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We study analytical and numerical the reinjection probability density for type-II intermittency.

We find a new one-parameter class of reinjection probability density where the classical uniform

reinjection is a particular case. We derive a new duration probability densities of the laminar phase

and a new characteristic relations. The analytical results are in agreement with the numerical

simulations.

PACS numbers:

I. INTRODUCTION.

Intermittency is a particular form of deterministic

chaos, in which transitions between different behaviors of

the system occur. In a crisis-induced intermittency the

transitions take place between chaotic attractors [1, 2].

In the Pomeau and Manneville intermittency transitions

between laminar and chaotic phases occurs. A system

is in a regular behavior until, with a small change in a

parameter, it begin to show chaotic burst at irregular

intervals [2]. Pomeau and Manneville introduce this in-

termittency concept relates to the Lorenz system [3, 4].

Intermittency has been studied in many experiments, as-
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sociated to Benard convection [5], electronic circuits [6, 7]

or human heart [8], for instance.

Type-II intermittency is one of the three intermiten-

cies proposed by Pomeau and Manneville and it being

in a subcritical Hopf bifurcation. The reinjection mecha-

nism into laminar region dependent on the chaotic phase

behavior, so it is a global property, and it was reported

that is an important factor in the scaling relation of the

laminar length [9, 11, 12]. Hence the probability density

of reinjection (PRD) of the system back from chaotic

burst into the laminar zone is determined by the dynam-

ics in the chaotic region. Only in a few case it is possible

to get analytically a function for PRD, let say φ(x). It is

also difficult to get PRD experimentally or numerically,

because the large number of data needed to cover each
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interval of length ∆x in the reinjection region. Because

of this, different approximations have been used in liter-

ature to study the intermittency phenomenon. The most

commun approximation is to consider PRD uniform and

thus independent of the reinjection point [5, 10–17]. In

different investigations it is assumed other rather artifi-

cial approximations and it is consider that the reinjection

is in a fixed point [12, 18].

In this research we present a new one-parameter class

of PRDs appearing in many maps with inttermitency and

also in electronic circuits [6]. For a specific value of the

parameter, the new PRDs recover the classical uniform

PRD. We also derive the new scaling properties in good

agreement with the numerical simulations.

We study a illustrating model

xn+1 = G(xn) ≡











F (xn) xn ≤ xr

(F (xn) − 1)γ xn > xr

(1)

where F (x) = (1 + ε)xn + (1 − ε)xp
n, and xr is the root

of the equation F (xr) = 1 (see Fig. 1). The origin x = 0

is always a fixed point. It is stable for ε < 0. On the

contrary, it is unstable for ε > 0, and the iterated points

xn of a starting point x0 closed to the origin, increases

in a process driven by parameters ε and p. When xn

becomes larger than xr , a chaotic burst occurs that will

be interrutted when xn is again mapped into the laminar

region.

For γ = 1 the map (1) can be write as xn+1 = (F (xn)

mod 1) and if in addition p = 2 the map is the same that

used by Manneville in his pioneer paper [17]. The case
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FIG. 1: Map of Eq. (1) with p = 3 and ε = 10−3. We have

used three differed values of γ as it is indicated.

p = 3 corresponds with the local Poincare map of type-II

intermittency for points closed to x = 0. Note that ε

and p modified the duration of the called laminar phase

where the dynamics of the system look like periodic and

xn is less than some value, let said c. The mathematical

function for PRD, let say φ(x), will strongly depend on

parameter γ, that determines the curvature of the map

in region around of xr with x > xr. Only points in

that region will be mapped inside of the laminar region.

Note that when γ increases, also increases the number

of points that will be mapped around the unstable fixed

point x = 0.

Section II is devoted to present a methot to determine

the PRD with low noise. The new scaling properties are

derived in Section II. Finally in Section III we provide the

conclusions and we present a similar case of reinjencion

that can be solve analytically and them can be help us
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to get an analytical estimation of the PRD.

II. REINJECTION PROBABILITY

DISTRIBUTION

It is clear that PRD is driven by chaotic behavior of

the system, and then it depends on the particular sys-

tems. In general it is very difficult to get analytically

φ(x), howewer, for the map (1) we can used a simple

analysis to guess the behavior of φ(x) near x = 0, as

the parameter γ changes. To do this, note that all point

failing closed to the point x = 0, are coming from the

point closed to x = xr, so φ(x) is connected with ρ(x′)

where ρ is the invariant density for the map (1), and x′

is one iteration back, that is x′ = G−1
2 (x), where G−1

2 (x)

is the inverse function of G(x) but considering only the

definition for x > xr. We need also to rescale ρ(x′) take

into account the slope of the function G for points closed

to xr and laying in the right side of xr . Hence we get for

points closed to x = 0

φ(x) = ρ(x′)
C

dG(τ)
dτ

∣

∣

∣

τ=x′

(2)

where C is a normalization constant such that

∫ c

0 φ(τ)dτ = 1.

Note that in Eq. (2), the slope limτ→x+
r

dG(τ)
dτ

∣

∣

∣

τ=x′

is zero for values of γ bigger than 1 and we have

limτ→x+
r

dG(τ)
dτ

∣

∣

∣

τ=x′

= ∞ if γ < 1 (see Fig. 1). Hence, we

expect that for γ < 1 the PRD vanished near x = 0 and

on the other hand, if γ > 1 we expect limx→0+ φ(x) = ∞.

In this paper we do not measurement φ(x) directly

from the numerical data. Instead of this we used the

function M(x) defined as following

M(x) =

∫ x

0
τφ(τ)dτ

∫ x

0 φ(τ)dτ
. (3)

Note that for uniform reinjection we get M(x) = mx

with m = 1/2.

The function (3) is very similar to the function used in

[6] to determined the reinjection probability distribution

in a case of type-III intermittency in a electronic circuit.

In those case, experimental data indicates M(x) ≈ mx,

with m bigger than 1/2 so φ(x) was not uniform.

We have numerically evaluate the function M(x) in a

broad class of maps obtaining, in good approximation,

the lineal form M(x) = mx.

Figure (2) shows numerical evaluations of M(x) for the

map (1) using different values of parameter γ together

with the corresponding best fit straight line. Note that

the slope m can be bigger or less than the 1/2 but always

we find |m| < 1.

According with previous results, we assume that

M(x) = mx, then the reinjection probability density read

[6]

φ(x) = bxα, with α = −
1− 2m

1 − m
(4)

where b is determined by the normalization condition

∫ c

0

bxαdx = 1 (5)

Assuming α > −1, or equivalent 0 < m < 1, the integral

converge and we get

b =
α + 1

cα+1
(6)
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FIG. 2: Function M(x) for the map (1) with p = 3. Points

correspond to numerical evaluation of M(x) and continuous

lines show the cooresponding lineal fit. The dashed line slope

is 0.5 and it corresponds to a uniform reinjection. In the upper

line γ = 2 and ε = 10−3 whereas for the lower case γ = 0.65

and ε = 10−4. Numerical evaluation of m yields m = 0.61 for

upper line and m = 0.32 for lower line. The laminar interval

is (0, c), with c = 0.05

so in the linear approximation M(x) = mx, the density

φ(x) is determined only by the parameter m, easier to

measure that the complete function φ(x).

Note that according to Eq. (4) the behavior of φ(x)

near x = 0 can be very different from the flat line (uni-

form reinjection). For instance we have limx→0 φ(x) = ∞

when m is in the interval 0 < m < 1/2, whereas

limx→0 φ(x) = 0 when m lies in 1/2 < m < 1. According

with the previous argument from Eq. (2) we expect for

γ > 1 values of m in the interval 0 < m < 1/2 and for

γ < 1 values in the interval 1/2 < m < 1. This is in

agreement that with we find numerically. For instance,

in Fig. 2 we used the values γ = 0.65 and γ = 2 we ob-

tain m = 0.61 and m = 0.32 respectively. The value of m

determines, by means of eq,(4-5), the PRD function, as

it is showed in figure (3). In this figure it is plotted the

numerical reinjection density probabilities together with

the functions φ(x) for two values of γ used in Fig. 2. Note

that we do not fit the numerical data plotted in Fig. 3

but we just plot the equation (4) using the value of m

calculated to plot continuous lines in Fig. 2. Note that
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FIG. 3: Reinjection probability density for map (1) using the

same parameters that in Fig. 2. Figure A and B correspond to

the upper and lower cases of Fig. 2 respectively. Dots indicate

numerical evaluations and continuous lines show the Eq. (4)

with the value of m using to plot continuous line in Fig. 2.

the expression (4) filters the usual noise of the numeri-

cal data, hence it get better description of the numerical

reinjection density. The same will happen for the legnth

probability density as will be show below.

The value of m determines the value of exponent α

in the reinjection function (4), hence it also drives the
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characteristic relation for the average laminar length, as

will study in next section.

III. CHARACTERISTIC RELATIONS

In the laminar region we can approximate the differ-

ence equation (1) by the differential equation

dx

dt
= εx + (1 − ε)xp (7)

so the interactions in the laminar region, depending on

the reinjection point x is given by

l(x, c) =

∫ c

x

dτ

aτp + ετ
(8)

where we use the notation a = 1− ε. After integration it

yields

l(x, c) =
1

ε

[

ln
( c

x

)

−
1

p − 1
ln

(

ac(p−1) + ε

ax(p−1) + ε

)]

. (9)

Note that Eq. (9) refer to a local behavior of the map in

the laminar region and it determines the length of lam-

inar period, however, the length statistic of the laminar

phases is also affected by the density φ(x), which is a

global propertie. The probability of finding a laminar

phase of length between l and l + dl is dlφl(l), where

the φl(l) is duration probability density of the lami-

nar phase. The density φl(l) is related with φ(l, c) by

φl(l, c) = φ(X(l, c))
∣

∣

∣

dX(l)
dl

∣

∣

∣
, where the function X(l, c) is

the inverse function of l(x, c). Hence, by using eqs.(4-9)

and after some algebraic manipulation we get the dura-

tion probability density of the laminar phase

φl(l, c) = b

(

ε
(

a + ε
c(p−1)

)

e(p−1)εl − a

)

p+α

p−1

×
(

a +
ε

c(p−1)

)

e(p−1)εl (10)

which depends on the global parameter α determined by

the slope m of the linear function M(x). Figure 4 shows

the analytical expression (10) using the same value of m

of the upper and lower lines of Fig. 2. Also it is plotted

the corresponding numerical evaluations of φl.
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FIG. 4: Function φl for the map (1). Two different evalua-

tions: Numerical (dots) and analytical using Eq. (10) (con-

tinuous line). The paremeters for A and B are the same that

the upper and lower line of Fig. 2 respectively.

Now we consider the average laminar length l̄ given by

l̄ =

∫ c

0

l(x, c)φ(x)dx. (11)

Then, from eqs.(4-9) and take into account Eq. (8) we

get

l̄ = lim
x→0

b

α + 1
l(x, c)xα+1

∣

∣

∣

∣

c

x

+
b

α + 1

∫ c

0

xα

ε + ax(p−1)
dx

(12)

If −1 < α, the limit in Eq. (12) is zero and the second
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term can by written as

l̄ =
1

acα+1

(a

ε

)

p−α−2
p−1

×

(

∫ ∞

0

yα

1 + y(p−1)
dy −

∫ ∞

cy

yα

1 + y(p−1)
dy

)

(13)

where y = (a/ε)1/(p−1)x and cy = (a/ε)1/(p−1)c. The

second integral goes to zero as ε goes to zero, whereas

the first one, converges in the parameter region −1 <

α < p− 2 or equivalent 0 < m < p−1
p , so we get for small

values of ε

l̄ ≈
1

acα+1

(a

ε

)

p−α−2
p−1 π

p − 1
sin−1

(

π(1 + α)

p − 1

)

(14)

Assuming that α remains constant as ε changes, the char-

acteristic relation yields

l̄ ∝ εβ (15)

where the critical exponent β is given by

β =
α + 2 − p

p − 1
=

1 + p(m − 1)

(p − 1)(1 − m)
(16)

Note that β depends on both, the behavior of the local

map around the origin (parameter p), and on the global

dynamics of reinjection (parameter m).

We expect that m weakly depend on parameters ε and

p, hence for several values of γ we evaluate l̄ as the values

of ε change. The results are show in figure (5) for different

values of γ and p.

For each point in Fig. 5 is evaluated the parameter m

using Eq. (3). It is finding that it is approximately inde-

pendent of γ and p, that is, m can be take as a constant

in each line of the figure (5), as it is showed in table (I).

Hence, according to characteristic equation Eq. (15), the

-6 -5 -4 -3 -2 -1

2

3

4

5

6

log(l̄)

log(ε)

A
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C D

FIG. 5: Characteristic relation for different values of the pa-

rameter γ in the map (1). Dots show numerical data and lines

show the best fit straight. For lines B,C and D P = 3 and the

values of γ are 1, 2 and 3 for case A, B and C respectively.

The value of parameters for line A are P = 2 and γ = 1.5.

TABLE I: Parameter γ and p using in each line of figure

(5) and the approximate value of m associated to each line

together the values of α getting for Eq. (4). Also appear

the corresponding value of the exponent of Eq. (16), the

numerical slope of the lines of Fig. 5 and the relative error

between both.

B A C D

p 3 2 3 3

γ 1 1.5 2 3

m 0.49 0.38 0.32 0.22

α from Eq. (4) −0.04 −0.39 −0.52 −0.72

β −0.51 −0.39 −0.77 −0.86

Numerical slope −0.51 −0.40 −0.80 −0.92

Relative error > 1% 3% 4% 7%

expected slope for each lines is β. Note that the slopes

can be also evaluated by fitting the numerical data of the

Fig. 5. The results of both methods are very closed as
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appear in table (I) with the corresponding relative error.

Note also that the error between analytical and numerical

evaluations increases as the exponent γ increases. This

effect can be due to a small nonlinearity observed in the

function M(x) as γ goes away from unity.

The particular value γ = 1 produces uniform reinjec-

tion in both case p = 3 and p = 2 with m ≈ 0.5 (see

dashes lines in figures 5 and 6). Hence for p = 3 the map

exhibits the classical characteristic relation reported for

type-II intermittency l̄ ∝ ε
1
2 which is a particular case of

Eq. (16) with p = 3.

For γ = 1 and p = 2, due to m ≈ 0.5, we are out of the

range of the application of Eq. (14) and also Eq. (16).

Note, however that, as α = 0 we can evaluate the integral

in Eq. (12), getting

l̄ =
1

a c
ln

(

ε + a c

ε

)

(17)

so for small values of ε we have

l̄ ≈
1

c
(ln c − ln ε) (18)

as it is showed in Fig. 6.

IV. DISCUSION AND CONCLUSION

Numerical iterations of maps suggests that uniform

reinjection probability density is a particular case of a

more general density. We present the function (3) as

a tool to get the function PRD. In a number of case

M(x) ≈ mx them we have for PRD function φ(x) = bxα.

Note that in this cases, to get a good approximation of

factor m is easier than get the complete function φ(x).
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FIG. 6: Characteristic relation for the map (1) with γ = 1 and

p = 2. Dashed line fits five points. It slope is approximately

-20.2, very closed to the expected −1/c = −20 for uniform

reinjection (see Eq. (18).

It is derived a analytical expression for duration proba-

bility density of the laminar phase φl(l) which takes into

account the local map around the unstable point and the

global dynamics incorporated in the PRD formula. Also

it is derived a general characteristic relation for type-

II intermittency (p=3) getting for the critical exponent

−1 < β < 0. All results are compared with numerical

simulations finding good agreement with the analytical

predictions.

As the reinjection mechanism around a unstable point

is a global propertie, independent of the local instability

of the map, we can study the reinjection probability den-

sity in map without intermittency. Hence, to illustrate

how a nonlinear mechanism of reinjection can change the

PRD from uniform reinjection (γ = 1 in Eq. (1)) to ex-

pression (4) (γ 6= 1 in Eq. (1)), we consider the well know
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tent map defined as Xn+1 = T1(xn) where

T1(x) =











2x x ≤ 1/2

2 − 2x x > 1/2

(19)

Let be H(x) = xq for q > 0 and let be Tq defined by the

composition of function

Tq ≡ H ◦ L1 ◦ H−1 =











2qx x ≤ 1/2q

(2 − 2x1/q)q x > 1/2q

(20)

and we consider the following map xn+1 = Tq(xn) (see

Fig. IV).
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0

0.2

0.4

0.6

0.8

1
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Xn

T1 T1/3

FIG. 7: Two maps Tq for q = 1, 1/3. Tent map is labelled by

T1.

Note that, due to Tq is a conjugate map of the tent

map, in the sense used by in [19], its invariant density

ρq(x) is related to the invariant density ρ1(x) of the tent

map by[19]

ρp(x) = ρ1(H
−1(x))

∣

∣

∣

∣

dH−1

dx

∣

∣

∣

∣

. (21)

Since ρ1(x) = 1 we have

ρq(x) =
x

1
q
−1

q
. (22)

then, after applied Eq. (2) for Tq we get for the PRD

of the map Xn+1 = Tq(xn) the expression φq(x) = bxα

where

α = 1/q − 1 (23)

that is, Eq.(4) is exact result for Xn+1 = Tq(xn), then

we have the next exact result for M(x)

M(x) =
1

1 + q
x. (24)

In this example, the Eq. (4) appears as a natural gener-

alization (q 6= 1) of the uniform reinjection (q = 1). It

seems to be a similar mechanism for the map (1), as it is

suggested from a comparison between both maps. In fact,

the parameter γ in the map (1) and q in xn+1 = Tq(xn)

play a similar roll in the sense that for q = γ = 1 we

have uniform reinjection in both case. Moreover, as it is

showed in Fig. 8, we can substitute in Eq.(23) q by γ to

get approximated values of α for the PRD of the map

(1).
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FIG. 8: Exponent α as a function of γ. Dots show the values

of table (I) whereas in continuous line is plotted Eq. (23) with

the identification q = γ.
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