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a b s t r a c t

The relative stability of the short range ordered and different long range ordered structures in body
centered cubic Cu–Al–Zn is studied bymeans of the Cluster VariationMethod in the Irregular Tetrahedron
approximation (IT-CVM). The energetic parameters (constant pair interchange energies for first and
second neighbor pairs) used in our calculations have been extracted from experimental order–disorder
transition temperatures. It is shown that the use of constant pair interchange energies allows accurate
reproduction of the experimental transition temperatures in the binary subsystems Cu–Al and Cu–Zn.
Several isothermal sections of the ternary system at temperatures between 600 and 900 K have been
calculated. The two-phase field for compositions around Cu3Al in the ternary system was determined: It
was found that such region extends to around 15 at.% Zn in the pseudo-binary Cu0.76–0.5x–Al0.24–0.5x–Znx.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The bcc β phase of the ternary Cu–Al–Zn alloy deserves
attention due to its various technological applications. Besides
the importance of this system in relation to the properties of
aluminum brasses, it has an interesting shape memory behavior
associated with a martensitic transformation that takes place at
low temperatures. This non-diffusive transformation occurs from
the disordered or short range ordered bcc (A2) or one of the long
range ordered structures derived from it (B2, L21,DO3) to a close
packed structure (martensite). Cooling fromhigh temperatures the
disordered β phase could suffer one or two ordering reactions;
the number and nature of such transitions depend on the alloy
composition. The type and degree of order present in the β
phase1at a given composition and temperature constitutes a very
important point in relation to the martensitic transformation:
The degree of order in the parent phase is inherited by the
martensitic phase, modifying its physical properties. Thus, the
study of ordering phenomena in these systems deserves interest
not only from the point of view of basic research, but also for their
potential technological applications.

∗ Corresponding author. Tel.: +54 2293 439670; fax: +54 2293 439679.
E-mail address: flanzini@exa.unicen.edu.ar (F. Lanzini).

1 For the sake of clarity, we will use the term ‘‘β phase’’ to refer both to the short
range ordered bcc phase, A2, and to the long range ordered phases derived from it
(B2, L21 or DO3).

In a recentwork [1] the temperatures of the ordering transitions
for a considerable number of alloys in the line of compositions
Cu0.76–0.5x–Al0.24–0.5x–Znx have been measured. This line of
compositions, joining the binaries Cu0.76Al0.24 and Cu0.52Zn0.48,
corresponds to a constant conduction electron to atom ratio, e/a =

1.48. It has been shown that, for the compositions richer in Al
(x ≤ 0.05), there is a single ordering reaction from the short
range disordered configuration, A2, to a state with long range
order in nearest and next nearest neighbors L21(DO3). For higher
Zn contents, this transition splits into two separate stages; a first
transition from A2 to B2 (ClCs type configuration) is followed by
a B2 → L21 transition at lower temperatures. Based on these
experimental results, a set of pairwise energetic parameters
(interchange energies) has beendeduced,which allows an accurate
reproduction of the experimental data in that particular pseudo-
binary section. The present work can be considered an extension
of [1], as it is aimed to explore several questions that arise naturally
from the above mentioned results.

A first question refers to the validity of these interchange
energies for other compositions beyond those that have been
previously studied. In the presentwork,we analyze the predictions
of these interchange energies in the limiting binary alloys Cu–Al,
Cu–Zn andZn–Al, and compare these resultswith the experimental
data available (Section 3.1). The phase competition between the
different ordered phases in the ternary Cu–Al–Zn is explored
by calculating four isothermal sections, corresponding to T =

600, 700, 800 and 900 K (Section 3.2). There is another important
issue to be treated in this work: In the binary bcc Cu–Al alloy, at

0364-5916/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.calphad.2011.05.007
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compositions close to Cu3Al and temperatures around 800 K, there
is a two-phase field between the short range ordered phase A2 and
a structure with long range order in first and second neighbors,
DO3 [2]. This two-phase region also should exist in ternary systems
based on Cu3Al with small additions of the third element: In
fact, experimental studies in Cu–Al–Mn [3], Cu–Al–Zn [1] and
Cu–Al–Be [4–6] reported a first-order character of the ordering
reactions in alloys with a low content of the third element, thus
indicating the existence of such coexistence region [7]. However,
for none of these systems an estimate of the extension of this two-
phase field has been given. This is not a minor point, attending to
the effects that this possible heterogeneity in the matrix bcc phase
may have in the low temperature martensitic transformation. In
the present work, we perform a first estimation of the size of the
two-phase field in the ternary Cu–Al–Zn system, with particular
emphasis in the line of compositions Cu0.76–0.5x–Al0.24–0.5x–Znx;
these results are presented in Section 3.3.

Several theoretical techniques to study the relative stability of
different ordered or disordered phases are available nowadays; a
revision of them can be found in [8–10]. Two of these methods
have proven to be more useful to determine phase equilibria
at finite temperatures [9]: The Cluster Variation Method (CVM),
introduced by Kikuchi [11], and the Monte Carlo (MC) simulation
method [12,13]. The MC technique has proven to be a very
accurate method, provided that a suitable Hamiltonian and the
correct energetic parameters are used. The main drawback of this
method is that, even with the computational facilities available
nowadays, the simulations of some systems are significantly time
consuming and, therefore, impractical. For instance, a survey
in the literature shows that a comparatively minor number
of publications applies the MC method to the study of phase
equilibria in ternary alloys, and these studies generally restrict
the calculations to a reduced range of compositions. On the other
hand, the CVM is a variational method in which the entropy is
formulated analytically in terms of the occupation probabilities of a
givenmaximal cluster. This formulation implies a truncation of the
configurational entropy, given by the size of the maximal cluster
(see, for instance, [14]). Theminimizations involved in thismethod
can be performed with much less computational effort than that
required by the MC method. In addition, it has been shown that
the phase diagrams calculated in binary systems within the so-
called irregular tetrahedron (IT) approximation of CVM (Section 2)
agree closely with the ones predicted by the MC method [15,16].
Consequently, this approximation has become the preferred tool
for the calculation, also, of phase diagrams in ternary bcc systems.
In the present work, the phase diagrams of the binary systems
Cu–Al, Cu–Zn and Zn–Al, and four isothermal sections of the
Cu–Al–Zn phase diagram are calculated within IT-CVM. For some
particular range of compositions and temperatures, the predictions
of IT-CVM are benchmarked against results of the MC method.

Although, as will be shown below, the present semi-empirical
approach satisfactorily reproduces the observed order–disorder
transitions in the binary subsystems and a vertical section of
the ternary system, there is no reason to rely on the predicted
enthalpies of formation of the compounds in the limit of the IT
approximation. For example, it is known that the binary ground
state diagrams results symmetrical and there is a constraint
between the enthalpies of formation for compounds at the
equiatomic composition. As has been shown in [17] for the Cu–Al
case in particular, amore elaborate approach includingmulti-body
interactions can lead to a drastic change in the morphology of
the predicted phase diagram and values of the pairwise energy
parameters. But, such an approach goes beyond the IT cluster
expansion and to the authors’ knowledge there exists no extension
in the literature to a ternary system using either CVM or MC
calculations. Then, the numerical values of the pairwise energy

Fig. 1. The irregular tetrahedron cluster in the bcc lattice.

parameters used in this work are to be taken as ‘‘effective’’
interaction energies.

The present paper is organized as follows. In Section 2 we
present themethodology implemented for the calculations, i.e., the
formalism of the Cluster Variation Method in the irregular tetra-
hedron approximation, and the minimization procedure utilized.
In Section 3 the results of our calculations are presented: The
predictions of IT-CVM for the three limiting binaries are dis-
cussed in Section 3.1; these results are confronted with ex-
perimental data and with MC calculations over reduced ranges
of composition and temperatures. In Section 3.2, four ternary
Cu–Al–Zn isothermal sections calculated within IT-CVM are pre-
sented. These isotherms correspond to T = 600, 700, 800 and
900 K. In Section 3.3, a close inspection of the predictions of the
method along the pseudo-binary section Cu0.76–0.5x–Al0.24–0.5x–
Znx(Cu0.76Al0.24 ↔ Cu0.52Zn0.48) is made. The use of CVM calcu-
lations in the grand-canonical ensemble allows an estimation of
the extension of the two-phase field at compositions around Cu3Al.
Results for this line of composition are confronted with previous
results of MC simulations in the canonical ensemble. Finally, in
Section 4 we discuss the results and outline the conclusions.

2. Methodology

The Cluster Variation Method (CVM) is the name of a hierarchy
of approximations to the configurational free energy of an alloy.
This method was firstly proposed by Kikuchi [11] and has been
extensively applied to the study of different alloy systems. The
main idea behind the CVM is to write the configurational free
energy of the alloy as a function of the probabilities of occupation of
a given maximal cluster; as the number of atoms contained in this
maximal cluster increases, so does the accuracy of the approach.
For bcc based binary alloys, it has been shown that sufficiently
accurate results [15,16] can be reached by using, as a maximal
cluster, an irregular tetrahedron as the one shown in Fig. 1.

The irregular tetrahedron comprehends four first neighbor
pairs (I–III, I–IV, II–III and II–IV) and two second neighbor pairs
(I–II and II–IV). If Zijkl represents the probability that atoms of types
i, j, k, and l (for a binary alloy, i, j, k, l can take one between two
values – 0 and 1, for instance – representing the two type of atoms;
for a ternary system, they take one between three different values)
occupy the sites I to IV (in this order), then the configurational
grand potential of the system:

Ω = U − T · S − N
n

i=1

µi · xi (1)

can be written in terms of the cluster probabilities Zijkl. The con-
figurational internal energy, U , and the configurational entropy, S,
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take the form [18]:

U = 6N

ijkl

εijklZijkl (2)

S = −NkB


6


i,j,k,l

L(Zijkl) − 3

i,j,k

(L(U I–II–III
ijk ) + L(U I–II–IV

ijk )

+ L(U I– III–IV
ijk ) + L(U II–III–IV

ijk ))

+
3
2


i,j

(L(V I–II
ij ) + L(V III–IV

ij )) +


i,j

(L(Y I–III
ij )

+ L(Y I–IV
ij ) + L(Y II–III

ij ) + L(Y II–IV
ij ))

−
1
4


i

(L(pIi) + L(pIIi ) + L(pIIIi ) + L(pIVi ))


(3)

with kB the Boltzmann constant and L(x) = x · ln(x). In the preced-
ing expressions, εijkl is the energy of a tetrahedronwith occupation
i, j, k, l. The remaining probabilities appearing in the entropy ex-
pression (Uα−β−γ

ijk , V α−β

ij , Y α−β

ij and pα
i ) refer to the probability of

occupation of sub-clusters embodied in the tetrahedron (triangles,
first neighbor pairs, second neighbor pairs and sites, respectively),
and are just linear combinations of the Zijkl’s. These relations (re-
duction relations), can be found in Refs. [16,19]. The last term in
Eq. (1) contains the atomic fractions of each element, xi, which are
related to the site probabilities by means of

xi =
1
4
(pIi + pIIi + pIIIi + pIVi ). (4)

The chemical potentials µi are not all independent, and it is possi-
ble to introduce a new set of chemical potentials µ∗

i (the ‘‘baricen-
tric’’ chemical potentials, [19,20]) which fulfill the relation

i

µ∗

i = 0.

For an n-components alloy, this condition is achieved by defin-
ing [19]

µ∗

i = µi −
1
n

n
j=1

µj.

With this transformation, the equilibrium state of an alloy at a
given temperature T and ‘‘baricentric’’ chemical potentials {µ∗

i } is
found by minimizing the CVM potential

Ω∗
= U − T · S − N

n
i=1

µ∗

i · xi (5)

with respect to the cluster probabilities Zijkl. It is worth emphasiz-
ing that the molar fractions of the different elements, xi, are not
fixed a priori but obtained as a by-product of the minimization.

There are two different methods that can be used to minimize
the CVM potential in Eq. (5): The Newton–Raphson method and
the natural iteration method (NIM) developed by Kikuchi [21]. In
the present work we have chosen the latter; a clear description of
the iteration mechanism involved in NIM can be found in [18].

When the energetics of a given alloy system being restricted to
the consideration of pair interactions alone (i.e., neglecting multi-
body corrections), the ordering or clustering tendency of different
atomic species is better described by the so-called interchange
energiesW (k)

AB , defined as:

W (k)
AB = −2V (k)

AB + V (k)
AA + V (k)

BB

with V (k)
AB the interaction potential between atoms of specie A and B

placed at the distance corresponding to k-th neighbors (please note
that the linear combination above differs by a factor 2, and a sign
inversion,with the expression used by other authors, e.g. Ref. [19]).

Table 1
First and second neighbors interchange energies for the Cu–Al–Zn system [1]
(1kB K = 8.31 J/mol).

W (1)
CuZn = 955kB K W (2)

CuZn = 535kB K

W (1)
CuAl = 1660kB K W (2)

CuAl = 920kB K

W (1)
ZnAl = −45kB K W (2)

ZnAl = 285kB K

a

b

c

Fig. 2. Continuous A2 ↔ B2 transition in Cu–Al at 1300 K. (a) Difference in the
CVM potential of both phases. (b) Evolution of the lro parameter η. (c) Derivative
of η respect to the chemical potential; the peak in this curve is identified as the
transition point.

In Ref [1], a set of constant interchange energies for first and
second neighbor pairs for bcc Cu–Al–Zn has been determined
(Table 1). These values have been derived by fitting to the mea-
sured order–disorder temperatures along the line of compositions
Cu0.76–0.5x–Al0.24–0.5x–Znx by performing Monte Carlo simulations
in the canonical ensemble.

The cluster energies εijkl in Eq. (2) can be written as linear
combinations of the interchange energies:

εijkl = −
1
12

(W (1)
ik + W (1)

il + W (1)
jk + W (1)

jl ) −
1
8
(W (2)

ij + W (2)
kl ). (6)

In this work, we take as a starting point the interchange energies
listed in Table 1. By replacing these interchange energies into
the CVM potential (Eq. (5)) through (Eq. (6)) and performing its
minimization with NIM, the phase diagram of the ternary bcc
Cu–Al–Zn system (and of the three limiting binaries) has been
calculated. In order to determine the point at which a given phase
transition takes place, we have used different criteria according
to the nature of the phase transition is first-order or continuous.
In the first case, the values of the chemical potentials {µ∗

i } at
which the transition takes place is determined by evaluating the
CVMpotentials (5) for the two competing phases, and determining
the point where they intersect. For continuous (second order)
transitions the problem of determining the point at which the
transition occurs has to be considered with some more detail. The
second order transition point can be determined by calculating
the second Hessian determinant, or by plotting the difference in
grand potentials between both phases against chemical potential
and searching for the point where this difference vanishes [18].
The drawback of the second procedure is that the grand potentials
of both phases do not really intersect, but they contact at the
transition pointwith the same slope; the convergence between the
curves is generally so fuzzy that a determination of the intersection
point can be difficult (Fig. 2(a)). In the present work, we used an
alternative approach that yields equivalent results, and it is based
on the fact that the ordered phase has no metastable continuation
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Fig. 3. Calculated phase diagrams for (a) Cu–Al, (b) Cu–Zn and (c) Zn–Al. The insets show the comparison with experimental measurements [2,25].

in the range of stable disordered states. For each second order
transition, we defined an order parameter η representative of the
lro degree in the ordered phase (or, strictly speaking, in the less
symmetrical phase). This order parameter can be constructed as a
difference between site occupation probabilities, pα

i . Starting from
the ordered state and varying the chemical potential this order
parameter gradually vanishes (Fig. 2(b)). We have taken as the
point of the second order transition the one at which ∂η

∂µ∗ shows a
peak (Fig. 2(c)). This situation is illustrated in Fig. 2 for theA2 ↔ B2
transition in the binary Cu–Al at 1300K. For this transition, the long
range order parameter can be defined as the difference between
Cu occupation of sublattices I and II: η ∝ pICuh − pIICu. The same
criterion has been used for the ternary system and for other kind of
continuous transitions (with a proper definition of η). It should be
noted, however, that a naive use of derivatives to locate transitions
could lead to the detection of ‘‘spurious’’ miscibility gaps close to
stoichiometric compositions at low temperatures [22–24].

3. Results

3.1. Binary subsystems

The predicted phase diagrams for the binary systems Cu–Al,
Cu–Zn and Zn–Al are represented in Fig. 3(a)–(c), respectively.

The insets in Fig. 3(a)–(b) indicate that the pair interchange ener-
gies in Table 1 reasonably reproduce the measured order–disorder
transitions in both Cu–Al and Cu–Zn (in the range of compositions
inwhich the bcc structure is stable or can be retained inmetastable
form). The inset in Fig. 3(a) shows a reduced range of compositions
around the stoichiometric Cu3Al. The circles correspond to the
limits of the A2/DO3 two-phase field according to the data com-
piled by Murray [2]. Despite our CVM calculations slightly overes-
timating the temperatures of such limits, the agreement with the
experiment can be considered satisfactory. As discussed above, the
truncation of the entropic term in CVM leads to some overesti-
mation of the transition temperatures in comparison with the MC
results that are, in principle, exacts. In order to estimate the de-
gree of inaccuracy, we benchmarked both methods in the reduced
range of compositions and temperatures shown in the inset of
Fig. 3(a). It can be seen that both methods agree with the topology
of the two-phase region. The temperatures of the A2/A2+DO3 and
A2+DO3/DO3 limits predicted by IT-CVMare roughly 5% above the
MC predictions; other authors [15,16] had found a similar devia-
tion. A similar comparison for the A2 ↔ B2 continuous transition
in bcc Cu–Zn is made in the inset of Fig. 3(b). Again, the predictions
of IT-CVM are in reasonable agreement with the MC results. The
fact that, in this case, the transition temperatures calculated with
CVM reproduce more closely the experimental data [25] indicates
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(a) (b)

(c) (d)

Fig. 4. Calculated isothermal sections in the Cu–Al-Zn system. The straight line represents the set of compositions Cu0.76–0.5x–Znx–Al0.24–0.5x , and the grey shaded regions
are the stability limits of the bcc based structures.

that the values ofW (1)
CuZn andW (2)

CuZn are somewhat below their actual
values. In general, despite these minor discrepancies with respect
to the experimental temperatures of the transitions, the phase sta-
bility limits are satisfactorily reproduced by our model. Both the
nature of the transitions (first order or continuous) and that of the
involved phases are correctly predicted, and also the morphology
of the calculated phase diagram closely follows the experimental
data. For the Cu–Al and Cu–Zn systems we performed additional
very careful calculations around a Cu content of 0.3 (0.7); these
calculations (not shown here) indicate that the narrow two-phase
fringe extends up to near the top of the DO3 field, and, then, that
the phase rules are not violated.

The predictions for the Zn–Al system cannot be confrontedwith
experimental information, because this system does not display a
bcc structure in any range of compositions [26]. However, the fact
that our calculations only predict a hypothetical ordered phase at
low temperatures (Fig. 3(c)) is consistent with the fact that Zn and
Al atoms do not show ordering tendency.

3.2. Ternary isothermal sections

In Fig. 4(a)–(d), four complete isothermal sections of the ternary
Cu–Al-Zn phase diagram are represented.

The straight line represents the compositionswith a conduction
electron to atom ratio e/a = 1.48, that will be discussed with
more detail in Section 3.3. The phase diagrams are dominated by

the existence of a wide region of stability of the B2 structure.
This region centers on the line connecting the two stoichiometric
binaries CuAl and CuZn. As the temperature increases the B2
field stretches, keeping the same topology. At 600, 700 and
800 K, the L21 phase, ordered in first and second neighbors is
stable within composition ranges centered on Cu3Al and CuAl3,
respectively. Superimposed onto our calculations, we have drawn
the (approximated) regions of stability of the bcc structure [27].
Although we present, for the sake of completeness, the full
isothermal sections, the range of compositions that deserves
attention from the point of view of practical applications is
the grey-shaded region and their immediate surroundings. At
compositions well apart from this region the bcc structure (and
the ordered structures derived from it) is not stable, nor can it be
retained in metastable form.

A word of caution with respect to the nature of the phase
ordered in first and second neighbors is necessary at this point:We
have not made a clear distinction between DO3 and L21 structures
yet. The first name, DO3, is generally reserved to binary alloys,
whereas in ternary systems both structures have been reported.
A binary stoichiometric DO3 compound (prototype Fe3Al) has
composition A3B, and its atomic distribution can be seen with
the help of Fig. 1, by imagining the A atoms occupying sites I,
II and III, and B atoms in sites IV. A ternary stoichiometric L21
compound has composition A2BC (prototype Cu2AlMn), with A
atoms on sites I and II, B atoms on IV and C atoms on III. Both
structures are symmetrically equivalent [28] and, consequently,
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Fig. 5. Transition temperatures for alloys along the line of compositions
Cu0.76–0.5x–Al0.24–0.5x–Znx . Open circles are the experimental results, and the
triangles represent the fitting with MC simulations [1]. The black circles are the
corresponding IT-CVM results.

some publications do not make a clear distinction between them.
In the off-stoichiometric case, the two structures are better
distinguished in terms of the site occupation probabilities, pα

i . For
the DO3 configuration, pIA = pIIA = pIIIA ≠ pIVA , whereas for L21

order pIA = pIIA ≠ pIIIA ≠ pIVA ≠ pIA [29]. In the present calculations,
the phase ordered in first and second neighbors has, both in the
binary and the ternary cases, site occupation probabilities that
correspond to the definition given above for L21 order (except,
probably, at very low temperatures and compositions close to the
stoichiometry A3B). However, in the binary phase diagrams of
Fig. 3, we have conserved the historical convention. In fact, if the
atomic distribution were the one strictly corresponding to the site
occupation probabilities of a DO3 structure, the transition from the
B2 phasewould have to be first-order, as imposed by the symmetry
of the involved phases [3]; as can be seen in Fig. 3(a)–(b), this is not
the case.

3.3. Section Cu0.76–0.5x–Znx–Al0.24–0.5x

In Fig. 5 the measured order-order and order–disorder tem-
peratures for alloys with compositions along the line Cu0.76–0.5x–
Al0.24–0.5x–Znx(e/a = 1.48) are represented with open circles. The
triangles represent the fit to the experimental data with MC simu-
lations in the canonical ensemble [1], using the same set of inter-
change energies as in the present work (Table 1). The black circles
in Fig. 5 represent the predictions of IT-CVM in the grand canon-
ical ensemble. Critical temperatures have been determined by
calculating the intersection of the phase frontiers in different
isothermal sections with the straight line representing the compo-
sitions of interest, as indicated in Fig. 4; the uncertainties in compo-
sition associatedwith this procedure are represented as horizontal
bars.

Themajor aim for the re-assessment in this line of compositions
was to make an estimation of the extent of the two-phase field
in the ternary system. As discussed in the Introduction, this is a
question that deserves attention from the point of view of practical
applications. The coexistence region is wedge-shaped, with a
maximum broadening in temperatures around 20 K in the binary
edge x = 0 and becoming gradually thinner as the Zn content
increases. The gap closes at around 15 at.% Zn. For low Zn contents
the coexisting phases are A2 and L21(DO3), whereas for higher
contents of Zn and temperatures below775K the coexisting phases
are B2 and L21. It is worth noting that calorimetric measurements
on alloys with Zn contents up to x = 0.05 show that the peak
associated with the ordering reaction has the typical shape of a

first-order transition [1], whereas for x >= 0.11 the calorimetric
peak of the B2 ↔ L21 transition resembles, more likely, a
continuous transition. This seems to indicate that the present
calculation slightly overestimates the extent in composition of
the two-phase region; however, more detailed information is
necessary in order to make a conclusive assertion about this point.

A result of the present calculations is that, as can be
seen in Fig. 5, although the IT-CVM correctly reproduces the
topology of the phase diagram for this pseudo-binary section,
the overestimation of the transition temperatures is considerably
greater than the values that have been reported for binary
alloys [15,16]. This is an important observation, because there is
a considerable number of publications in which ternary phase
diagrams are calculated within this approximation, based on the
fact that the discrepancies in the binary case are not substantial.
However, we have not found a systematic comparison of MC and
IT-CVM results for the case of bcc ternary systems. In fact, as the
present results show, the differences between MC and IT-CVM
transition temperatures at the two binary extremes x = 0 and x =

0.48 remain between reasonable limits, but they increase as we
move away from these compositions and the ternary character
of the alloys becomes more relevant. The major discrepancies in
Fig. 5 occur at compositions around x = 0.25, i.e., well inside
the ternary triangle. Given that first and second nearest-neighbor
interactions remain the same in the MC and CVM calculations,
the accuracy of the free energy determination with the CVM
method in the ternary alloy could be improved including higher
order correlation functions in the configurational entropy by
increasing the size of the maximal cluster [30]. For bcc systems,
one appropriate extension could be the octahedron or octahedron-
pentuplet maximal cluster [17].

4. Conclusions

In the present work, we analyze the relative stabilities of
the different ordered and disordered bcc-based structures in the
Cu–Al–Zn systems. Calculations were based on a simple approach
involving pair interactions in first and second neighbors, without
considering more distant interactions or multi body corrections.
The energetic parameters have been extracted from a previous
fit to experimental order/disorder temperatures. Determination
of the equilibrium state of the alloy at given temperature and
chemical potentials has been performed by minimization of the
thermodynamic potential obtained in the Irregular Tetrahedron
approximation of the Cluster Variation Method (IT-CVM). This
approach satisfactorily accounts for the measured order/disorder
transitions in the binary Cu–Zn and Cu–Al alloys, and yields
transition temperatures that are in agreementwith the predictions
of the Monte Carlo (MC) method. Four complete isothermal
sections of the ternary systemat T = 600, 700, 800 and900Khave
been calculated using IT-CVM in the grand canonical ensemble.
In this range of temperatures, the ternary phase diagram is
dominated by a B2 stability field, oriented along the line joining
the equiatomic CuZn and CuAl. At T = 600, 700 and 800 K, two
regions of stability of the L21 phase appear, centered at Cu3Al
and CuAl3, respectively. A detailed analysis of the pseudo-binary
section Cu0.76–0.5x–Al0.24–0.5x–Znx indicates the existence of a two-
phase field between the short range ordered bcc phase A2 and
the low temperature long range ordered phases L21 and B2. This
heterogeneous region extends from the binary Cu0.76Al0.24 and
closes at a composition near Cu0.685Zn0.15Al0.165.
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