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a b s t r a c t

Current regulations demand that at least two exits should be available for a safe evacuation
during a panic situation. The second exit is expected to reduce the overall clogging, and
consequently, improve the evacuation time. However, rooms having contiguous doors not
always reduce the leaving time as expected. We investigated the relation between the
door’s separation and the evacuation performance.We found that there exists a separation
distance range that does not really improve the evacuation time, or it can even worsen
the process performance. To our knowledge, no attention has been given to this issue in
the literature. This work reports how the pedestrian’s dynamics differ when the separation
distance between two exit doors changes and how this affects the overall performance.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The practice of providing two doors for emergency evacuation can be traced back to the last Qing dynasty in China (1644–
1911 AD). A mandatory regulation established that large buildings had to provide two fire exits [1]. This kind of regulations
upgraded to current standard codes with detailed specifications on the exits position, widths and separations [2,3].

Current regulations claim that the minimum door width should be 0.813 m while the maximum door-leaf should not
exceed 1.219 m [3,4]. If more than two doors are required, the distance between two of them must be at least one-half or
one-third of the room diagonal distance. But, no special requirements apply to the rest of the doors.

The rulings leave some space for placing the extra openings (i.e. those above two exits) at an arbitrary separation distance.
Thus, it is possible to place a couple of doors on the same side of the room at any distance. The special case of two contiguous
doors has been examined throughout the literature [5–8].

Kirchner and Schadschneider studied the pedestrians evacuation process through two contiguous doors using a cellular
automaton model [5]. The agents were able to leave the room under increasing panic situations for behavioral patterns
varying from individualistic pedestrians to strongly coupled pedestrians moving like a herd. The evacuation time was found
to be independent of the separation distance between doors for the individualistic pedestrians in a panic situation. But if
the pedestrians were allowed to move like a herd, an increasing evacuation time for small separation lengths (less than 10
individuals size) was reported.

The above conclusions are not in complete agreement with the investigation acknowledged in Ref. [6]. The authors assert
that the total number of pedestrians leaving the room per unit time slows-down for separation distances (between doors)
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smaller than four doorwidths [6]. This slow-down is identified as a disruptive interference effect due to pedestrians crossing
in each other’s path. For the particular case analyzed in this work, the threshold of four door widths (4 dw) corresponds to
the distance separation necessary to distinguish two independent groups of pedestrians, each one surrounding the nearest
door.

Researchers called the attention on the fact that nomatter how separated the two contiguous doors are placed, the overall
performance does not improve twice with respect to a single exit (of the same total width). This effect is attributed to some
sort of pedestrian interference [6].

Although the above results were obtained for very narrow doors (i.e. single individual width), further investigation
showed that they also apply to doors allowing two simultaneous leaving pedestrians. However, this does not hold for a
room with a single door [7]. In this case, it is true that the mean flux of evacuating people increases with an increasing door
width, but the ratio flux per door width decreases [9].

It was observed in Ref. [5,7] that the two contiguous doors should not be placed near thewall corners, since the side walls
affect negatively the evacuation efficiency. No further explanation was given on this phenomenon, although the authors
concluded this may cause a worsening in the evacuation performance for large separation distances between doors.

A recent investigation (Ref. [8]) on evacuation processes of cellular automata suggests that five distances should be taken
into account when studying the evacuation performance: the total width of the openings (that is, adding the widths of each
door), the doors separation distance, the width difference between the two doors, and the distance to the nearest corner.

From the results shown in Ref. [8], the evacuation time depends on the total width of the openings (if both doors have
the same width). But, for a fixed total width of the opening, it appears that the optimal location of the exits depends on the
doors separation distance.

Our investigation focuses on symmetric configurations with equally sized doors. At variance to the above mentioned
literature, we examine the evacuation dynamics by means of the Social Force Model (SFM). An overview of this model can
be found in Section 2.

In Section 3 we describe the specific settings for the evacuation processes. The measurement conditions for the
simulations can also be found there.

In Sections 4.1 to 4.2.2 the single door configuration is revisited. Its purpose is to make easier the understanding of the
two-doors configuration for very small separation distances dg .

In Section 4.3 we examine the case of two separated doors. We explore the effect of increasing the separation distance
dg until the clogging areas close to each door become almost independent.

Section 5 resumes the pedestrians behavioral patterns, and its consequences on the evacuation performance, for the
different door separation scenarios.

2. Background

2.1. The social force model

The ‘‘social forcemodel’’ (SFM) deals with the pedestrians behavioral pattern in a crowded environment. The basic model
states that the pedestriansmotion is controlled by three kind of forces: the ‘‘desire force’’, the ‘‘social force’’ and the ‘‘granular
force’’. The three are very different in nature, but enter into an equation of motion as follows

mi
dv(i)

dt
(t) = f(i)d (t) +

∑
j

f(ij)s (t) +

∑
j

f(ij)g (t) (1)

wheremi is the mass of the pedestrian i, and vi is its corresponding velocity. The subscript j represents all other pedestrians
(excluding i) and the walls. fd, fs and fg are the desire force, the social force and the granular force, respectively. See
Refs. [10,9,11–13] for details.

The desire force reflects the pedestrian’s own desire to go to a specific place [10]. He (she) needs to accelerate (decelerate)
fromhis (her) current velocity, in order to achievehis (her) ownwillings. As he (she) reaches the velocity thatmakes him (her)
feel comfortable, no further acceleration (deceleration) is required. This velocity is the ‘‘desired velocity’’ of the pedestrian
vd(t). The expression for fd in Eq. (2) handles this issue.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f(i)d (t) = mi
v(i)d (t) − vi(t)

τ

f(ij)s = Ai e(rij−dij)/Binij

f(ij)g = κ g(rij − dij)∆vij · tij

(2)

τ means a relaxation time. Further details on each parameter can be found in Refs. [10,9,11–13].
Notice that the desired velocity vd hasmagnitude vd and points to the desired place at the direction êd. Thus, vd represents

his (her) state of anxiety, white êd indicates the place where he (she) is willing to go. We assume, for simplicity, that vd
remains constant during an evacuation process, but êd changes according to the current position of the pedestrian.
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The social force fs corresponds to the tendency of each individual to keep some space between him and other pedestrians,
or, between him and the walls [14]. The fs expressed in Eq. (2) depends on the inter-pedestrian distance dij. The magnitude
rij = ri + rj is the sum of the pedestrian’s radius, while Ai and Bi are two fixed parameters (rj = 0 for the interaction with the
wall). Thus, fs is a repulsive monotonic force that resembles the pedestrian feelings for preserving his (her) private sphere
[10,14].

The granular force fg appearing in Eq. (1) represents the sliding friction between contacting people (or between people
andwalls). Its expression can be seen also in Eq. (2). It is assumed to be a linear function of the relative (tangential) velocities
∆vij · tij of the contacting individuals. The function g(rij − dij) returns the argument value if rij > dij, while κ is a fixed
parameter (see Refs. [10,9,11–13]).

One of themost remarkable phenomena attained by this model is the ‘‘faster is slower’’ effect. It states that the higher the
desired velocity, the higher the evacuation time [10]. Experimental data has achieved this effect, while the pressure of the
bulk raises as a relevant magnitude in the worsening of the evacuation time. Experiments also show that the bulk pressure
is a function of the number of people and the maximum group speed. The latter is associated to the desired velocity in the
Social Force Model (see Ref. [15]).

2.2. Clustering structures

The time delays during an evacuation process are related to clustering people as explained in Refs. [9,11]. Groups of
pedestrians can be defined as the set of individuals that for any member of the group (say, i) there exists at least another
member belonging to the same group (j) in contact with the former. That is,

i ∈ G ⇔ ∃j ∈ G/dij < ri + rj (3)

where G corresponds to any set of individuals. This kind of structure is called a human cluster.
From all human clusters appearing during the evacuation process, those that are simultaneously in contact with thewalls

on both sides of the exit are the ones that possibly block the way out. Thus, we are interested in the minimum number of
contacting pedestrians belonging to this blocking cluster that are able to link both sides of the exit. We call this minimalistic
group as a blocking structure. Any blocking structure is supposed to work as a barrier for the pedestrians in behind.

2.3. The local pressure on the pedestrians

The pressure on a single pedestrian (say, i) is defined as [10]

Pi =
1

2πri

N−1∑
j=1

f(ij)s · nij (4)

f(ij)s are the forces acting on the individual i due to the other individuals. Recall that these forces point from any individual j
to the individual i, and thus, the products f(ij)s · nij are always positive.

Notice that Eq. (4) holds either if the pedestrians are in contact or not. The feelings for preserving the private sphere actuate
as a ‘‘social pressure’’ that makes possible for the individuals to change their behavioral pattern when they come too close
to each other or to the walls.

A more formal definition for the ‘‘social pressure’’ is given in Appendix A. We show that the Eq. (4) is in accordance with
the one in Appendix A, if the momentum pi of the individuals become neglectable. Thus, the expression (4) is suitable for
clogging situations where the pedestrians move slowly.

We further applied the formal definition for the ‘‘social pressure’’ to a simple example in Appendix B. We also checked
that both definitions give the same results all through Section 4.

3. Numerical simulations

3.1. Geometry and process simulation

We simulated different evacuation processes for room sizes of 20 m × 20 m, 30 m × 30 m and 40 m × 40 m. The rooms
had one or two exit doors on the same wall, as shown in Fig. 1. The doors were placed symmetrically from the mid position
of the wall, in order to avoid corner effects. Both doors had also the same width.

At the beginning of the process, the pedestrians were all equally separated in a square arrangement. The occupancy
density was initially set to 0.6 people/m2, close to the allowed limiting values by current regulations [16]. They all had
randomvelocities resembling a Gaussian distributionwith nullmean value. The pedestrianswerewilling to go to the nearest
exit. Thus, all the pedestrians had the desired velocity vd pointing to the same exit door if only one door was available, or to
the nearest door if two exits were available.

In order to focus on the effects due to dual exits, we only allowed the pedestrians to move individualistically, that is,
neither leaderships nor herding behaviors were present during the evacuation process. At any time, the pedestrians knew
the doors location and tried to escape by their own.
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Fig. 1. Snapshot of an evacuation process from a 20m × 20m room, with two doors. In red we can see a blocking structure around the upper door. The
desired velocity was vd = 4 m/s. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The simulations were supported by Lammpsmolecular dynamics simulator with parallel computing capabilities [17]. The
time integration algorithm followed the velocity Verlet schemewith a time step of 10−4 s. All the necessary parameters were
set to the same values as in previous works (see Refs. [12,13]). It was assumed that all the individuals had the same radius
(ri = 0.3 m) and weight (mi = 70 kg). We ran 30 processes for each panic situation, in order to get enough data for mean
values computation.

Although the Lammps simulator has themost common built-in functions, neither the social force fs nor the desire force fd
were available. We implemented special modules (with parallel computing compatibilities) for the fs and fd computations.
These computations were checked over with previous computations.

The pedestrian’s desired direction êd was updated at each time step. After leaving the room, they continuedmoving away.
No re-entering mechanism was allowed.

3.2. Measurements conditions

Simulations were run in the same way as in Refs. [12,13]. Each process started with all the individuals inside the room.
The measurement period lasted until 80% of the occupants left the room. If this condition could not be fulfilled within the
first 3000 s, the process was stopped. Data was recorded at time intervals of 0.05 s (cf. Eq. (2)a).

The simulations ran from relaxed situations (vd < 2 m/s) to very stressing rushes (vd = 8 m/s). We registered the
individuals positions and velocities for each evacuation process. Thus,wewere able to compute the ‘‘social pressure’’ through
out the process and to trace the pedestrians behavioral pattern.

4. Results

4.1. The faster is slower effect

As a starting point, we checked over the ‘‘faster is slower’’ effect for the room with two doors on the same wall. Fig. 2
shows the recorded evacuation time when the doors are separated a distance of dg = 1m and when no separation exists
at all (dg = 0). The latter means a single opening with width equal to two doors. Both cases (with or without separation)
exhibit a change in their corresponding slopes. Thus, the ‘‘faster is slower’’ effect is achieved following the same qualitative
response as the one found in previous works for rooms with a single exit [10,9].

The evacuation time for separated doors in Fig. 2 is always above the time required to evacuate the pedestrians through
the single opening of 2.4 m width. For vd = 6 m/s, the single opening improves the evacuation performance in half of
the time that demands the dg = 1m separation configuration. Other separation distances (not shown) exhibit the same
qualitative pattern as the example presented in Fig. 2. Therefore, it is clear that while the total width of the opening remains
unchanged, splitting this width into two symmetric exits affects significantly the evacuation performance.

Notice that there is a slightly negative slope for velocities higher than 6 m/s. This behavior will be discussed in
Section 4.3.2.

We made further research on the dg = 0 and dg > 0 scenarios. The former is investigated in Section 4.2, while the latter
is left to Section 4.3.
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Fig. 2. Mean evacuation time for 160 individuals (seconds) vs. the pedestrian’s desired velocity (m/s). The roomwas 20×20m size. Two contiguous doors
were placed on one side of the room as shown in Fig. 1 (see text for details). Mean values were computed from 30 evacuation processes. Each door was
dw = 1.2 m width. The desired velocity was vd = 4 m/s. Two situations are shown: △ corresponds to a single door of 2dw = 2.4 m width. ⃝ corresponds
to the 1 m separation distance between doors (dg = 1 m).

(a) Opening of dw = 1.2 m width. (b) Opening of 3dw = 3.6 m width.

Fig. 3. Normalized pressure and velocity on a single pedestrian during an evacuation process. Data was recorded from the initial position at x = 12.35 m
and y = 8.45 m, until the individual left the room (x > 20 m). The pedestrians desired velocity was vd = 4 m/s. Two situations are shown: (a) evacuation
through a single door of width dw = 1.2 m (b) evacuation through an opening of 3dw = 3.6 m.

4.2. The single leaf door vs. the double leaf door

Recall that the dg = 0 scenario corresponds to a single opening, but the total width of the opening is twice the width of
a single door (see Section 4.1). Actually, it resembles the situation of a double sheet door.

4.2.1. The stop-and-go process
Fig. 3 illustrates on how the evacuation performance improves as the opening becomes wider. Fig. 3(a) corresponds

to the single door (dw = 1.2m), while Fig. 3(b) corresponds to a wider opening (3dw = 3.6m), resembling a multi-leaf
opening. Both figures represent the time evolution of a single pedestrian during an evacuation process. We can see the
(normalized) pressure acting on the pedestrian and his (her) corresponding velocity. The starting point of the pedestrianwas
(x, y) = (12.35m, 8.45m). Notice that an increase in the opening width from dw to 3dw (Figs. 3(a) and 3(b), respectively)
reduces the evacuation time by one-fifth approximately.

The pedestrian represented in Fig. 3 increases his (her) velocity towards an asymptotic value at the beginning of the
processes. This value corresponds to the desired velocity vd = 4 m/s. But close to t = 2 s, the pedestrian suddenly stops
because of the clogging around the exit. Clogging is also responsible for the pressure increase, as shown in both Figs. 3(a)
and 3(b). This can be checked over bymeans of Eq. (2) because when the velocity of the pedestrian vanishes, the desire force
fd attains a maximum (in panic situations only). Notice, however, that any further fluctuation of the pressure acting on the
pedestrian corresponds to an inverse fluctuation on the velocity. Thus, the pedestrian is able to reach the exit following a
stop-and-go process.

The instantaneous pressure acting on a single pedestrian can be computed from Eq. (4) for a slow moving pedestrian
(that is, pi ≃ 0). The maximum pressure values Pmax in Figs. 3(a) and 3(b) are 8550 N m−1 and 6475 N m−1, respectively.
The corresponding mean pressure values (after the first 2 s) are 80% and 55% of the respective maximum values. This means
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(a) Opening of dw = 1.2 m width. (b) Opening of 2dw = 2.4 m width.

(c) Opening of 3dw = 3.6 m width.

Fig. 4. Mean pressure contour lines computed from 30 evacuation processes until 100 pedestrians left the room (20m × 20m size). The scale bar on the
right is expressed in N m−1 units (see text for details). The red lines at x = 20 m represent the walls on the right of the room. The pedestrian’s desired
velocity was vd = 4 m/s. The contour lines were computed on a square grid of 1m × 1m and then splined to get smooth curves. Level colors can be seen
in the on-line version only. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

that the mean pressure value for the 3dw situation is lower than the corresponding mean value for the dw situation. That
is, the wider opening seems to release pressure from time to time. Consequently, the stop-and-go processes are somehow
different for the single door with respect to the double leaf door (dg = 0) situation.

The above analyses corresponds to a single pedestrian moving along the middle of the room. It does not hold for the
whole crowd. For details on the pressure patterns of the crowd, see Section 4.2.2.

4.2.2. The pressure and stream patterns
For a better understanding on how the pedestrians are (intermittently) released from high pressures in the wide opening

situation, we pictured the whole scene into a pressure contour map and a mean stream path map for all the individuals.
Figs. 4(a)–4(c) show the pressure levels (Pi) for the clogging area. The warm colors are associated to high pressure values.
These values are close to the correspondingmaximumpressure values (not shown). Thus, thewarm regions define the places
where the pedestrians slow down most of the time. They are expected to get released only for short periods of time. On the
contrary, the regions represented in cold colors (lowmean pressure) are those where the individuals are able to get released
for longer time periods.

Figs. 5(a)–5(c) represent the mean stream lines during the evacuation process. The three exhibits the released paths for
leaving the room, but Fig. 5(c) showsmore gathering lines in the central path (higher flow). Notice that the stream lines pass
through the low pressure regions in Fig. 5(c). That is, it can be seen in Fig. 5(c) that the stream lines gather along the middle
of the clogging area, where ‘‘cold’’ pressure colors can be found in Fig. 4(c). The ‘‘warm’’ pressure colors are placed on the
sides of this region.

We checked over the trajectory of the single pedestrian represented in Fig. 3(b) and we observed that he (she) managed
to get out of the room through the path where the stream lines get denser. Thus, Fig. 3(b) resembles the stop-and-go process
for the pedestrians passing through the middle of the clogging area, that is, along the low pressure (middle) region. The
pedestrians on the sides of this region (high pressure region) are expected to slow down since Fig. 5(c) shows no stream
lines to the exit.



178 I.M. Sticco et al. / Physica A 474 (2017) 172–185

(a) Opening of dw = 1.2 m width. (b) Opening of 2dw = 2.4 m width.

(c) Opening of 3dw = 3.6 m width.

Fig. 5. Mean stream lines computed from 30 evacuation processes until 100 pedestrians left the room (20m×20m size). The lines connect the normalized
velocity field (v/vmax). The arrows indicate the stream direction. Data was recorded on a square grid of 1m × 1m and then splined to get smooth curves.
The red lines at x = 20m represent the walls on the right of the room. The pedestrian’s desired velocity was vd = 4m/s for all the cases. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Recalling the results in Fig. 3(a) for the same single individual as in Fig. 3(b), we realize that the single door scene is likely
to differ from the double leaf door (dg = 0) situation since both patterns (for the same individual) do. Thus, we examined
the pressure contour map for the single door and for an opening of twice the single door width. The results are shown in
Fig. 4. Fig. 4(b) exhibits a similar pressure map pattern as Fig. 4(c), but the single door pressure map in Fig. 4(a) does not.
For the single door situation, we do not observe the lower pressure pathway in the middle of the clogging area. Instead,
high pressure is acting on the pedestrians, as shown in the (normalized) pressure evolution in Fig. 3(a). The corresponding
velocity evolution (Fig. 3(a)) informs that the pedestrians in this region experience a slow down.

Notice, once again, that the results shown in Fig. 3 only resembles the situation in the middle of the room. Figs. 5(c) and
4(c) exhibit the situation for the whole crowd. However, the mid-path in ‘‘cold’’ colors in Fig. 4(c) is the most meaningful
region to our research, since it completes the picture for the stop-and-go process, firstly evidenced in Fig. 3(b).

At this stage of the investigation we are able to point out a few conclusions. The widening of the single door increases
the pedestrian’s flux, as asserted in Ref. [7]. In the narrow situation (see Fig. 3(a)), the pedestrians experience a slow down.
The corresponding time delays have been associated to blocking structures (see Refs. [9,11]) and causes the pressure acting
on the nearby individuals to raise. Fig. 4(a) resembles this situation. However, as the opening widens (i.e. the 2.4 m or 3.6 m
situations), the pressure pattern changes qualitatively (see Figs. 4(b) and 4(c)), allowing the pedestrians in the middle of the
clogging area to make a pathway to the exit. This pathway corresponds to the breaking of the blocking structures.

4.3. Separated doors

We will now analyze the case in which the evacuation process is through two doors, symmetrically placed on the same
side of the room.Wewill explore the dependence of such a process on the doors separations. Wewill assume that each door
width is dw = 1.2m.
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Fig. 6. Mean evacuation time for 225 pedestrians (room of 20 × 20 m size) as a function of the doors separation distance. Mean values were computed
from 30 evacuation processes until 160 pedestrians left the room. Each door was dw = 1.2 m width for non-vanishing gaps. The null gap means a single
door of 2dw width. The desired velocity was vd = 4 m/s.

Fig. 7. Mean evacuation time per total number of pedestrians that left the room (N), as a function of the doors separation distance. Mean values were
computed from 30 evacuation processes. Each door was dw = 1.2 m width for non-vanishing gaps. The null gap means a single door of 2dw width. Three
situations are shown: △ corresponds to the 20 ×20 m roomwhen 160 pedestrians left the room, □ corresponds to 30 ×30 m roomwhen 530 pedestrians
left the room, and ⃝ corresponds to 40 ×40 m room when 865 pedestrians left the room. The red (online version only) dashed line represents half the
evacuation time for 225 individuals in a room with a single door of dw = 1.2 m. The desired velocity was vd = 4 m/s. for all cases.

It has been shown in Fig. 2 that separating the doors a distance dg = 1m worsens the evacuation performance with
respect to the double leaf door (dg = 0). We further explored this worsening by increasing dg at steps of 0.5m, starting from
dg = 0. Fig. 6 shows the mean evacuation time and the corresponding error bars (indicating the ±σ limits). The desired
velocity was set to vd = 4 m/s, where the ‘‘faster is slower’’ effect takes place.

The evacuation time as a function of dg shown in Fig. 6 is one of our main results. The worsening in the evacuation
performance raises to a maximum value at 1m while its slope changes sign for dg > 1m. Thus, dg = 1m appears to be the
worse evacuation scenario for the 20m × 20m room with 225 individuals and two doors of dw = 1.2m each (see Fig. 6).

We further computed the mean evacuation time for an increasing number of pedestrians (and room sizes). We kept
the pedestrian density unchanged (at t = 0) for all the simulation processes. Fig. 7 exhibits the mean evacuation time
per pedestrian as a function of the separation distance (i.e. gap). We divided the evacuation time by the total number of
pedestrians for visualization reasons.

The results shown in Fig. 7were not expected. The evacuation time settles to an asymptotic value for separation distances
dg > 5m. The mean evacuation time becomes almost independent of the separation distances dg despite that the clogging
areas around the doors might still overlap.

Fig. 7 includes (half) the evacuation time for the 20 × 20 room with a single exit (see caption for details). Notice that
the asymptotic limit for the evacuation time (when two doors are separated 6 m) does not match exactly the single exit
situation. This fact corresponds to the difference in the bulk pressures on each case. That is, the bulk pressure for the single
door situation is expected to be higher than the one for the two doors situation (and a 6 m gap) because of the difference in
the number of individuals pushing towards each door. Thus, the evacuation time worsens for the single door situation.

Fig. 7 also shows that the slope not always changes sign at dg ≃ 1m. Furthermore, as the number of pedestrians is
increased for dg > 1m, the evacuation time slope raises to positive values. The greater the number of pedestrians, the worst
the evacuation time (per individual). This appears to occur for dg > 1m, regardless of the crowd size. That is, according to
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(a) Separation distance of dg = 1.5 m. (b) Separation distance of dg = 5 m.

Fig. 8. Mean pressure contour lines computed from 30 evacuation processes until 100 pedestrians left the room (20m × 20m size). The scale bar on the
right is expressed in N m−1 units (see text for details). The red lines at x = 20 m represent the walls on the right of the room. The pedestrian’s desired
velocity was vd = 4 m/s. The contour lines were computed on a square grid of 1m × 1m and then splined to get smooth curves. Level colors can be seen
in the on-line version only. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Ratio between time steps including blocking structures and the total number of time steps for 30 evacuation processes, as a function of the doors
separation distance. The room size was 20 × 20 m with 225 occupants. Each door was dw = 1.2 m width for non-vanishing gaps. The null gap means a
single door of 2dw width. The desired velocity was vd = 4 m/s. ⃝ corresponds blocking structures connecting both the left side wall of the left door with
the right side wall of the right door (see text for details). □ corresponds to blocking structures connecting both sides of a single door (see text for details).

Fig. 7, there exists a separation distance value dg ≃ 1m where the evacuation slope changes sharply to negative or positive
values (for dg > 1m). This phenomenon has not been studied in the literature, to our knowledge.

We can resume the results in Fig. 7 in the following way: the evacuation time raises when the doors separation increases
from a wide opening to the distance dg ≃ 1m. At this gap, the evacuation time slope changes notably, entering a much
slowly varying regime towards an asymptotic value (for dg ≫ 1m). The former can be identified as a regime for small values
of dg , while the latter is valid for moderate to large values of dg . The fact that a sharp change occurs at dg ≃ 1m, no matter
the crowd size, suggests that both regimes are somehow different in nature. This moved us to explore the two regimes
separately.

4.3.1. The regime for dg < 1m
Our starting point is the pressure contour map, since we can easily compare the current patterns with those presented

in Section 4.2.2. Fig. 8(a) shows the mean pressure pattern for the separation distance dg = 1.5m, that is, close to the gap
value where the sharp change in the slope occurs. The differences between Figs. 8(a) and 4 are noticeable. We can now
see a wide region in the center of the clogging area representing the high pressure (Pi) acting on each pedestrian (warm
colors in Fig. 8(a)). The regularity in the colors of this region is meaningful: the high pressure acting on the pedestrians does
not allow a regular stream (pathway) to the exit. This is in agreement with the evacuation time worsening shown in Fig. 6.
Furthermore, in all cases the pressure maps show a resemblance with those reported in Ref. [18].

Fig. 8(a) suggests that blocking structuresmight be present for long time periods, since the pedestrians cannotmanage to
get out easily. The relevance of this blocking structures has also been achieved for other kind of systems (see Ref. [19]). We
examined this possibility through the blocking probability. In this context, the blocking probability is associated to the ratio
between the time that each door remains blocked with respect to the total evacuation time (cf. Section 2.2). Fig. 9 presents
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Fig. 10. Ratio between time steps including blocking structures and the total number of time steps for 30 evacuation processes, as a function of the doors
separation distance. The only blocking structures considered were those connecting both sides of one single door (see text for details). Each door was
dw = 1.2 m width for non-vanishing gaps. The null gap means a single door of 2dw width. Three scenarios are shown: ⃝ corresponds to the room of size
20×20mwith 225 occupants and a desired velocity of vd = 4m/s.□ corresponds to the room of size 20×20mwith 225 occupants and a desired velocity
of vd = 6 m/s. △ corresponds to the room of size 40 × 40 m with 961 occupants and a desired velocity of vd = 4 m/s.

two kinds of blockings: the simultaneous blocking of both doors, and the blocking of a single door (say, the one on the left).
The former connects the left most wall with the right most wall, but does not contact the separation wall in the middle of
the walls. The latter connects the walls on both sides of the selected door (say, the one on the left).

According to Fig. 9, the single door blockings are not relevant until dg ≃ 1m,while the simultaneous blockingsweaken as
the gap (separation distance dg ) increases. The single door blockings resemble the response in Fig. 6, and thus, we conclude
that this kind of blockings should play an important role in the increase of the evacuation time for small gaps dg . Notice that
the single door blocking probability explains the 75% of the evacuation time, as can be seen in Fig. 9.

The results so far moved us to focus closer on the dynamics around each door. We watched many animations of the
evacuation process for gap distances between dg = 0 (the double leaf door) to dg = 1.5m (not shown). We realized that
single door blockings hold if the gap is large enough to accommodate at least two pedestrians. That is, any blocking structure
enclosing a single door can hold for some time if the pedestrians at the end of the structure (and in contact with the walls)
do hardly leave the structure. Two pedestrians are needed at the gap wall to ensure that both doors remain blocked.

We want to call the attention on the fact that when dg passes through the 1m situation, the kind of simultaneous
blocking without contacting the gap wall, is replaced by the kind of single door blockings acting (usually) simultaneously.
This achieves a qualitative different pressure and stream pattern. As shown in Fig. 4(b), the widening of the exit allows a
pathway through the middle of the clogging area. This is likely to occur even for very small gaps (see Fig. 9). However, the
single door blockings follow a pressure pattern similar to Fig. 4(a) on each door. What we see in Fig. 8(a) is the combined
pattern built from two single door patterns as in Fig. 4(a).

We conclude from the analysis of small gaps (dg < 1m) that a door separation distance roughly equal to two pedestrian
widths is critical. This distance allows persistent single door blockings. Small distances (close to dg = 0) do not actually
allow single door blockings to hold for long time. Thus, the role of dg = 2rij (two pedestrian’s width) is decisive to move the
evacuation process from one regime to another.

4.3.2. The regime for dg > 1m
Fig. 9 shows that the single door blockings (see Section 4.3.1) remains around75%of the total evacuation time for dg > 1m

(225 individuals in the room). We also computed this magnitude for situations with increasing number of individuals (see
Fig. 10). The probability of single door blockings approaches unity as the crowd size increases. This means, according to our
definition of blocking probability, that the blocking time raises as the number of individuals increases. The gap distance,
however, does not play a significant role for dg > 1m.

There is a noticeable difference between the evacuation time shown in Fig. 7 and the blocking probability exhibited in
Fig. 10. Fig. 7 presents the evacuation time for three different room sizes and increasing number of pedestrians. The slope
of the evacuation curve is negative for the 20 × 20m room, it vanishes for the 30 × 30m situation and it becomes slightly
positive for the 40×40m room (for dg > 1m). Thus, as the number of pedestrians increases, the slope of the evacuation time
changes sign. However, this does not occur for the blocking probability (see Fig. 10). The slope of the blocking probability
remains always negative for an increasing number of pedestrians (and desired velocities). Therefore, the changes in the slope
observed in Fig. 7 cannot be explained by changes in the blocking time (i.e blocking probability).

We checked the pressure patterns for dg > 4dw (see Fig. 8(b) as an example). We came to the conclusion that since
the evacuation slope in Fig. 7 changes with an increasing number of individuals, the whole bulk should be involved in this
phenomenon. Therefore, we focused our investigation on the pressure contribution of the whole bulk.

As shown in Eq. (A.3) of Appendix A, we can realize that the pressure of the whole bulk (left-hand side) is related to
the total desire force contribution (right-hand side). Thus, the pressure of the bulk can vary in two possible ways: if the
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Fig. 11. Mean evacuation time for 225 pedestrians (room of 20 × 20 m size) as a function of the doors separation distance. Mean values were computed
from 30 evacuation processes until 160 pedestrians left the room. Each door was dw = 1.2 m width for non-vanishing gaps. The null gap means a single
door of 2dw width. ⃝ corresponds to pedestrians with desired velocity of vd = 4 m/s. □ corresponds to pedestrians with desired velocity of vd = 8 m/s.

desire force of the individuals (i.e. anxiety levels) changes, or, if the crowd size changes. An increase on either the number of
evacuating pedestrians (N) or their corresponding anxiety level (vd), will increase the pressure of the whole bulk. This result
is in agreement with the experiments performed in Ref. [15]. We also present a simple example in the Appendix B.

Fig. 7 exhibits the evacuation time for an increasing number of pedestrians. But, an increase in the pedestrians anxiety
level should resemble similar results, if the above reasonings are true. Fig. 11 shows the evacuation time as a function of the
separation distance for two different desired velocities. As expected, the sharp change in the slope occurs around dg = 2rij.
Also the slope changes as the desired velocity (vd) is increased (i.e. higher anxiety level). This confirms that the social pressure
is responsible the slope behavior shown in Fig. 7.

Notice that Fig. 11 exhibits a crossover for a gap of 0.5 m. This crossover is related to the slightly negative slope shown
in Fig. 2. We want to stress the fact that this crossover appears for desired velocities between 6 m/s and 8 m/s (see Fig. 2),
but not for increasing number of pedestrians at lower desired velocities (see Fig. 10). Despite the fact that we are able to see
a crossover in the range of 6 m/s to 8 m/s, we prevent the reader that not noticeable consequences were found that could
affect further conclusions, since the ‘‘faster is slower’’ effect remains valid within the studied range.

We conclude from the analysis of large gaps (dg > 1m) that the evacuation time is controlled by the social pressure
in the bulk. The crowd size and the desired velocity vd affects the pressure acting on the pedestrians. For dg > 5m in our
simulations, the evacuation time is very close to the corresponding asymptotic value, although the bulks around each door
are not completely independent. This means that the mixing of both crowds (that is, the fact that the bulks are in contact)
do not affect strongly the evacuation performance.

5. Conclusions

We examined in detail the evacuation of pedestrians for the situation where two contiguous doors are available for
leaving the room. Throughout Section 4 we presented results on the evacuation performance under high anxiety levels and
increasing number of pedestrians. Both conditions exhibit the novel result that a worsening in the evacuation time exists
as the door separation distance dg increases from the null value to roughly the width of two pedestrians. Special situations
may enhance the evacuation performance for larger values of dg .

The range from dg = 0 to dg ≫ dw was inspected. In the interval 0 ≤ dg ≤ 2rij (two pedestrian’s width), the evacuation
performance worsened for all the explored situations, as the separation distance between doors dg increased. But, from
dg > 2rij the evacuation time enhanced for relatively small crowds and moderate anxiety levels. We realized that the sharp
change in the evacuation behavior at dg = 2rij corresponded to qualitative differences in the pedestrian dynamics close to
the exits.

After a detailed comparison of the dynamics for the single door situation and for two doors very close to each other (that
is, dg < 2rij), we concluded that the blocking structures (i.e. blocking arcs) around the openingswere released intermittently,
allowing the pedestrians to leave the room in a stop-and-go process. As the separation distance approached 2rij, the blocking
arcs around each door, resembled the blocking situation of two single doors. This changes only affected the local dynamics
(close to the doors), while the crowd remained gathered into a single clogging area.

For dg > 2rij the single door blocking structures become relevant even for large values of dg (see Fig. 9). No further
qualitative changes were observed locally around each door. However, increasing the crowd size (N) or the pedestrian’s
anxiety level (vd) slowed down the evacuation. Both magnitudes are linked to the pressure acting on the pedestrians, and
therefore, enhanced the ‘‘faster is slower’’ effects.

For a better understanding of the relationship between N , vd and the pressure in the bulk, a simple lane example
complemented our analysis. It was shown that the classical virial expression is still suitable for the investigation of social
systems.
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Fig. B.12. Lane of individuals pushing to the right. The horizontal axis indicates the positive direction.
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Appendix A. Alternative definition for the social pressure

Recall that the social force model (SFM) deals with the pedestrians desire and their private space preservation. Although
the desire force fd is a ‘‘unilateral’’ force, the Newton equations of motion remain valid. Therefore, it can be derived from the
virial relation that [20]⟨ N∑

i=1

p2i
mi

+

N∑
i=1

ri · fi
⟩

= −2PA (A.1)

for the set of N pedestrians inside an areaA. pi and fi are the momentum and total force acting on the individual i (excluding
the interaction with the walls). ⟨·⟩ corresponds to the mean value along time. The right hand side −2PA defines the global
pressure on the curve enclosing the surface A.

Following Ref. [20] we can define the ‘‘social pressure function’’ Pi as

2PiAi =
p2i
mi

+
1
2

N−1∑
j=1

rij · f(ij)s (A.2)

where Ai is the area enclosing the pedestrian i and rij = ri − rj. Notice that the inner product rij · f
(ij)
s is always positive for

repulsive feelings.
The ‘‘social pressure function’’ Pi is roughly similar to the literature definition [10], as expressed in Eq. (4), for neglectable

momentum pi. Furthermore, Eqs. (4) and (A.2) become equal if the area Ai and rij are replaced by πr2i and the contacting
distance 2ri, respectively.

We can further compute the pressure on all the pedestrians according to Eq. (A.1). Notice that the force sum can be split
into the summation of three contributions: the desire forces, the social forces and the granular forces. Actually, the granular
force does not play a role because of orthogonality (rij · f(ij)g = 0). Consequently, replacing Eq. (A.2) into the virial relation
(A.1) gives

N∑
i=1

⟨2PiAi⟩ = −2PA −

N∑
i=1

⟨ri · f
(i)
d ⟩. (A.3)

We should remark that Eq. (A.3) holds either if the pedestrians are in contact or not. The ‘‘social pressure function’’ Pi
makes possible for the individuals to change their behavioral pattern when they come too close to each other.

Appendix B. The lane example

We decided to open this supplementary section in order to make clear the meaning of the ‘‘social pressure’’ acting on an
individual and the collective pressure (that is, the bulk pressure) on a set of individuals. We will follow a simple example as
a guide for more general situations.

B.1. The social pressure

Fig. B.12 represents a lane of individuals pushing to the right. The ending wall prevents the individuals from moving. All
the pedestrians in the lane are at their equilibrium positions x1, x2, . . . , xi, . . . , xN , while the wall is placed at the position
x0 = 0 (see Fig. B.12).
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The pedestrians push to the right acknowledging a desired force f (i)d = mvd/τ , according to Eq. (2). The social repulsion
feelings balance this desire force, but only the contacting neighbors are relevant to these feelings. Thus, the balance equation
for any pedestrian in the lane reads

f (i,i+1)
s − f (i,i−1)

s +
mvd

τ
= 0 (B.1)

for f (i,j)s meaning the repulsive feelings of pedestrian i due to the presence of pedestrian j. Notice that the boundary condition
at the wall-end is x0 = 0 (Dirichlet condition), while the condition at the free end is f (N,N+1)

s = 0 (Neumann condition). The
forces on the pedestrians can be obtained recursively from Eq. (B.1), starting at the free ended individual (i = N). The
resulting expression is

f (i,i−1)
s = (N − i + 1)

mvd

τ
, i = 1, . . . ,N (B.2)

while the corresponding positions x1, x2, . . . , xi, . . . , xN are obtained by a backward substitution of the social forces
expressed in Eq. (2), starting at the wall-end

xi = xi−1 − (ri + ri−1) + B ln
[
(N − i + 1)

mvd

Aτ

]
. (B.3)

The pressure on a single pedestrian Pi corresponds to the forces acting on him (her) (per unit length) due to the
neighboring pedestrians. According to Eqs. (4), the pressure for any individual i in the lane is

Pi =
1

2πri

[
f (i,i+1)
s + f (i,i−1)

s

]
. (B.4)

We can also arrive to this expression through the ‘‘social pressure function’’ Eq. (A.2)

Pi =
1
2

[
xi − xi+1

2Ai
f (i,i+1)
s +

xi−1 − xi
2Ai

f (i,i−1)
s

]
(B.5)

where the magnitude xij/2Ai corresponds to the (inverse) effective length of the pedestrian. For individuals modeled as
circles, the inter-pedestrian distance is roughly xij = 2ri and the area is Ai = πr2i . Thus, both definitions agree. However,
the last one is preferred since it does not assume that the forces actuate exactly at the distance ri, as already mentioned in
Section 2.3.

B.2. The bulk pressure

We can now illustrate on how to compute the virial relation (A.3). We can add the social pressures expressed in (B.5) for
the N pedestrians in the lane.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2P1A1 =
x1
2
f (1,2)s −

x2
2

f (1,2)s

2P2A2 =
x2
2

[
f (2,3)s − f (2,1)s

]
−

x3
2

f (2,3)s +
x1
2

f (2,1)s

2P3A3 =
x3
2

[
f (3,4)s − f (3,2)s

]
−

x4
2

f (3,4)s +
x2
2

f (3,2)s

...

2PNAN = −
xN
2

f (N,N−1)
s +

xN−1

2
f (N,N−1)
s .

(B.6)

These are the local pressures on each pedestrian due to the contacting neighbors (and excluding the wall). Adding the
terms results in the virial relation, as expressed in (A.3)

N∑
i=1

2PiAi = (x1 − x2)f (1,2)s + (x2 − x3)f (2,3)s + · · · + (xN−1 − xN )f (N,N−1)
s

= x1
N mvd

τ
−

N∑
i=1

xi
mvd

τ
(B.7)

where the first term on the right corresponds to the global pressure −2PA. Notice that x1 is negative, and thus, 2PA is
defined as a positive magnitude. The last term is also positive, adding pressure to the bulk due to the desire forces.

The virial relation (A.3) allows to compute the bulk pressure on a group of pedestrians. For example, the pressure on the
M pedestrians closest to thewall corresponds to the force acting on this group due to the otherN−M pedestrians. According
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Fig. B.13. Mean pressure as a function of the distance to the exit. The room was 20m × 20m size and included one door of dw = 1.2 m width. Mean
values were computed from 30 evacuation processes, until 100 pedestrians left the room. The desired velocity was vd = 4 m/s. The distance to the door
was binned into equal intervals of 0.3 m. The ⃝ symbols correspond to the mean pressure computed as in (A.2) for neglectable momentum (pi = 0) and
Ai = πr2i . The symbols △ correspond to the mean pressure computed as in 4 (see text for details).

to Eq. (A.3), the pressure on theM individuals is
M∑
i=1

2PiAi = −2PA −

N∑
i=M+1

2PiAi −

N∑
i=1

xi
mvd

τ
. (B.8)

The bulk pressure on the firstM individuals increases as more individuals are included in the crowd. This can be verified
by evaluating Eq. (B.7) and Eq. (B.8) for increasing values of N .

The Eqs. (B.2) and (B.3) allow to compute the pedestrian pressure profile as a function of the distance to the wall. The
profile is qualitatively similar to the one measured during an evacuation process. Fig. B.13 represents the histogram for the
pressure on each pedestrian, computed as in Eqs. (4) and (A.2) (see caption for details).

References

[1] W. Cheng, S. Lo, Z. Fang, C. Cheng, A view on the means of fire prevention of ancient Chinese buildings-from religious belief to practice, Struct. Surv.
22 (2004) 201209.

[2] OSHA, Design and construction requirements for exit routes, Occupational Safety & Health Administration Standards 29-CFR 1910.36(b) (2015) 1–3.
[3] FBC2010, Exit and Exit Access Doorways, Florida Building Code Handbook 1015.1 (2010) 90.
[4] FBC2010, Doors, Gates and Turnstiles, Florida Building Code Handbook 1008.1 (2010) 81.
[5] A. Kirchner, A. Schadschneider, Simulating of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics,

Physica A 312 (2002) 260–276.
[6] G. Perez, G. Tapang, M. Lim, C. Saloma, Streaming, disruptive interference and power-law behavior in the exit dynamics of confined pedestrians,

Physica A 312 (2002) 609–618.
[7] Z. Daoliang, Y. Lizhong, L. Jian, Exit dynamics of occupant evacuation in an emergency, Physica A 363 (2006) 501–511.
[8] T. Huan-Huan, D. Li-Yun, X. Yu, Influence of the exits’ configuration on evacuation process in a roomwithout obstacle, Physica A 420 (2015) 164–178.
[9] D. Parisi, C. Dorso, Microscopic dynamics of pedestrian evacuation, Physica A 354 (2005) 606–618.

[10] D. Helbing, I. Farkas, T. Vicsek, Simulating dynamical features of escape panic, Nature 407 (2000) 487–490.
[11] D. Parisi, C. Dorso, Morphological and dynamical aspects of the room evacuation process, Physica A 385 (2007) 343–355.
[12] G. Frank, C. Dorso, Room evacuation in the presence of an obstacle, Physica A 390 (2011) 2135–2145.
[13] G. Frank, C. Dorso, Evacuation under limited visibility, Internat. J. Modern Phys. C 26 (2015) 1–18.
[14] D. Helbing, P. Molnár, Social force model for pedestrian dynamics, Phys. Rev. E 51 (1995) 4282–4286.
[15] J.M. Pastor, A. Garcimartín, P.A. Gago, J.P. Peralta, C. Martín-Gómez, L.M. Ferrer, D. Maza, D.R. Parisi, L.A. Pugnaloni, I. Zuriguel, Experimental proof of

faster-is-slower in systems of frictional particles flowing through constrictions, Phys. Rev. E 92 (2015) 062817. http://dx.doi.org/10.1103/PhysRevE.
92.062817. URL http://link.aps.org/doi/10.1103/PhysRevE.92.062817.

[16] M. Mysen, S. Berntsen, P. Nafstad, P.G. Schild, Occupancy density and benefits of demand-controlled ventilation in Norwegian primary schools,
Energy and Buildings 37 (12) (2005) 1234–1240. http://dx.doi.org/10.1016/j.enbuild.2005.01.003. URL http://www.sciencedirect.com/science/article/
pii/S037877880500040X.

[17] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys. 117 (1) (1995) 1– 19. http://dx.doi.org/10.1006/jcph.1995.
1039. URL http://www.sciencedirect.com/science/article/pii/S002199918571039X.

[18] X. Zhang, S. Zhang, G. Yang, P. Lin, Y. Tian, J.-F. Wan, L. Yang, Investigation of flow rate in a quasi-2D hopper with two symmetric outlets,
Phys. Lett. A 380 (13) (2016) 1301– 1305. http://dx.doi.org/10.1016/j.physleta.2016.01.046. URL http://www.sciencedirect.com/science/article/pii/
S037596011600089X.

[19] A. Kunte, P. Doshi, A.V. Orpe, Spontaneous jamming and unjamming in a hopper with multiple exit orifices, Phys. Rev. E 90 (2014) 020201.
http://dx.doi.org/10.1103/PhysRevE.90.020201. URL http://link.aps.org/doi/10.1103/PhysRevE.90.020201.

[20] T.W. Lion, R.J. Allen, Computing the local pressure in molecular dynamics simulations, J. Phys.: Condens. Matter. 24 (28) (2012) 284133.
URL http://stacks.iop.org/0953-8984/24/i=28/a=284133.

http://refhub.elsevier.com/S0378-4371(17)30097-3/sb1
http://refhub.elsevier.com/S0378-4371(17)30097-3/sb1
http://refhub.elsevier.com/S0378-4371(17)30097-3/sb1
http://refhub.elsevier.com/S0378-4371(17)30097-3/sb2
http://refhub.elsevier.com/S0378-4371(17)30097-3/sb3
http://refhub.elsevier.com/S0378-4371(17)30097-3/sb4
http://refhub.elsevier.com/S0378-4371(17)30097-3/sb5
http://refhub.elsevier.com/S0378-4371(17)30097-3/sb5
http://refhub.elsevier.com/S0378-4371(17)30097-3/sb5
http://refhub.elsevier.com/S0378-4371(17)30097-3/sb6
http://refhub.elsevier.com/S0378-4371(17)30097-3/sb6
http://refhub.elsevier.com/S0378-4371(17)30097-3/sb6
http://refhub.elsevier.com/S0378-4371(17)30097-3/sb7
http://refhub.elsevier.com/S0378-4371(17)30097-3/sb8
http://refhub.elsevier.com/S0378-4371(17)30097-3/sb9
http://refhub.elsevier.com/S0378-4371(17)30097-3/sb10
http://refhub.elsevier.com/S0378-4371(17)30097-3/sb11
http://refhub.elsevier.com/S0378-4371(17)30097-3/sb12
http://refhub.elsevier.com/S0378-4371(17)30097-3/sb13
http://refhub.elsevier.com/S0378-4371(17)30097-3/sb14
http://dx.doi.org/10.1103/PhysRevE.92.062817
http://dx.doi.org/10.1103/PhysRevE.92.062817
http://dx.doi.org/10.1103/PhysRevE.92.062817
http://link.aps.org/doi/10.1103/PhysRevE.92.062817
http://dx.doi.org/10.1016/j.enbuild.2005.01.003
http://www.sciencedirect.com/science/article/pii/S037877880500040X
http://www.sciencedirect.com/science/article/pii/S037877880500040X
http://www.sciencedirect.com/science/article/pii/S037877880500040X
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1006/jcph.1995.1039
http://www.sciencedirect.com/science/article/pii/S002199918571039X
http://dx.doi.org/10.1016/j.physleta.2016.01.046
http://www.sciencedirect.com/science/article/pii/S037596011600089X
http://www.sciencedirect.com/science/article/pii/S037596011600089X
http://www.sciencedirect.com/science/article/pii/S037596011600089X
http://dx.doi.org/10.1103/PhysRevE.90.020201
http://link.aps.org/doi/10.1103/PhysRevE.90.020201
http://stacks.iop.org/0953-8984/24/i%3D28/a%3D284133

	Room evacuation through two contiguous exits
	Introduction
	Background
	The social force model
	Clustering structures
	The local pressure on the pedestrians

	Numerical simulations
	Geometry and process simulation
	Measurements conditions

	Results
	The faster is slower effect
	The single leaf door vs. the double leaf door
	The stop-and-go process
	The pressure and stream patterns

	Separated doors
	The regime for dg<1m
	The regime for dg>1m


	Conclusions
	Acknowledgment
	Alternative definition for the social pressure
	The lane example
	The social pressure
	The bulk pressure

	References


