal
set of forbidden induced subgraphs because some extended odd suns contain some other
extended odd suns as induced subgraphs (see Figure 3). In fact, it remains unsolved
the problem of characterizing balanced graphs by minimal forbidden induced subgraphs;
i.e., graphs that are not balanced but whose proper induced subgraphs are balanced.
(An induced subgraph H of a graph G is proper if H is different from G.) Some partial
results in this direction were given in [14] where balancedness of some classes of circular-
arc graphs was characterized in terms of minimal forbidden induced subgraphs. Moreover,
in [16], minimal forbidden induced subgraph characterizations and linear-time recognition
algorithms for balancedness of graphs belonging to one of three different graph classes
were presented. The currently best time complexity of a recognition algorithm for the
whole class of balanced graphs is O(m9 + n) (where n and m denote the number of

4

December 26, 2013 International Journal of Computer Mathematics cpbal˙rev2˙subm

Figure 3. On the left, an extended odd sun that is not minimal. Bold lines correspond to the edges of a proper
induced extended odd sun, depicted on the right.

vertices and edges of the input graph), which is achieved by computing a clique-matrix
using the algorithm in [61] and then relying on the algorithm given in [65] to decide
whether or not such clique-matrix is balanced; see [16] for the details of the derivation.
In this work, we study clique-perfectness and balancedness of P4-tidy graphs, balanced-

ness of paw-free graphs, and the connection between clique-perfectness and balancedness
of diamond-free graphs. (The definition of P4-tidy graphs, paw-free graphs, and diamond-
free graphs are deferred to Sections 2, 3, and 4, respectively.)
The structure of the paper is as follows. In the next subsection, we introduce basic

definitions and notations and give a short introduction to modular decomposition of
graphs. In Section 2, we give forbidden induced subgraph characterizations and linear-
time recognition algorithms for clique-perfectness and balancedness of P4-tidy graphs and
a linear-time algorithm for computing a maximum clique-independent set and a minimum
clique-transversal set for any given P4-tidy graph. All the algorithms in Section 2 work
by performing a simple O(n) time traversal of the modular decomposition tree. In Sec-
tion 3, we give a minimal forbidden induced subgraph characterization of those paw-free
graphs that are balanced, from which we derive that balancedness of paw-free graphs
can be decided in linear time. In Section 4, we study clique-perfectness of diamond-
free graphs. In fact, although there is a forbidden induced subgraph characterization for
clique-perfectness of diamond-free graphs [9], no polynomial-time recognition algorithm
is known. We prove the existence of a polynomial-time recognition algorithm for clique-
perfectness of diamond-free graphs by proving that a diamond-free graph is clique-perfect
if and only if it is balanced. The main results of Subsection 2.2 and Section 3 appeared
(without proof) in the extended abstract [12].

1.1 Definitions, notations, and modular decomposition

All graphs in this work are finite, undirected, and have no loops or multiple edges. For
all graph-theoretic notions and notations not defined here, we refer to West [64].
Let G be a graph. We denote by V (G) its vertex set, by E(G) its edge set, by G its

complement, by NG(v) the neighborhood of a vertex v in G, and by NG[v] the closed
neighborhood NG(v)∪{v}. A vertex of G is pendant if it is adjacent to exactly one other
vertex and universal if it is adjacent to all the other vertices. We denote by G[W] the
subgraph of G induced by W ⊆ V (G). If H is a graph, then G is H-free if G contains no
induced subgraph isomorphic to H. If H is a collection of graphs, then G is H-free if G is
H-free for each H ∈ H. A cycle is odd if it has an odd number of vertices. The chordless
path (resp. cycle) on k vertices is denoted by Pk (resp. Ck). The graph K2 (resp. 2K1) is
the graph with two vertices and one (resp. no) edge. The disjoint union and the join of two
graphs G1 and G2 are denoted by G1+G2 and G1∨G2, respectively. We denote the size of
a set S by |S|. A clique (resp. stable set) is a set of pairwise adjacent (resp. nonadjacent)
vertices. We use maximum to mean maximum-sized, whereas maximal means inclusion-
wise maximal. The use of minimum and minimal is analogous.
By substituting a vertex v of a graph G by another graph H, we mean substituting the

vertex v in G by the graph H and adding all possible edges between the vertices of H
and the neighbors of v in G.

5

December 26, 2013 International Journal of Computer Mathematics cpbal˙rev2˙subm

We say that a graph is co-connected if its complement is connected. The anticom-
ponents of a graph are its maximal co-connected induced subgraphs; equivalently, the
anticomponents of a graph G are the complements of the components of G. In particular,
if G1, . . . , Gk are the anticomponents of a graph G, then G = G1 ∨ · · · ∨Gk.
When discussing about algorithms and data structures, we denote by n the number of

vertices of the input graph G.

Modular decomposition of a graph

Let G be a graph. A set M of vertices of G is a module if every vertex outside M is
either adjacent to all vertices of M or to none of them. The empty set, the singletons
{v} for each v ∈ V (G), and V (G) are the trivial modules of G. A graph is prime if it
has more than two vertices and it has only trivial modules. A nonempty module M of
G is strong if, for every other module M ′ of G, either M ∩ M ′ = ∅, M , or M ′. The
modular decomposition tree T (G) of a graph G is a rooted tree having one node for each
strong module of G and such that a node h representing a strong module M has as its
children the nodes representing the maximal strong modules of G properly contained in
M . Therefore, the root of T (G) represents V (G) and the leaves of T (G) the singletons
{v} for each v ∈ V (G). We will identify the module {v} with the vertex v and say that
the leaves of T (G) are the vertices of G. For each node h of T (G), we denote by M(h)
the strong module of G represented by h. By construction, M(h) is the set of vertices of
G having h as their ancestor in T (G).
For each node h of T (G), we denote the induced subgraph G[M(h)] by G[h] and call it

the graph represented by h. Each internal node h of T (G) is a P-node, an S-node, or an

N-node, according to whether G[h] is disconnected, G[h] is disconnected, or both G[h]

and G[h] are connected, respectively. (P-nodes, S-nodes, and N-nodes are also sometimes
called parallel, series, and neighborhood nodes, respectively.) Hence, if h is an internal
node of T (G) and h1, . . . , hk are the children of h in T (G), then the following conditions
hold:

(1) If G[h] is disconnected, then h is a P-node and G[h1], . . . , G[hk] are the components
of G[h].

(2) If G[h] is disconnected, then h is an S-node and G[h1], . . . , G[hk] are the anticompo-
nents of G[h].

(3) If G[h] and G[h] are both connected, then h is an N-node and M(h1), . . . ,M(hk) is
the set of maximal strong modules of G[h] properly contained in M(h).

In the above three cases, it holds that {M(h1), . . . ,M(hk)} is a partition ofM(h) [18, 43].
Let h be an N-node of T (G) and let h1, . . . , hk be its children. Let π(h) denote the

graph having vertex set {h1, . . . , hk} and such that hi is adjacent to hj if and only if
there is some edge in G joining a vertex of M(hi) to a vertex of M(hj). By construction,
π(h) is a prime graph. Notice that since M(hi) and M(hj) are disjoint modules of G,
hi is adjacent to hj in π(h) if and only if every vertex of M(hi) is adjacent to every
vertex of M(hj) in G. Hence, G[h] coincides with the graph that arises from π(h) by
successively substituting hi by G[hi] for each i ∈ {1, . . . , k}. We denote by π(G) the
set {π(h) : h is an N-node of T (G)}. The following result shows that each induced prime
subgraph of a graph G is also an induced subgraph of some graph in π(G).

Theorem 1.6 ([39]). Let Z be a prime graph. A graph G is Z-free if and only if each
graph of π(G) is Z-free.

In this work, we assume, without loss of generality, that at each N-node h of the
modular decomposition tree T (G) there is attached a description of the prime graph
π(h) by means of adjacency lists. The interested reader is referred to [29, 30, 53, 60],

6

December 26, 2013 International Journal of Computer Mathematics cpbal˙rev2˙subm

where linear-time algorithms for computing the rooted tree T (G) are given and to [2],
where it is shown how the adjacency list of the prime graphs π(h) for all the N-nodes h
can be attached also in linear time.
For the sake of simplicity, we will denote |V (G[h])| by n(h) for every node h of T (G).

Moreover, if h is an N-node, we will denote |V (π(h))| by nπ(h). Notice that since T (G)
has n leaves and each internal node has at least two children, T (G) has less than 2n
nodes. An important property that we will use frequently is that the sum of nπ(h) as h
ranges over all the N-nodes of T (G) is at most 2n (see, e.g. [2]).

2. Clique-perfectness and balancedness of P4-tidy graphs

A cograph is a P4-free graph. In [59], Seinsche proved that cographs are perfect by relying
on the following structure theorem.

Theorem 2.1 ([59]). If G is a cograph having at least two vertices, then either G or G
is disconnected.

Clearly, the above theorem implies that the modular decomposition trees of cographs,
known as cotrees, have no N-nodes. By exploiting the absence of N-nodes in cotrees,
a linear-time recognition algorithm and easy polynomial or even linear-time algorithms
for solving classical graph problems (widely regarded as hard for general graphs) were
proposed for cographs [24–26]. In [46], linear-time algorithms for computing a maximum
clique-independent set and a minimum clique-transversal set for any given cograph were
devised by also relying on the simplicity of the cotree structure. The following property
of αc and τc was also useful.

Theorem 2.2 ([46]). If G1 and G2 are two graphs, then

αc(G1 ∨G2) = min{αc(G1), αc(G2)} and τc(G1 ∨G2) = min{τc(G1), τc(G2)}.

Distance hereditary graphs form a superclass of the class of cographs. In [51], distance-
hereditary graphs were shown to be clique-perfect and linear-time algorithms for com-
puting a maximum clique-independent set and a minimum clique-transversal set for any
given distance-hereditary graph were proposed, by relying on a decomposition tree of
distance-hereditary graphs introduced in [20].
The class of P4-tidy graphs is a different superclass of the class of cographs that extends

many other generalizations of cographs that arise by bounding the occurrence of induced
P4’s according to different criteria; e.g., P4-sparse graphs [47], P4-lite graphs [48], and
P4-extendible graphs [49]. A graph is P4-tidy [44] if for each 4-vertex set A inducing
a P4 in G there is at most one vertex v such that A ∪ {v} induces a graph with two
induced P4’s. There is a structure theorem for P4-tidy graphs which is an extension of
Theorem 2.1 and that can be stated in terms of starfishes and urchins. A starfish is a
graph whose vertex set can be partitioned into three sets S, C and R, where each of the
following conditions holds:

(1) S = {s1, . . . , st} is a stable set and C = {c1, . . . , ct} is a clique, for some t ≥ 2.
(2) si is adjacent to cj if and only if i = j.
(3) R is allowed to be empty and if it is not, then all the vertices in R are adjacent to

all the vertices in C and nonadjacent to all the vertices in S.

An urchin is a graph whose vertex set can be partitioned into three sets S, C, and R
satisfying conditions (1) and (3) above but that instead of condition (2) satisfies:

(2’) si is adjacent to cj if and only if i 6= j.

7

December 26, 2013 International Journal of Computer Mathematics cpbal˙rev2˙subm

Clearly, urchins are the complements of starfishes and vice versa. If G is a starfish or an
urchin, then the triple (S,C,R) is called the partition of G, the vertices of S are the ends
of G, the vertex set C is the body of G, and the subgraph induced by the vertices of R is
the head of G. Notice that a starfish or urchin is prime (in the sense of Subsection 1.1)
if and only if its head R has at most one vertex. A fat starfish (resp. fat urchin) arises
from a starfish (resp. urchin) with partition (S,C,R) by substituting exactly one vertex
of S ∪ C by K2 or 2K1. In [44], the following structure theorem for P4-tidy graphs was
proved.

Theorem 2.3 ([44]). If G is a P4-tidy graph, then exactly one of the following statements
holds:

(1) G or G is disconnected.
(2) G is isomorphic to C5, P5, P5, a starfish, a fat starfish, an urchin, or a fat urchin.

Let G be a P4-tidy graph and let h be an N-node of T (G). The above theorem implies
that π(h) is isomorphic to C5, P5, P5, a prime starfish, or a prime urchin. Moreover, if
π(h) is isomorphic to C5, P5, or P5, then h has five children, each of which is a leaf. If,
on the contrary, π(h) is a prime starfish or a prime urchin, each of its children in T (G)
is a leaf except maybe for one child hR representing the head and/or one other child
representing 2K1 or K2. It was shown in [44] that in O(nπ(h)) time it can be decided
whether or not π(h) is a starfish (resp. an urchin) and, if affirmative, find its partition.
Similarly to the case of cographs, Theorem 2.3 leads to a linear-time recognition algo-

rithm for P4-tidy graphs as well as to simple and efficient algorithms on P4-tidy graphs
for different otherwise hard problems [44]. In this section, we will exploit the structure
of P4-tidy graphs to prove minimal forbidden induced subgraph characterizations and
devise simple linear-time recognition algorithms for both clique-perfectness and balanced-
ness of P4-tidy graphs. In addition, we will give a linear-time algorithm for computing
a maximum clique-independent set and a minimum clique-transversal set for any given
P4-tidy graph. All the algorithms in this section work by performing a simple O(n) time
traversal of the modular decomposition tree.

2.1 Clique-perfectness of P4-tidy graphs

The first goal of this subsection is to find a minimal forbidden induced subgraph charac-
terization and a linear-time recognition algorithm for clique-perfectness of P4-tidy graphs.
We begin by determining the values of αc and τc for those P4-tidy graphs that are con-
nected and co-connected.

Lemma 2.4. If G is a connected and co-connected P4-tidy graph, then one of the fol-
lowing statements holds:

(1) G is isomorphic to C5, αc(G) = 2, and τc(G) = 3.
(2) G is isomorphic to P5 or P5, and αc(G) = τc(G) = 2.
(3) G is a starfish with t ends or a fat starfish arising from it, and αc(G) = τc(G) = t.
(4) G arises from an urchin with 3 ends by substituting a vertex of the body by 2K1, and

αc(G) = τc(G) = 2.
(5) G is an urchin with at least 3 ends or a fat urchin arising from it, G is not a fat

urchin arising form an urchin with 3 ends by substituting a vertex of the body by
2K1, αc(G) = 1, and τc(G) = 2.

Proof. Since G is a connected and co-connected P4-tidy graph, it follows from Theo-
rem 2.3 that G is isomorphic to C5, P5, or P5, a starfish, a fat starfish, an urchin, or a
fat urchin. The values of αc and τc for C5, P5, and P5 are clear by simple inspection.

8

December 26, 2013 International Journal of Computer Mathematics cpbal˙rev2˙subm

Consider first the case where G is a starfish with partition (S,C,R) or a fat starfish
arising from it and let t = |S|. If G is a fat starfish arising by substituting a vertex c of the
body by 2K1, then {NG[s

′] : s′ ∈ S−{s}}∪{{s, c′}}, where s was the only neighbor of c
in S and c′ is one of the vertices by which c was substituted, is a clique-independent set
of size t; otherwise, {NG[s] : s ∈ S} is a clique-independent set of size t. Thus, αc(G) ≥ t.
If G is a fat starfish that arises by substituting a vertex c of the body by K2 or 2K1,
then (C − {c}) ∪ {s}, where s was the only neighbor of c in S, is a clique-transversal
set of size t; otherwise, C is a clique-transversal set of size t. In either case, τc(G) ≤ t.
Since αc(G) ≤ τc(G), we conclude that αc(G) = τc(G) = t. Without loss of generality,
we assume from now on that G is neither a starfish nor a fat starfish.
Consider now the case where G is an urchin with partition (S,C,R) or a fat urchin

arising from it and let t = |S|. Since we are assuming that G is neither a starfish nor a fat
starfish, t ≥ 3. Therefore, there are at least two vertices c1 and c2 of C that remain in G
(i.e., that were not substituted in case G is a fat urchin) and {c1, c2} is a clique-transversal
set of G because any maximal clique of G containing neither c1 nor c2 must contain a
non-neighbor s1 of c1 and a non-neighbor s2 of c2 in G, but s1 and s2 are necessarily
nonadjacent by construction, a contradiction. Moreover, since G has no universal vertex,
{c1, c2} is a minimum clique-transversal set and τc(G) = 2. If G is an urchin or G arises
by substituting a vertex of S by K2 or 2K1, then each maximal clique of G contains at
least t− 1 vertices of C and, since |C| = t ≥ 3, all the maximal cliques of G are pairwise
intersecting; i.e., αc(G) = 1 and {NG[s]} where s is any vertex of S that remains in G
(i.e., that was not substituted in case G is a fat urchin) is a maximum clique-independent
set. It only remains to consider the case where G is a fat urchin arising from an urchin
with partition (S,C,R) by substituting a vertex c of C by two new vertices inducing K2

or 2K1. In this case, each maximal clique of G contains at least t− 2 vertices of the t− 1
vertices of C −{c}. Therefore, if either (i) t = 3 and G arises by substituting c by K2 or
(ii) t > 3, then the maximal cliques of G are pairwise intersecting and {NG[s]}, where
s is the vertex of S which was nonadjacent to c, is a maximum clique-independent set
because αc(G) = 1. It only remains to consider the case where t = 3 and G arises by
substituting a vertex of the body by 2K1; i.e., S = {s1, s2, s3} and C = {c1, c2, c3} where
si is adjacent to cj if and only if i 6= j, and G arises by substituting c1 by 2K1 whose
vertices are c′1 and c′′1. In this case, {{c′1, c2, s3}, {c

′′
1, s2, c3}} is a clique-independent set,

which is maximum because τc(G) = 2 and thus αc(G) = 2.

Our result below gives a characterization in terms of minimal forbidden induced sub-
graphs of those P4-tidy graphs that are clique-perfect.

Theorem 2.5. If G is a P4-tidy graph, then the following assertions are equivalent:

(1) G is clique-perfect.
(2) G contains no induced C5 and no induced 3-sun.
(3) Each graph of π(G) is isomorphic to P5, P5, or a starfish.

Proof. We first prove that (1) ⇔ (2). The implication (1) ⇒ (2) is clear because C5 and
the 3-sun are not clique-perfect and the class of clique-perfect graphs is hereditary. We
now prove that (2) ⇒ (1). Suppose that G is not clique-perfect. Hence, Gmust contain an
induced subgraphH which isminimally not clique-perfect ; i.e., which is not clique-perfect
but each of its proper induced subgraphs is clique-perfect. The minimality of H implies
thatH is connected since otherwiseH would be the disjoint union of clique-perfect graphs
and thus H would be clique-perfect. Analogously, H is also connected since otherwise H
would be the join of two clique-perfect graphs and, by virtue of Theorem 2.2, H would be
clique-perfect. Hence, H is a connected and co-connected P4-tidy graph. Moreover, the
fact that each proper induced subgraph of H is clique-perfect but H is not clique-perfect

9

December 26, 2013 International Journal of Computer Mathematics cpbal˙rev2˙subm

forces αc(H) 6= τc(H). Hence, Lemma 2.4 implies that H is isomorphic to C5, an urchin
or a fat urchin. Notice that if H is an urchin or a fat urchin, then H contains an induced
3-sun and, because of the minimality, H is isomorphic to the 3-sun. We conclude that H
is isomorphic to C5 or the 3-sun. Since H is, by construction, an induced subgraph of G,
this proves (2) ⇒ (1).
Let us now prove that (1) ⇔ (3). Since C5 and the 3-sun are prime, if follows from

Theorem 1.6 that G is {C5,3-sun}-free if and only if each graph of π(G) is {C5,3-sun}-
free. If h is an N-node of T (G), then Theorem 2.3 implies that π(h) is isomorphic to C5,
P5, P5, a prime starfish, or a prime urchin. Hence, π(h) is {C5,3-sun}-free if and only if
π(h) is isomorphic to P5, P5, or a starfish. Since h is an arbitrary N-node of T (G), the
equivalence between (1) and (3) follows.

From the equivalence between assertions (1) and (3) of the above theorem, a linear-time
recognition algorithm for clique-perfectness of P4-tidy graphs follows.

Corollary 2.6. It can be decided whether or not any given P4-tidy graph G is clique-
perfect in linear time; in fact, in O(n) time once the modular decomposition tree of G is
built.

Proof. Recall from Subsection 1.1 that the modular decomposition tree of G can be
built in linear time. Since T (G) has less than 2n nodes, a traversal of all of its nodes
can be arranged in O(n) time. For each of the N-nodes h of T (G) it takes constant
time to determine whether π(h) is isomorphic to P5 or P5 and it takes O(nπ(h)) time to
determine whether or not π(h) is a starfish. Hence, since the sum of nπ(h) as h ranges
over all the N-nodes of T (G) is at most 2n, it can be decided whether or not assertion
(3) of Theorem 2.5 holds in O(n) time once the modular decomposition tree of G is
built.

We will now show that both αc and τc can be computed in linear time for any given
P4-tidy graph. Below we propose an algorithm which, given any P4-tidy graph, traverses
the nodes of its modular decomposition tree in post-order (where each node is visited
after all of its children), computing for each node h the values of αc(G[h]) and τc(G[h])
which we will denote simply by αc(h) and τc(h).

Algorithm 1. Computes αc and τc for any given P4-tidy graph

Input: A P4-tidy graph G
Initialization: Build the modular decomposition tree of G
Step 1: Visit the nodes of T (G) in post-order, doing the following for each node h:

if h is a leaf then
αc(h) = τc(h) = 1

else if h is a P-node with children h1, . . . , hk then

αc(h) = αc(h1) + · · ·+ αc(hk) and τc(h) = τc(h1) + · · ·+ τc(hk)
else if h is an S-node with children h1, . . . , hk then

αc(h) = min{αc(h1), . . . , αc(hk)} and τc(h) = min{τc(h1), . . . , τc(hk)}
else if π(h) is isomorphic to C5 then

αc(h) = 2 and τc(h) = 3
else if π(h) is isomorphic to P5 or P5 then

αc(h) = τc(h) = 2
else if π(h) is a starfish with t ends then

αc(h) = τc(h) = t
else if π(h) is an urchin with 3 ends and a vertex of its body represents 2K1 then

αc(h) = τc(h) = 2
else

10

December 26, 2013 International Journal of Computer Mathematics cpbal˙rev2˙subm

αc(h) = 1 and τc(h) = 2.
Step 2: Output αc(G) = αc(r) and τc(G) = τc(r), where r is the root of T (G).

Theorem 2.7. Algorithm 1 correctly computes αc(G) and τc(G) for any given P4-tidy
graph in linear time; in fact, in O(n) time once the modular decomposition tree of G is
built.

Proof. The correctness of the values of αc(h) and τc(h) as computed by Algorithm 1
follows from Theorem 2.2 and Lemma 2.4. Recall from Subsection 1.1 that the modular
decomposition tree of G can be built in linear time. Since T (G) has fewer than 2n nodes,
arranging the post-order traversal takes O(n) time. Moreover, since for each N-node h of
T (G) it takes O(nπ(h)) time to decide whether or not π(h) is a starfish (resp. an urchin)
and, if affirmative, find its partition, Algorithm 1 takes only O(n) time once the modular
decomposition tree of G is built (recall that the sum of nπ(h) as h ranges over all the
N-nodes of T (G) is at most 2n).

We will argue now that Algorithm 1 can be modified so as to output a maximum
clique-independent set and a minimum clique-transversal set also in linear time. For that
purpose, instead of computing αc(h) and τc(h) for each node h, we will compute two
lists: LA(h) and LT (h), consisting of a maximum clique-independent set and a minimum
clique-transversal set, respectively. The elements of the list LA(h) will, in its turn, be
lists, each of which representing one maximal clique of the clique-independent set and
having precisely the vertices of such maximal clique as its elements. The elements of
the list LT (h) will be the vertices of the clique-transversal set. We denote a list L with
elements e1, . . . , e` by L = 〈e1, . . . , e`〉 and we write |L| to denote the number of elements
of L.
For instance, if h is a leaf of T (G) representing a vertex v, we let LA(h) = 〈〈v〉〉 (a list

whose only element is a list whose only element is v) to represent the maximum clique-
independent set {{v}} and LT (h) = 〈v〉 to represent the minimum clique-transversal set
{v}. If h is a P-node, we let LA(h) be the concatenation of the lists LA(h1), . . . , LA(hk)
and LT (h) be the concatenation of LT (h1), . . . , LT (hk). If h is an S-node, we let LA(h)
be the list of min{|LA(h1)|, . . . , |LA(hk)|} elements such that for each i ∈ {1, . . . , k} the
ith element of LA(h) is the concatenation of all the ith elements of LA(h1), . . . , LA(hk),
and we let LT (h) be a list of minimum length among LT (h1), . . . , LT (hk). The proof
of Lemma 2.4 contains instructions on how to build LA(h) and LT (h) in case h is an
N-node; notice that in this case, the lists LA and LT of the children of h play no role
when constructing LA(h) and LT (h).

Theorem 2.8. Algorithm 1 modified as above computes a maximum clique-independent
set and a minimum clique-transversal set of any given P4-tidy graph G in linear time; in
fact, in O(n) time once the modular decomposition tree of G is built.

Proof. The correctness of the modified algorithm follows from the correctness of Al-
gorithm 1 because the lists built as described above clearly represent valid clique-
independent sets and clique-transversal sets of the correct sizes. Analogously, regarding
the time complexity, we only have to prove that all the lists LA(h) and LT (h) for the
nodes h of T (G) can be build in O(n) time. It is clear that the time involved in building
the lists LA(h) and LT (h) is proportional to the number of children if h is a P-node or
S-node and proportional to nπ(h) if h is an N-node, except for the many concatenations
needed to build all the lists LA(h) for the S-nodes h; nevertheless, we will show that in
fact the total number of concatenations performed in all the S-nodes is at most n. Alto-
gether, since the total number of nodes of T (G) and the sum of nπ(h) as h ranges over the
N-nodes of T (G) are both at most 2n, the statement of the theorem follows. Notice that

11

December 26, 2013 International Journal of Computer Mathematics cpbal˙rev2˙subm

we are assuming that when building LA(h) for an S-node h each concatenation between
two lists can be performed in O(1) time. This is possible as long as we do not mind about
modifying the original lists to be concatenated, which is the case here, because the lists
associated to a node are only needed when building the lists corresponding to its parent.
For each node h of T (G), let c(h) be the total number of concatenations needed to

compute all the lists LA(h
′) for the S-nodes h′ in the subtree of T (G) rooted at h. We

will prove that c(r) ≤ n(r) where r is the root of T (G). We will reach this conclusion by
proving the following stronger claim by structural induction: c(h)+αc(h) ≤ n(h) for each
node h of T (G). If h is a leaf, c(h)+αc(h) = 1 = n(h). Assume that h is an internal node
and, by induction hypothesis, that all its children h1, . . . , hk satisfy c(hi)+αc(hi) ≤ n(hi).

If h is a P-node, then c(h)+αc(h) =
∑k

i=1 c(hi)+
∑k

i=1 αc(hi) =
∑k

i=1(c(hi)+αc(hi)) ≤
∑k

i=1 n(hi) = n(h). If h is an S-node, then c(h) + αc(h)=
(

(k − 1)mini∈{1,...,k} αc(hi) +
∑k

i=1 c(hi)
)

+ mini∈{1,...,k} αc(hi) ≤
∑k

i=1(c(hi) + αc(hi)) ≤
∑k

i=1 n(hi) = n(h). It only
remains to consider the case where h is an N-node. On the one hand, if π(h) is isomorphic
to C5, P5, C5, then c(h) +αc(h) = 2 < 5 = n(h). On the other hand, if π(h) is a starfish

or an urchin, then c(h) + αc(h) ≤
∑k

i=1 c(hi) + k/2 <
∑k

i=1(c(hi) + 1) ≤
∑k

i=1 n(hi) =
n(h) because αc(hi) ≥ 1 for each i ∈ {1, . . . , k}. We conclude by induction that indeed
c(h) + αc(h) ≤ n(h) for each node h of T (G). In particular, if r is the root of T (G),
then c(r) ≤ n(r) = n; i.e., the number of concatenations needed to construct all the lists
LA(h) for the S-nodes h of T (G) is less than n, as claimed.

2.2 Balancedness of P4-tidy graphs

In this subsection, we will give a forbidden induced subgraph characterization and a
linear-time recognition algorithm for balancedness of P4-tidy graphs. A key role in this
section is played by the results below which give necessary and sufficient conditions for
the join of two or more graphs (either P4-tidy or not) to be balanced. In order to state the
results, we rely on the notion of trivially perfect graphs. Namely, a graph G is trivially
perfect if and only if for every induced subgraph H of G, the maximum size of a stable set
of H equals the number of maximal cliques of H [45]. Trivially perfect graphs coincide
with {P4, C4}-free graphs [45] and are known to be balanced [38].
The lemma below gives two sufficient conditions and one necessary condition for the

join of two graphs to be balanced.

Lemma 2.9. If a graph G is the join of two graphs G1 and G2, then each of the following
statements holds:

(a) If G1 is balanced and G2 is a complete graph, then G is balanced.
(b) If G1 and G2 are trivially perfect, then G is balanced.
(c) If G is balanced and G2 is not a complete graph, then G1 is trivially perfect.

Proof. (a) Suppose that G1 is balanced and G2 is a complete graph. If MG is a clique-
matrix of G, then a clique-matrix of G1 arises from MG by removing each of the
columns corresponding to the vertices of G2, which are columns completely filled
with ones. Hence, G is balanced because G1 is balanced.

(b) Suppose that G1 and G2 are trivially perfect and, by the way of contradiction, that
G is not balanced. By definition, there are some maximal cliques Q1, . . . , Q2t+1 of
G and some pairwise different vertices v1, . . . , v2t+1 of G for some t ≥ 1 such that
Qi ∩ {v1, v2, . . . , v2t+1} = {vi, vi+1} for each i ∈ {1, . . . , 2t + 1} (where v2t+2 stands
for v1). In particular, C = v1v2 . . . v2t+1v1 is an odd cycle of G. Since C is odd,
there are two consecutive vertices of C that are either both vertices of G1 or both
vertices of G2. Without loss of generality, suppose that v1 and v2 belong to G1. Let

12

December 26, 2013 International Journal of Computer Mathematics cpbal˙rev2˙subm

Q′
i = Qi ∩ V (G1) and Q′′

i = Qi ∩ V (G2), for each i ∈ {1, 2, . . . , 2t + 1}. Hence,
Qi = Q′

i ∪ Q′′
i where Q′

i is a maximal clique of G1 and Q′′
i is a maximal clique of

G2, for each i ∈ {1, 2, . . . , 2t + 1}. Since v1 does not belong to Q′
2, there is some

vertex w2 ∈ Q′
2 such that w2 is not adjacent to v1. Symmetrically, there is a vertex

w1 ∈ Q′
2t+1 such that w1 is not adjacent to v2. Thus, {w1, v1, v2, w2} induces a C4 or

a P4 in G1 and G1 is not trivially perfect, a contradiction. This contradiction arose
from supposing that G was not balanced.

(c) Suppose that G is balanced and G2 is not a complete graph. Then, G1 is trivially
perfect, since otherwise G1 would contain an induced P4 or C4 and, since G2 is not
a complete graph, G would contain an induced P4∨2K1

∼= 2-pyramid or C4∨2K1
∼=

3-pyramid, respectively, a contradiction.

We are now ready to prove the theorem below which gives necessary and sufficient
conditions for the join of two or more graphs to be balanced.

Theorem 2.10. If a graph G is the join of the graphs G1, . . . , Gk, then G is balanced if
and only if at least one of the following statements holds:

(1) One of G1, . . . , Gk is balanced and the remaining ones are complete graphs.
(2) Two of G1, . . . , Gk are trivially perfect and the remaining ones are complete graphs.

Proof. Let G be the join of the graphs G1, . . . , Gk. If (1) or (2) holds, then G is balanced
by repeated application of statements (a) and (b) of Lemma 2.9. Conversely, suppose that
G is balanced. Hence, G contains no induced 3-pyramid and, consequently, we assume,
without loss of generality, that G3, . . . , Gk are complete graphs. Since G1 and G2 are
induced subgraphs of G, G1 and G2 are also balanced. Therefore, if at least one of G1

and G2 is a complete graph, then (1) holds. If, on the contrary, none of G1 and G2 is a
complete graph, then Lemma 2.9(c) implies that G1 and G2 are trivially perfect and (2)
holds.

Corollary 2.11. Minimally not balanced graphs different from the 2-pyramid and the
3-pyramid are co-connected.

Proof. Let H be a minimally not balanced graph whose complement H is disconnected.
Since H is disconnected, H is the join of two graphs H1 and H2 with at least one
vertex each. Since H is minimally not balanced, H1 and H2 are balanced. Since H is
not balanced, Lemma 2.9(b) implies that H1 or H2 is not trivially perfect. Without loss
of generality, assume that H1 is not trivially perfect; i.e., H1 contains an induced P4 or
an induced C4. Since H = H1 ∨H2 is not balanced and H1 is balanced, Lemma 2.9(a)
guarantees that H2 is not a complete graph. Thus, H2 contains an induced 2K1. Finally,
H = H1 ∨ H2 contains an induced P4 ∨ 2K1

∼= 2-pyramid or an induced C4 ∨ 2K1
∼=

3-pyramid. By minimality, H is isomorphic to either the 2-pyramid or the 3-pyramid.

In the proof of Lemma 2.12 and Theorem 2.13 below, we will make repeated use of the
following trivial facts about balanced graphs.

Fact 1. If a graph G is balanced, then each graph that arises from G by substituting a
vertex by K2 is also balanced.

Fact 2. If a graph G is balanced, then each graph that arises from G by adding a pendant
vertex is also balanced.

Our next result characterizes those connected and co-connected P4-tidy graphs that
are balanced.

Lemma 2.12. If G is a connected and co-connected P4-tidy graph, then G is balanced if
and only if one of the following statements hold:

13

December 26, 2013 International Journal of Computer Mathematics cpbal˙rev2˙subm

(1) G is isomorphic to P5 or P5.
(2) G is isomorphic to a starfish with a balanced (or empty) head.
(3) G is isomorphic to a fat starfish arising from a starfish with balanced (or empty)

head by substituting a vertex of the body by K2 or an end by K2 or 2K1.
(4) G is isomorphic to a fat starfish arising from a starfish with trivially perfect (or

empty) head by substituting a vertex of the body by 2K1.

Proof. Let G be a connected and co-connected P4-tidy graph.
We will first prove that if G satisfies one of the conditions (1), (2), (3), or (4) then

G is balanced. If statement (1) holds, then G is balanced by definition. If statement (2)
holds, then G is balanced because G arises from the join of the head of the starfish and
a complete graph (which is balanced by Lemma 2.9(a)) by repeatedly adding pendant
vertices (which preserves balancedness by Fact 2). If statement (3) holds, then G arises
from the join of the head of the starfish and a complete graph (which is balanced by
Lemma 2.9(a)) by repeatedly adding pendant vertices (which preserves balancedness by
Fact 2) and finally either adding an additional pendant vertex or substituting a vertex
by K2 (in either case balancedness is preserved by Facts 1 and 2). If statement (4) holds,
then G is balanced because G arises from the join of the head of the starfish and the result
of substituting 2K1 into a complete graph (which is balanced by Lemma 2.9(b) because it
is the join of two trivially perfect graphs) by repeatedly adding pendant vertices (which
preserves balancedness by Fact 2). We conclude that if G satisfies (1), (2), (3), or (4),
then G is balanced.
For the converse, we suppose that G satisfies none of the conditions (1), (2), (3), or (4)

and we will see that G is not balanced. In fact, since G is a connected and co-connected
P4-tidy graph, Theorem 2.3 implies that one of the following holds:

• G is isomorphic to C5. In this case G is not balanced because it is not even perfect.
• G is a starfish whose head is not balanced or is a fat starfish arising from it. In this

case G is not balanced because the head of the starfish is a non-balanced induced
subgraph of G.

• G is a fat starfish arising from a starfish whose head is not trivially perfect by substi-
tuting a vertex of the body by 2K1. In this case G is not balanced because G contains
as an induced subgraph the join of the head of the starfish and 2K1, which is not
balanced by Lemma 2.9(c).

• G is an urchin with at least 6 vertices or a fat urchin arising from it. In this case G is
not balanced because it contains an induced 3-sun.

The characterization of those P4-tidy graphs that are balanced in terms of minimal
forbidden induced subgraphs is as follows.

Theorem 2.13. If G is a P4-tidy graph, then the following assertions are equivalent:

(1) G is balanced.
(2) G is perfect and hereditary clique-Helly.
(3) G contains no induced C5, 3-sun, 2-pyramid, or 3-pyramid.

Proof. The implications (1) ⇒ (2) and (2) ⇒ (3) follow from the discussion in the
Introduction. We only need to prove that (3) ⇒ (1) holds. For that, we show that the
only P4-tidy graphs that are minimally not balanced are C5, the 3-sun, the 2-pyramid,
and the 3-pyramid.
Let H be a P4-tidy graph that is minimally not balanced. By minimality, H is con-

nected. If H were disconnected, then, by Corollary 2.11, H would be isomorphic to a
2-pyramid or a 3-pyramid. Suppose, on the contrary, that H is connected. Hence, H is
a connected and co-connected P4-tidy graph which is not balanced and, as in the proof

14

December 26, 2013 International Journal of Computer Mathematics cpbal˙rev2˙subm

of Lemma 2.12, one of the following conditions holds: (i) H is isomorphic to C5, (ii) H
is a starfish whose head is not balanced or a fat starfish arising from it, (iii) H is a fat
starfish arising from a starfish whose head is not trivially perfect by substituting a vertex
of the body by 2K1, or (iv) H is an urchin or a fat urchin. If condition (i) holds, there
is nothing else to prove. The minimality of H implies that H has no pendant vertices
(because of Fact 2) and, consequently, conditions (ii) and (iii) cannot hold. Finally, if
conditions (iv) holds, then H contains an induced 3-sun and, because of the minimality,
H is isomorphic to the 3-sun. We conclude that indeed the only P4-tidy graphs that are
minimally not balanced are C5, the 3-sun, the 2-pyramid, and the 3-pyramid.

Our next goal in this section is to give a simple linear-time algorithm for deciding
whether or not any given P4-tidy graph is balanced. For that purpose, we will establish
a connection between the balancedness of a graph and a property of its modular de-
composition tree. The function f defined as follows will play an important role in that
connection. Let f be the function assigning a nonnegative number to each graph G (with
at least one vertex) defined recursively as follows:

• If G is disconnected and G1, . . . , Gk are the components of G, then

f(G) = max{1, f(G1), . . . , f(Gk)}.

• If G is disconnected and G1, . . . , Gk are the anticomponents of G, then

f(G) = f(G1) + · · ·+ f(Gk).

• If G has at least two vertices and both G and G are connected, then f(G) = 2.
• If G has exactly one vertex, then f(G) = 0.

The theorem below contains as statement (3) the connection between the balancedness
of a graph and a property of its modular decomposition tree that we need. Later in this
subsection we will exploit this connection in order to give a simple linear-time algorithm
for deciding balancedness of P4-tidy graphs.

Theorem 2.14. If G is a graph, then the following statements hold:

(1) G is a complete graph if and only if f(G) = 0.
(2) G is trivially perfect if and only if f(G) ≤ 1.
(3) G is balanced if and only if f(G) ≤ 2 and each graph represented by an N-node of

T (G) is balanced.

Proof. We give a proof for each of the statements.

(1) G is a complete graph if and only if f(G) = 0. If G is a complete graph, then either
G has just one vertex or G is disconnected and each anticomponent of G has exactly
one vertex. In either case, the definition of f implies that f(G) = 0. Conversely, we
now prove that if f(G) = 0 then G is a complete graph. If G has only one vertex, then
G is a complete graph. Suppose now that G has at least two vertices. If f(G) = 0
then, by definition of f , G is disconnected and the anticomponents G1, . . . , Gk of G
satisfy f(G1) = · · · = f(Gk) = 0. The fact that the anticomponents of a graph are
co-connected implies that G1, . . . , Gk have exactly one vertex each and, consequently,
G is a complete graph.

(2) G is trivially perfect if and only if f(G) ≤ 1. We will prove that if G is trivially
perfect then f(G) ≤ 1, by induction on the number of vertices of G. Let G be a
trivially perfect graph. If G has only one vertex, then f(G) ≤ 1. Suppose that G
has at least two vertices and that for each trivially perfect graph G′ having fewer

15

December 26, 2013 International Journal of Computer Mathematics cpbal˙rev2˙subm

vertices than G it holds that f(G′) ≤ 1. Since G is trivially perfect, in particular G
is a cograph. Hence, Theorem 2.1 implies that either G or G is disconnected. If G
is disconnected and G1, . . . , Gk are its components, then G1, . . . , Gk are all trivially
perfect and, by induction hypothesis, f(G1) ≤ 1, . . . , f(Gk) ≤ 1 and thus f(G) =
max{1, f(G1), . . . , f(Gk)} ≤ 1. Suppose that, on the contrary, G is disconnected
and let G1, . . . , Gk be the anticomponents of G. Notice that at most one of the
anticomponents of G is not a complete graph, since otherwise G would contain an
induced 2K1 ∨ 2K1

∼= C4, a contradiction with the fact that G is trivially perfect.
Therefore, without loss of generality, we assume that G2, . . . , Gk are complete graphs
and, by virtue of (1), f(G2) = · · · = f(Gk) = 0. Moreover, since G1 is an induced
subgraph of G, G1 is also trivially perfect and the induction hypothesis implies that
f(G1) ≤ 1. Therefore, f(G) = f(G1) + · · ·+ f(Gk) ≤ 1.
Conversely, we will prove that if f(G) ≤ 1 then G is trivially perfect, by induction on
the number of vertices of G. Let G be a graph such that f(G) ≤ 1. If G has exactly
one vertex, then G is trivially perfect. Suppose now that G has at least two vertices
and that for each graph G′ having fewer vertices than G the fact that f(G′) ≤ 1
implies that G′ is trivially perfect. Since G has at least two vertices and f(G) 6= 2,
G is either disconnected or has disconnected complement. Suppose first that G is
disconnected and let G1, . . . , Gk be its components. By definition of f , the fact that
f(G) ≤ 1 implies that f(G1) ≤ 1, . . . , f(Gk) ≤ 1. Thus, the induction hypothesis
ensures that each of G1, . . . , Gk is trivially perfect and consequently G = G1+· · ·+Gk

is also trivially perfect. Suppose now that G is disconnected and let G1, . . . , Gk be
its anticomponents. The fact that f(G) ≤ 1 together with the definition of f implies,
without loss of generality, that f(G1) ≤ 1 and f(G2) = · · · = f(Gk) = 0. Since
f(G1) ≤ 1 and G1 has fewer vertices than G, the induction hypothesis ensures that
G1 is trivially perfect; i.e., G1 is {P4, C4}-free. Moreover, by virtue of (1), each of
G2, . . . , Gk is a complete graph and G = G1∨G2∨· · ·∨Gk arises from G1 by adding
universal vertices. Since G1 is {P4, C4}-free and the addition of universal vertices
cannot create new induced P4’s or C4’s, G is also {P4, C4}-free; i.e., G is trivially
perfect.

(3) G is balanced if and only if f(G) ≤ 2 and each graph represented by an N-node of
T (G) is balanced. Suppose first that f(G) ≤ 2 and that each graph represented by
an N-node of T (G) is balanced. We will prove that G is balanced by induction on
the number of vertices of G. If G has only one vertex, then G is balanced. Suppose
that G has at least two vertices and that, for each graph G′ having fewer vertices
than G, the facts that f(G′) ≤ 2 and that each graph represented by an N-node
of T (G′) is balanced imply that G′ itself is balanced. Consider first the case where
G is disconnected and let G1, . . . , Gk be its components. By the definition of f ,
the fact that f(G) ≤ 2 implies that f(G1) ≤ 2, . . . , f(Gk) ≤ 2. Moreover, since
T (G1), . . . , T (Gk) are the subtrees of T (G) rooted at the children of the root of
T (G), the graphs represented by the N-nodes of T (Gi) are balanced, for each i ∈
{1, . . . , k}. By induction hypothesis, G1, . . . , Gk are balanced and, consequently, G =
G1 + · · · + Gk is also balanced. Consider now the case where G is disconnected
and let G1, . . . , Gk be its anticomponents. The fact that f(G) ≤ 2 together with
the definition of f imply, without loss of generality, that either f(G1) ≤ 2 and
f(G2) = · · · = f(Gk) = 0, or f(G1) ≤ 1, f(G2) ≤ 1, and f(G3) = · · · = f(Gk) = 0.
And again, since T (G1) is a subtree of T (G) rooted at some child of the root of
T (G), the graphs represented by the N-nodes of T (G1) are balanced. By induction
hypothesis and the statements (1) and (2), either G1 is balanced and G2, . . . , Gk

are complete graphs, or G1 and G2 are trivially perfect and G3, . . . , Gk are complete
graphs. In either case, Theorem 2.10 implies that G is balanced. Finally, consider the

16

December 26, 2013 International Journal of Computer Mathematics cpbal˙rev2˙subm

case where G and G are disconnected. In this case, G itself is the graph represented
by the root r of T (G) where r is an N-node and, by hypothesis, G is balanced.
For the converse, suppose now that G is balanced. Since the graphs represented

by the nodes of T (G) are induced subgraphs of G, all these graphs are balanced.
We will prove that also f(G) ≤ 2, by induction on the number of vertices of G.
If G has only one vertex, then f(G) = 0 ≤ 2. Assume that G has at least two
vertices and that, for each graph G′ having fewer vertices than G, the fact that G′

is balanced implies that f(G′) ≤ 2. Consider first the case where G is disconnected
and let G1, . . . , Gk be the components of G. Since G1, . . . , Gk are balanced (because
they are induced subgraphs of G), the induction hypothesis implies that f(Gi) ≤ 2
for each i ∈ {1, . . . , k} and f(G) = max{1, f(G1), . . . , f(Gk)} ≤ 2. Consider now
the case where G is disconnected and let G1, . . . , Gk be its anticomponents. By
Theorem 2.10, we assume, without loss of generality, that either G1 is balanced and
G2, . . . , Gk are complete graphs, or G1 and G2 are trivially perfect and G3, . . . , Gk

are complete graphs. Therefore, by inductive hypothesis and the statements (1) and
(2), either f(G1) ≤ 2 and f(G2) = · · · = f(Gk) = 0, or f(G1) ≤ 1, f(G2) ≤ 1, and
f(G3) = · · · = f(Gk) = 0. In either case, f(G) = f(G1) + · · · + f(Gk) ≤ 2. Finally,
if G and G are connected, then f(G) = 2 by definition.

Notice that if for each node h of a modular decomposition tree T (G) we denote by
f(h) the value f(G[h]), then the following holds:

f(h) =



















max{1, f(h1), . . . , f(hk)} if h is a P-node with children h1, . . . , hk

f(h1) + · · ·+ f(hk) if h is an S-node with children h1, . . . , hk

2 if h is an N-node

0 if h is a leaf.

Therefore, given the modular decomposition tree of a graph G, the values f(h) for all
the nodes h of T (G) can be computed in O(n) time by visiting the nodes of T (G) in
post-order (recall that T (G) has less than 2n nodes.)
By combining all the above results, we will next show that the algorithm below recog-

nizes balancedness of any given P4-tidy graphs in linear time.

Algorithm 2. Decides balancedness of any given P4-tidy graph

Input: A P4-tidy graph G
Initialization: Build the modular decomposition tree of G
Step 1: Compute f(h) for every node h of T (G)
Step 2: if f(h) > 2 for some node h of T (G) then output ‘G is not balanced’ and stop
Step 3: Visit once each of the N-nodes h of T (G) (in any order), doing the following:

if (π(h) is isomorphic to C5) or
(π(h) is a starfish whose vertex hR representing the head satisfies f(hR) > 1
and π(h) has a vertex in the body representing 2K1) or
(π(h) is an urchin with at least 6 vertices)

then output ‘G is not balanced’ and stop
Step 4: Output ‘G is balanced’

Theorem 2.15. Algorithm 2 correctly decides whether or not any given P4-tidy graph
is balanced in linear time; in fact, in O(n) time once the modular decomposition tree of
G is built.

Proof. Let G be any P4-tidy graph. Recall from Subsection 1.1 that the modular de-
composition tree of G can be computed in linear time. In addition, from the discussion

17

December 26, 2013 International Journal of Computer Mathematics cpbal˙rev2˙subm

preceding Algorithm 2, Steps 1 and 2 take only O(n) additional time. Since T (G) has
less than 2n nodes and since deciding whether or not the condition of the conditional
clause of Step 3 holds for an N-node h of T (G) takes O(nπ(h)) time and the sum of nπ(h)
as h ranges over the N-nodes of T (G) is at most 2n, Step 3 takes O(n) time altogether.
Therefore, Algorithm 2 has linear time complexity and takes only O(n) time once the
modular decomposition tree of G is built.
We now prove the correctness of the output. By Lemma 2.12 and Theorem 2.14, if

the algorithm outputs ‘G is not balanced’, then the output is correct. Suppose now that
the algorithms answers ‘G is balanced’. This means that f(h) ≤ 2 for each node h of
T (G) and that the condition in the conditional clause of Step 3 holds for no N-node h
of T (G). Suppose, by the way of contradiction that G is not balanced. Since f(G) ≤ 2,
Theorem 2.14 implies that there is at least one N-node of T (G) representing a graph
which is not balanced. Among the N-nodes of T (G) representing graphs which are not
balanced, let h0 be one that minimizes the number of vertices of G[h0]. Notice that if
h′ is any child of h0, then Theorem 2.14 implies that h′ represents a balanced graph: in
fact, f(h′) ≤ 2 and, since the modular decomposition tree of G[h′] is the subtree of T (G)
rooted at h′, the N-nodes h′′ of T (G[h′]) represent balanced graphs because G[h′′] has
fewer vertices than G[h0]. Since h0 is an N-node which is not balanced, reasoning as in
the proof of Lemma 2.12, one of the following cases holds:

• G[h0] is isomorphic to C5. In this case π(h0) is isomorphic to C5 and the algorithm
should have answered ‘G is not balanced’, a contradiction.

• G[h0] is a starfish whose head is not balanced or is a fat starfish arising from it. In
this case, if h′ is the child of h0 representing the head of the starfish, then h′ is a child
of h0 but represents a graph that is not balanced, a contradiction.

• G[h0] is a fat starfish arising from a starfish whose head is not trivially perfect by
substituting a vertex of the body by 2K1. In this case, π(h0) is a starfish such that the
only vertex hR of the head satisfies f(hR) > 1 (because of Theorem 2.14) and π(h0)
has one vertex of the body representing 2K1. Consequently, the algorithm should have
answered ‘G is not balanced’, a contradiction.

• G[h0] is an urchin with at least 6 vertices or a fat urchin arising from it. In this
case, π(h0) would be an urchin with at least 6 vertices and the algorithm should have
answered ‘G is not balanced’, a contradiction.

In all cases we reach a contradiction. These contradiction arose from assuming that
there is some graph G which is not balanced but for which the algorithm answers ‘G is
balanced’. This completes the proof of the correctness of the algorithm.

3. Balancedness of paw-free graphs

The paw is the graph that arises from a triangle by adding a pendant vertex (see Figure 4).
Paw-free graphs were considered in connection with perfectness in [54], [55] and [58].
In this section, we consider balancedness of the class of paw-free graphs. We prove a
minimal forbidden induced subgraph characterization of balancedness of paw-free graphs,
leading to a linear-time algorithm for deciding whether or not any given paw-free graph
is balanced.
Clique-perfectness of paw-free graphs was already considered in [13] and the following

results were proved.

Theorem 3.1 ([13]). For each paw-free graph G, the following assertions are equivalent:

(1) G is clique-perfect.
(2) G is perfect.

18

December 26, 2013 International Journal of Computer Mathematics cpbal˙rev2˙subm

Figure 4. The paw

(3) G has no odd holes.

Moreover, it can be decided in linear time whether or not any given paw-free graph is
clique-perfect.

The proof of the above theorem relies on the characterization of paw-free graphs due
to Olariu [55] given below. A graph is complete multipartite if its vertex set can be
partitioned into (possibly empty) stable sets A1, . . . , Ak such that every vertex of Ai is
adjacent to every vertex of Aj for every i 6= j. If, in addition, k = 2, then the graph is
called complete bipartite.

Theorem 3.2 ([55]). A graph is paw-free if and only if each of its components is either
triangle-free or a complete multipartite graph.

It is easy to derive from the above theorem that αc(G) can be computed in polynomial
time for any given paw-free graph G. In fact, if G is a paw-free graph and H is a
component of G, then either (i) H is a triangle-free graph and αc(H) coincides with the
maximum size of a matching, which can be found in polynomial time [35, 42], or (ii) H is
a complete multipartite graph and thus a cograph and αc(H) can be computed in linear
time [46]. Nevertheless, recall that τc(G) is NP-hard even if G is triangle-free [37] and,
consequently, also even if G is a paw-free graph.
The following result gives structural characterizations of those paw-free graphs that

are balanced including one by minimal forbidden induced subgraphs.

Theorem 3.3. For each paw-free graph G, the following assertions are equivalent:

(1) G is balanced.
(2) G is perfect and hereditary clique-Helly.
(3) G has no odd holes and contains no induced 3-pyramid.
(4) Each component of G is either bipartite or is the join of a complete bipartite graph

and a complete graph.

Proof. The implications (1) ⇒ (2) and (2) ⇒ (3) follow from the discussion in the
Introduction.
We will now prove that (3) ⇒ (4). Let G be a paw-free graph with no odd holes and

no induced 3-pyramid. Let H be any component of G. Since H has no odd holes, if H
were triangle-free, then H would be bipartite, as desired. So, without loss of generality,
we will assume that H is not triangle-free. By Theorem 3.2, H is a complete multipartite
graph. Let {A1, . . . , Ak} be a partition of the vertex set of H into nonempty stable sets
such that every vertex of Ai is adjacent to every vertex of Aj for every i 6= j, and
such that |A1| ≥ |A2| ≥ · · · ≥ |Ak|. Since H is not triangle-free, k ≥ 3. Moreover,
|A3| = |A4| = · · · = |Ak| = 1 because G is 3-pyramid-free. Let A = A1 ∪ A2 and
B = A3 ∪ · · · ∪ Ak. Hence, H is the join of the complete bipartite graph G[A] and the
complete graph G[B]. This completes the proof of (3) ⇒ (4).
Finally, we prove that (4) ⇒ (1). Let G be a graph such that each of its components is

either a bipartite graph or the join of a complete graph and a complete bipartite graph.
Since bipartite graphs are balanced and the join of a complete graph and a balanced
graph is balanced (by virtue of Lemma 2.9(a)), it follows that every component of G is
balanced. Therefore, G is balanced.

19

December 26, 2013 International Journal of Computer Mathematics cpbal˙rev2˙subm

Figure 5. The diamond

The above characterization also implies a linear-time algorithm for deciding whether
any given paw-free graph G is balanced because it can be decided whether or not asser-
tion (4) of Theorem 3.3 holds in linear time: in fact, for each component H of G, we can
decide in linear time whether or not either H is bipartite or the non-universal vertices
of H induce a complete bipartite graph.

Corollary 3.4. It can be decided in linear time whether or not any given paw-free graph
is balanced.

4. Clique-perfectness and balancedness of diamond-free graphs

Recall from the Introduction that forbidden induced subgraph characterizations of clique-
perfectness are known for graphs belonging to one of several different graph classes. It
turns out that for each of these graph classes, also a polynomial-time or even a linear-
time algorithm for the recognition of clique-perfectness of graphs belonging to that class
is known, with the only exception being the class of diamond-free graphs, where the
diamond is the graph that arises from K4 by removing one edge (see Figure 5).
Clique-perfectness of diamond-free graphs was characterized by means of forbidden

induced subgraphs in [9]. The corresponding forbidden induced subgraphs are the proper
odd cycles, where a cycle C is proper if no two consecutive vertices of C form a triangle
with a third vertex of C.

Theorem 4.1 ([9]). For each diamond-free graph G, G is clique-perfect if and only if G
contains no induced proper odd cycle.

In the same work, it is left unresolved whether there is a polynomial-time algorithm
for deciding clique-perfectness of diamond-free graphs. We deduce the existence of such
a polynomial-time algorithm by reducing the problem to that of deciding balancedness.

Theorem 4.2. For each diamond-free graph G, G is clique-perfect if and only if G is
balanced.

Proof. Since balanced graphs are clique-perfect, we only need to prove that diamond-
free clique-perfect graphs are balanced, or equivalently, that a diamond-free graph that is
not balanced is not clique-perfect. Let G be a diamond-free graph that is not balanced.
By Theorem 1.4, there is some odd cycle C of G such that for each e ∈ E(C) there
exists a maximal clique Qe containing e but no other vertex of C. We claim that C is
proper. Suppose, by the way of contradiction, that C is not proper; i.e, that there are
two consecutive vertices u and v of C forming a triangle with a third vertex w of V (C).
By construction, Quv contains u and v but not w. Hence, since Quv is a maximal clique,
there is some vertex x ∈ Quv such that x is nonadjacent to w. In particular, {u, v, w, x}
induces a diamond in G, a contradiction. This contradiction arose from assuming that C
was not proper. Thus, C is a proper odd cycle and, by virtue of Theorem 4.1, G is not
clique-perfect, as desired.

Since balanced graphs can be recognized in polynomial time, it follows that clique-
perfectness of diamond-free graphs can be decided in polynomial time.

20

December 26, 2013 International Journal of Computer Mathematics cpbal˙rev2˙subm

Corollary 4.3. It can be decided in polynomial time whether or not any given diamond-
free graph is clique-perfect.

5. Further remarks

In Section 2, we studied clique-perfectness and balancedness of P4-tidy graphs. Namely,
we gave linear-time recognition algorithms and minimal forbidden induced subgraph
characterizations of clique-perfectness and balancedness of P4-tidy graphs, as well as a
linear-time algorithm for computing a maximum clique-independent set and a minimum
clique-transversal set of any given P4-tidy graph. Subsection 2.1 extend results given
in [46] for cographs, which where already extended for a different superclass of cographs
in [51]. A key element of Subsection 2.2 is Theorem 2.10 which characterizes when the
join of any two graphs is balanced and that may prove useful in the study of balanced-
ness beyond the graph classes considered in this work. A different approach for obtaining
linear-time algorithms for P4-tidy graphs was introduced in [28] based on the fact that
the class of P4-tidy graphs has bounded clique-width. This approach allows for linear-
time solutions for recognition and optimization problems that are expressible in terms
of certain monadic second-order logic. For instance, combining the equivalence between
assertions (1) and (2) of our Theorem 2.5 and the expressibility of the latter assertion in
that logic, their approach gives an alternative linear-time algorithm for deciding clique-
perfectness of P4-tidy graphs. An entirely analogous situation holds for the recognition
of balancedness of P4-tidy graphs and the equivalence between assertions (1) and (3) of
our Theorem 2.13 because (3) is also expressible in that logic. Moreover, the minimum
clique-transversal set problem lies within the scope of their approach, which implies an
alternative linear-time algorithm for finding a minimum clique-transversal set of any
given P4-tidy graph. Nevertheless, while an algorithm obtained with this approach also
depends on building a modular decomposition tree of the input graph, the rest of the al-
gorithm may account for huge constant hidden factors in the linear-time complexity (even
for small clique-width bounds) [27], which is unavoidable if one wishes to get results for
general monadic second-order formulas [40]. Therefore, when dealing with a specific prob-
lem, it is of interest to find algorithms that work by performing a simple post-processing
of the modular decomposition tree. Following this direction, the algorithms presented in
Section 2 consist in simple O(n) time traversals of the modular decomposition tree of the
input graph. Moreover, the fact that a maximum clique-independent set can be found in
linear time for any given P4-tidy graph (as we proved in Theorem 2.8), does not seem to
follow from the approach of [28] as the maximum clique-independent set problem seems
not to be directly expressible in the corresponding logic (where quantification over sets
of vertex sets is not allowed).
In Section 3, we characterized those paw-free graphs that are balanced by minimal

forbidden induced subgraphs, from which a linear-time recognition algorithm for bal-
ancedness of paw-free graphs follows. Analogous results on clique-perfectness of paw-free
graphs have been obtained in [13].
In Section 4, we settled the computational complexity of deciding clique-perfectness of

diamond-free graphs (which was left unresolved in [9]) and proved that clique-perfectness
coincides with balancedness for diamond-free graphs. The class of diamond-free graphs
was the only one for which a forbidden induced subgraph characterization of clique-
perfectness of graphs in the class was known but the existence of a polynomial-time
algorithm for deciding clique-perfectness of graphs in the class was unknown. Notice
that it remains unsolved the problem of characterizing clique-perfectness (or, equiva-
lently, balancedness) of diamond-free graphs by minimal forbidden induced subgraphs;
i.e, making explicit the structure of those proper odd cycles that are minimal under

21

December 26, 2013 International Journal of Computer Mathematics cpbal˙rev2˙subm

taking induced subgraphs.

Acknowledgments

The authors are indebted to the referees for insightful comments, corrections, and sug-
gestions that helped to improve this paper. The first three named authors were par-
tially supported by UBACyT Grant 20020100100980, CONICET PIP 112-200901-00178,
and ANPCyT PICT-2012-1324 (Argentina). G. Durán was also partially supported by
FONDECyT Grant 1110797 and Millennium Science Institute ‘Complex Engineering
Systems’ (Chile).

References

[1] V. Balachandran, P. Nagavamsi, and C. Pandu Rangan, Clique transversal and clique independence
on comparability graphs, Inform. Process. Lett. 58 (1996), pp. 181–184.

[2] S. Baumann, A linear algorithm for the homogeneous decomposition of graphs, Report TUM M9615,
Fakultät für Mathematik, Technische Universität München, Munich, Germany, 1996.

[3] C. Berge, Färbung von Graphen, deren sämtliche beziehungsweise, deren ungerade Kreise starr sind
(Zusammenfassung), Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math.-Naturwiss. Reihe 10
(1961), pp. 114–115.

[4] C. Berge, Balanced matrices, Math. Program. 2 (1972), pp. 19–31.
[5] C. Berge and V. Chvátal, Introduction, in Topics on Perfect Graphs, North-Holland Mathematics

Studies, vol. 88, Noth-Holland, 1984, pp. vii–xiv.
[6] C. Berge and M. Las Vergnas, Sur un théorème du type König pour hypergraphes, Ann. N.Y. Acad.

Sci. 175 (1970), pp. 32–40.
[7] F. Bonomo, On subclasses and variations of perfect graphs, Doctoral dissertation, Departamento de

Computación, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina (2005).
[8] F. Bonomo, M. Chudnovsky, and G. Durán, Partial characterizations of clique-perfect graphs I:

subclasses of claw-free graphs, Discrete Appl. Math. 156 (2008), pp. 1058–1082.
[9] F. Bonomo, M. Chudnovsky, and G. Durán, Partial characterizations of clique-perfect graphs II:

Diamond-free and Helly circular-arc graphs, Discrete Math. 309 (2009), pp. 3485–3499.
[10] F. Bonomo, G. Durán, M.C. Lin, and J.L. Szwarcfiter, On balanced graphs, Math. Program. 105

(2006), pp. 233–250.
[11] F. Bonomo, G. Durán, M. Groshaus, and J.L. Szwarcfiter, On clique-perfect and K-perfect graphs,

Ars Combin. 80 (2006), pp. 97–112.
[12] F. Bonomo, G. Durán, M.D. Safe, and A.K. Wagler, On minimal forbidden subgraph characteriza-

tions of balanced graphs, Electron. Notes Discrete Math. 35 (2009), pp. 41–46.
[13] F. Bonomo, G. Durán, F. Soulignac, and G. Sueiro, Partial characterizations of clique-perfect and

coordinated graphs: Superclasses of triangle-free graphs, Discrete Appl. Math. 157 (2009), pp. 3511–
3518.

[14] F. Bonomo, G. Durán, M.D. Safe, and A.K. Wagler, Balancedness of some subclasses of circular-arc
graphs, Electron. Notes Discrete Math. 36 (2010), pp. 1121–1128.

[15] F. Bonomo, G. Durán, M.D. Safe, and A.K. Wagler, Clique-perfectness of complements of line graphs,
Electron. Notes Discrete Math. 37 (2011), pp. 327–332.

[16] F. Bonomo, G. Durán, M.D. Safe, and A.K. Wagler, On minimal forbidden subgraph characteriza-
tions of balanced graphs, Discrete Appl. Math. 161 (2013), pp. 1925–1942.

[17] A. Brandstädt, V.D. Chepoi, and F.F. Dragan, Clique r-domination and clique r-packing problems
on dually chordal graphs, SIAM J. Discrete Math. 10 (1997), pp. 109–127.

[18] B. Buer and R.H. Möhring, A fast algorithm for the decomposition of graphs and posets, Math. Oper.
Res. 8 (1983), pp. 170–184.

[19] M. Chang, M. Farber, and Z. Tuza, Algorithmic aspects of neighbourhood numbers, SIAM J. Discrete
Math. 6 (1993), pp. 24–29.

[20] M.S. Chang, S.Y. Hsieh, and G.H. Chen, Dynamic programming on distance-hereditary graphs, in
Algorithms and Computation, 8th International Symposium, ISAAC ’97, Singapore, December 17-
19, 1997, Proceedings, Lect. Notes Comput. Sci., vol. 1350, Springer, 1997, pp. 344–353.

22

December 26, 2013 International Journal of Computer Mathematics cpbal˙rev2˙subm

[21] M. Chudnovsky, G.P. Cornuéjols, X. Liu, P.D. Seymour, and K. Vušković, Recognizing Berge graphs,
Combinatorica 25 (2005), pp. 143–186.

[22] M. Chudnovsky, N. Robertson, P.D. Seymour, and R. Thomas, The strong perfect graph theorem,
Ann. Math. 164 (2006), pp. 51–229.

[23] V. Chvátal, On certain polytopes associated with graphs, J. Combin. Theory Ser. B 18 (1975), pp.
138–154.

[24] D. Corneil, Y. Perl, and L. Stewart, Cographs: recognition, applications and algorithms, Congr.
Numer. 43 (1984), pp. 249–258.

[25] D.G. Corneil, H. Lerchs, and L. Stewart Burlingham, Complement reducible graphs, Discrete Appl.
Math. 3 (1981), pp. 163–174.

[26] D.G. Corneil, Y. Perl, and L.K. Stewart, A linear recognition algorithm for cographs, SIAM J.
Comput. 14 (1985), pp. 926–934.

[27] B. Courcelle, A multivariate interlace polynomial and its computation for graphs of bounded clique-
width, Electron. J. Comb. 15 (2008), # R69.

[28] B. Courcelle, J.A. Makowsky, and U. Rotics, Linear time solvable optimization problems on graphs
of bounded clique-width, Theory Comput. Syst. 33 (2000), pp. 125–150.

[29] A. Cournier and M. Habib, A new linear algorithm for modular decomposition, in Trees in Algebra
and Programming - CAAP’94, 19th International Colloquium, Edinburgh, U.K., April 11-13, 1994,
Proceedings, Lect. Notes Comput. Sci., vol. 787, Springer, 1994, pp. 68–84.

[30] E. Dahlhaus, J. Gustedt, and R.M. McConnell, Efficient and practical algorithms for sequential
modular decomposition, J. Algorithms 41 (2001), pp. 360–387.

[31] E. Dahlhaus, P.D. Manuel, and M. Miller, Maximum h-colourable subgraph problem in balanced
graphs, Inform. Process. Lett. 65 (1998), pp. 301–303.

[32] G. Durán, M.C. Lin, and J.L. Szwarcfiter, On clique-transversal and clique-independent sets, Ann.
Oper. Res. 116 (2002), pp. 71–77.

[33] G. Durán, M.C. Lin, S. Mera, and J.L. Szwarcfiter, Algorithms for clique-independent sets on sub-
classes of circular-arc graphs, Discrete Appl. Math. 154 (2006), pp. 1783–1790.

[34] G. Durán, M.C. Lin, S. Mera, and J.L. Szwarcfiter, Algorithms for finding clique-transversals of
graphs, Ann. Oper. Res. 157 (2008), pp. 37–45.

[35] J. Edmonds, Paths, trees, and flowers, Can. J. Math. 17 (1965), pp. 449–467.
[36] J. Egerváry, Matrixok kombinatorikus tulajdonságairól, Mat. Fiz. Lapok 38 (1931), pp. 16–28.
[37] P. Erdős, T. Gallai, and Z. Tuza, Covering the cliques of a graph with vertices, Discrete Math. 108

(1992), pp. 279–289.
[38] M. Farber, Characterizations of strongly chordal graphs, Discrete Math. 43 (1983), pp. 173–189.
[39] J.L. Fouquet and V. Giakoumakis, On semi-P4-sparse graphs, Discrete Math. 165–166 (1997), pp.

277–300.
[40] M. Frick and M. Grohe, The complexity of first-order and monadic second-order logic revisited, Ann.

Pure Appl. Logic 130 (2004), pp. 3–31.
[41] D.R. Fulkerson, A.J. Hoffman, and R. Oppenheim, On balanced matrices, in Pivoting and Extensions:

In honor of A.W. Tucker, M. Balinski, ed., Mathematical Programming Study, vol. 1, North-Holland,
Amsterdam, 1974, pp. 120–133.

[42] H. Gabow and R. Tarjan, Faster scaling algorithms for general graph-matching problems, J. ACM
38 (1991), pp. 815–853.

[43] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hung. 18 (1967), pp. 25–66.
[44] V. Giakoumakis, F. Roussel, and H. Thuillier, On P4-tidy graphs, Discrete Math. Theor. Comput.

Sci. 1 (1997), pp. 17–41.
[45] M.C. Golumbic, Trivially perfect graphs, Discrete Math. 24 (1978), pp. 105–107.
[46] V. Guruswami and C. Pandu Rangan, Algorithmic aspects of clique-transversal and clique-

independent sets, Discrete Appl. Math. 100 (2000), pp. 183–202.
[47] C.T. Hoàng, Perfect graphs, Ph.D. thesis, School of Computer Science, McGill University, Montreal,

Canada (1985).
[48] B. Jamison and S. Olariu, A new class of brittle graphs, Stud. Appl. Math. 81 (1989), pp. 89–92.
[49] B. Jamison and S. Olariu, On a unique tree representation for P4-extendible graphs, Discrete Appl.

Math. 34 (1991), pp. 151–164.
[50] D. Kőnig, Graphok és Matrixok, Mat. Fiz. Lapok 38 (1931), pp. 116–119.
[51] C.M. Lee and M.S. Chang, Distance-hereditary graphs are clique-perfect, Discrete Appl. Math. 154

(2006), pp. 525–536.
[52] J. Lehel and Z. Tuza, Neighborhood perfect graphs, Discrete Math. 61 (1986), pp. 93–101.
[53] R.M. McConnell and J.P. Spinrad, Modular decomposition and transitive orientation, Discrete Math.

201 (1999), pp. 189–241.
[54] H. Meyniel, The graphs whose odd cycles have at least two chords, in Topics on Perfect Graphs, C.

23

December 26, 2013 International Journal of Computer Mathematics cpbal˙rev2˙subm

Berge and V. Chvátal, eds., North-Holland Mathematics Studies, vol. 88, Noth-Holland, 1984, pp.
115–119.

[55] S. Olariu, Paw-free graphs, Inform. Process. Lett. 28 (1988), pp. 53–54.
[56] K. Parthasarathy and G. Ravindra, The strong perfect-graph conjecture is true for K1,3-free graphs,

J. Combin. Theory Ser. B 21 (1976), pp. 212–223.
[57] E. Prisner, Hereditary clique-Helly graphs, J. Combin. Math. Combin. Comput. 14 (1993), pp. 216–

220.
[58] R.B. Sandeep, Perfectly colorable graphs, Inform. Process. Lett. 111 (2011), pp. 960–961.
[59] D. Seinsche, On a property of the class of n-colorable graphs, J. Combin. Theory Ser. B 16 (1974),

pp. 191–193.
[60] M. Tedder, D. Corneil1, M. Habib, and C. Paul, Simpler linear-time modular decomposition via

recursive factorizing permutations, in Automata, Languages and Programming, 35th International
Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I, Lect. Notes
Comput. Sci., vol. 5125, Springer, 2008.

[61] S. Tsukiyama, M. Idle, H. Ariyoshi, and Y. Shirakawa, A new algorithm for generating all the
maximal independent sets, SIAM J. Comput. 6 (1977), pp. 505–517.

[62] A. Tucker, The strong perfect graph conjecture for planar graphs, Can. J. Math. 25 (1973), pp.
103–114.

[63] A. Tucker, Coloring perfect (K4 − e)-free graphs, J. Combin. Theory Ser. B 42 (1987), pp. 313–318.
[64] D.B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall (2001).
[65] G. Zambelli, A polynomial recognition algorithm for balanced matrices, J. Combin. Theory Ser. B

95 (2005), pp. 49–67.

24

