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This paper reports on the implementation of a lower-bound approach for the buckling of imperfection-

sensitive shells using general purpose finite element codes. The stability of cylindrical steel tanks under

wind pressure is evaluated for two tank configurations: conical roof tanks and open top tanks. For both

tank configurations, several geometric relations are considered in order to find the variation of the

knock-down factor as the geometry changes. The reduced energy method is implemented to compute a

lower-bound for critical wind pressures and the results are compared with the static non-linear analysis

carried out on the same models. An alternative way to implement the reduced energy method is

presented to improve the results obtained with the proposed methodology.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Large thin-walled tanks are employed by various industries to
mainly store oil, water and petrochemical products. During
weather events involving high wind speeds such as in hurricanes,
the occurrence of moderate damage to total failure is mainly
associated with buckling of cylindrical shell of the tank [1,2]. It is
well known that the buckling behavior of shells is sensitive to
initial imperfections, which produces a drop in the critical load.
This drop may be moderate, as in laterally loaded cylinders and
cylindrical panels, or severe, as in axially loaded cylinders and
pressurized spherical shells [3,4].

Some of the studies on the effect of wind pressures on
cylindrical shells include analysis mainly carried out on silos
using classical analytical formulations as in [4–6] or in short open
top tanks analyzed by finite element models. For example,
Godoy and Flores [7,8] studied imperfection-sensitivity to elastic
buckling of wind loaded open cylindrical tanks; Portela and
Godoy [9] used both bifurcation analysis and geometrical non-
linear analysis for buckling of tanks with conic roof under wind
load.

Typically, imperfection-sensitivity on shells is analyzed by
geometrical non-linear analysis, but this methodology is compu-
tationally expensive and not always available. However, there are
alternative ways to account for imperfection-sensitivity, and one
ll rights reserved.

oy@upr.edu (L.A. Godoy).
of the most interesting approaches oriented to shell design has
been the lower bound theory based on a reduced-energy model of
the shell developed by Croll and co-workers [10–14]. In the
reduced-energy approach it is important to identify the energy
components of the shell in the classical eigenmodes, including
membrane and bending components as well as load potentials.
Depending on the shell and load system, some of the contribu-
tions to the second variation of the total potential energy are
positive and others are negative, which means that they are
stabilizing or de-stabilizing components. The main hypothesis is
that stabilizing (positive) components may be lost in the shell due
the presence of imperfections. Thus, the reduced energy approach
uses a simplified energy version in which some stabilizing
components are eliminated from the initial post-critical condi-
tion. This lower-bound theory has been validated extensively for
many shell forms [10–14]. Sosa et al. [15] investigated the
implementation of a lower-bound approach for the buckling of
imperfection-sensitive shells using general purpose finite element
codes for cylindrical shells with different geometric configura-
tions under uniform pressure. The lower-bound approach can be
expressed in terms of reduced stiffness, as well. Jaca et al. [16]
reported on a reduced stiffness approach for the buckling of open
cylindrical tanks subjected to wind loads to compute the lower-
bound buckling loads.

This work aims to show the results of the implementation of
the reduced-energy approach in conjunction with a general
purpose finite element program to compute the lower-bound
buckling loads for tanks with different geometric configurations
and subjected to non-uniform (wind) pressures.

www.elsevier.com/locate/tws
dx.doi.org/10.1016/j.tws.2010.06.004
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2. Conical roof tanks under wind pressure

Initially, six conical roof tanks models are considered for
computing the lower-bound buckling loads. These models are
identified as MC1, MC2, MC3, MC4, MC5 and MC6. The cylindrical
Table 1
Dimensions adopted for the cylindrical part of the model.

MC1 MC2 MC3 MC4 MC5 MC6

H (m) 7.32 12.19 17.07 19.20 24.08 28.96

D (m) 30.48 30.48 30.48 30.48 30.48 30.48

H/D 0.24 0.40 0.56 0.63 0.79 0.95

Table 2
Thicknesses adopted for each model.

Course MC1 MC2 MC3 MC4 MC5 MC6

tdesign (m) tdesign (m) tdesign (m) tdesign (m) tdesign (m) tdesign (m)

1 0.0095 0.0127 0.0175 0.0206 0.0254 0.0286

2 0.0079 0.0111 0.0159 0.0175 0.0222 0.0254

3 0.0079 0.0079 0.0127 0.0159 0.0206 0.0254

4 0.0079 0.0111 0.0127 0.0175 0.0222

5 0.0079 0.0095 0.0111 0.0159 0.0206

6 0.0079 0.0079 0.0127 0.0191

7 0.0079 0.0079 0.0111 0.0159

8 0.0079 0.0079 0.0127

9 0.0079 0.0111

10 0.0079 0.0079

11 0.0079

12 0.0079

MC1
MC2

MC3

H/D = 0.24 H/D = 0.40 H/D = 0.56

Fig.1. Relative proportions of th
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Fig. 2. (a) Pressure distribution used in the conical roof. (b) Win
part of the models has variable height, ranging from H/D¼0.24 to
0.95, with tapered thickness calculated according the 1-foot
method specified in the API-650 [17]. The material is steel, with
elastic modulus E¼206 GPa and Poisson ratio n¼0.3.

All the models have a conical fixed roof supported by 32 rafters
with a roof slope of 3/16. The cylinder is assumed to be fixed at
the base and it is assumed that each model is isolated, so that the
pressures applied on the shell and on the roof are not perturbed
by other surrounding tanks. Tables 1 and 2 summarize all the
information regarding the dimensions adopted for the models.
Fig. 1 shows the geometry of all the models considered in this
section.

The space variation of pressures in the cylindrical part
of the tank is assumed to be constant in elevation and variable
around the circumference, as in other research works in the
field [5,9]. For the pressures acting on the roof, this section
considers the wind-tunnel pressures obtained by Mac Donald
et al. [18], which are similar to those reported by Portela and
Godoy [9]. The maximum pressure in the reference case is taken
as 1 KPa acting on the windward meridian on the cylindrical part
of the shell. For the stability analysis, the values of the pressures
acting on the complete shell are scaled using the load parameter
l. The circumferential pressure distribution is assumed in the
form:

p¼ l
X6

i ¼ 0

cicosðiyÞ ð1Þ

where the Fourier coefficients are: c0¼0.387, c1¼�0.338,
c2¼�0.533, c3¼�0.471, c4¼�0.166, c5¼0.066 and c6¼0.055.
Fig. 2(a) shows the pressure distribution used in the conical roof
and Fig. 2(b) shows the wind pressure distribution assumed
around the circumference.
MC5
MC4

MC6

H/D = 0.63 H/D = 0.79 H/D = 0.95

e models with conical roof.

30 60 90 120 150 180

θ [deg]

d pressure distribution assumed around the circumference.
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2.1. Computational model for classical buckling analysis

All the tanks investigated were modeled by using Abaqus [19].
Meshes were generated by using the triangular element STRI3
[20] with adequate density to obtain convergence. The computa-
tions are divided in three stages: first, the critical load is
calculated by solving the classical buckling eigenproblem; second,
the methodology of reduced energy is implemented; and third,
non-linear analyses with geometric imperfections are carried out
to compare the results with those obtained in the second step.

Results obtained from the classical eigenvalue problem show
that the eigenvalues for the first and second modes are practically
the same for all the models studied. The shortest model (MC1)
seems to be more rigid and the classical critical loads in the other
models (MC2–MC6) tend to a constant value as the relation H/D
increases. Table 3 summarizes the eigenvalues for the modes 1
and 2.

In order to relate the critical pressures indicated in Table 3 to
wind speed, it is possible to use ASCE-7-02[21] to calculate the
wind speed associated to the critical pressures:

pcr ¼ 0:613KzKztKdIV2 ð2Þ

where pcr is the critical pressure of the wind in (N/m2), V is the
basic wind speed (m/s), Kz is the exposition factor, Kzt is the topo-
graphic factor, Kd is the directionality factor and I is the impor-
tance factor. It is assumed that the tanks are placed in flat
terrain, so Kzt¼1. Category II structure gives the importance factor
I¼1, the directionality factor Kd¼1 and Kz¼0.94; then Eq. (2)
becomes

pcr ¼ 0:576V2 ð3Þ

Wind speeds shown in Table 3 were calculated using Eq. (3).
Table 3
Critical pressures for wind loaded tanks.

Model Critical pressure (kN/m2)
Critical wind gust

speed (Km/h)Mode 1 Mode 2

MC1 H/D¼0.24 3.854 3.881 294

MC2 H/D¼0.40 2.480 2.481 236

MC3 H/D¼0.56 2.916 2.926 256

MC4 H/D¼0.63 2.537 2.547 239

MC5 H/D¼0.79 2.558 2.568 240

MC6 H/D¼0.95 2.478 2.485 236

First eigenmode
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Fig. 3. Knock-down factors calculated using the re
2.2. Computational model for reduced energy analysis

In this step, the lower-bound wind pressure is calculated
using the first mode of the eigenvalue analysis as an imposed
displacement pattern. Every part of the shell that forms the whole
cylinder (all courses) undergoes simultaneous reductions in the
membrane stiffness while the scaled mode is imposed as a
prescribed initial displacement. In that configuration, the energy
used by the structure to reach that deflected configuration is
calculated [15]. With the calculated energy for each reduction
factor a eroding the membrane stiffness and having calculated the
energy without reduction in its stiffness for the same load
conditions, we are able to determine the loss in the buckling
capacity to support additional load. The knock-down factor Z is
defined as the ratio between the energy computed for different
levels of reduction in the membrane stiffness and the energy
computed with all the membrane stiffness, say Z¼Ub/(Um+Ub).

The computation of energies shows that the knock-down
factor Z tends to a constant value as the reduction factor a
increases. The results of these computations are illustrated in
Fig. 3. From these plots, it seems that the knock-down factor has a
small dependence on the H/D relations. All the models show a
similar trend and the maximum difference in Z between the
shortest and the tallest model is only 4%.
2.3. Lower bound via non-linear analysis

To compare the lower bound results with those obtained in the
previous classical analysis, non-linear imperfection-sensitivity
analyses are carried out. All the models are analyzed including
small amplitude imperfections following the shape of the first
eigenmode. The amplitudes of the imperfections vary from
0.10 tmin to 1.0 tmin, where tmin is the smallest shell thickness of
each cylinder. For each imperfection level, non-linear equilibrium
paths are computed using the Riks technique, so that the structure
may display its post-critical behavior. For small amplitude
imperfections, the non-linear post-critical path is unstable. This
means that the shell can withstand a maximum load for a
relatively small displacement. Beyond that maximum, the shell
cannot take additional loads and it has large deflections.

For imperfection amplitudes larger than 1.0 tmin, the equili-
brium path has very large deflections, becomes stable and
constantly raising. This is an indication that the shape of the
shell has changed so much that the behavior is quite different
from the behavior of the original perfect shell. This level of
100 1000 10000
α

HD = 0.24
HD = 0.40
HD = 0.56
HD = 0.63
HD = 0.79
HD = 0.95

duced energy method for the first eigenmode.
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imperfection settles on the lower limit of load that the structure is
able to support with small deviations from the original form. After
that limit, the deflected structure behaves in a different way.
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D¼0.63); and (c) MC6 (H/D¼0.95).
Typical non-linear equilibrium paths for the mentioned levels
of imperfections are shown for the models MC2, MC4 and MC6 in
Fig. 4. The imperfection-sensitivity curves shown in the right side
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in Fig. 4 were generated by plotting the normalized critical load
l/lmax for each imperfection level versus the dimensionless
imperfection amplitude x/tmin. Fig. 5 summarizes all those
curves for all the models analyzed and they show the lower
limit to which the pressure loads tend as the imperfection levels
increase. In this way, the knock-down factor Z¼l/lmax is directly
comparable with the results obtained using the reduced energy
method.

From Fig. 5 it is seen that the imperfection-sensitivity is
practically the same for all the models. This feature may be
justified by the fact that in all the models the buckling mode
deflections are concentrated in the upper part of the tanks,
which corresponds to the zone of lower shell thickness. This
thickness is the minimum required by the design in all models
and at least the last three courses at the top of the cylinder have
the minimum thickness. Probably, that is why the classic
eigenvalues indicated in Table 3 have small variations as the
H/D ratio increases.

Notice that the knock-down factor in Fig. 5 does not approach
clearly a plateau as obtained in the reduced energy method
depicted in Fig. 3. Comparing the results displayed in Figs. 3 and 5,
the reduced energy method predicts higher lower limits than
those shown by the imperfection-sensitivity analysis. In the
reduced energy method, the curves tend to values of Z ranging
from 0.758 to 0.785, while in the non-linear analysis method, for
First eigenmode 
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the maximum imperfection amplitude considered (x/tmin¼1.00),
the lower limit considering both modes seems to be between 0.6
and 0.7.

Clearly, the values predicted by the proposed reduced energy
method for wind pressures cannot be considered a safe lower
limit. The main reason for the discrepancy seems to be associated
with the different deflection modes obtained in the classical
eigenvalue and the non-linear analyses. The first mode obtained
in the classical eigenvalue computations (and then used in the
reduced energy method) is not quite the same as the mode found
in the non-linear analysis with an imperfection as illustrated in
Fig. 6.
3. Open tanks under wind pressure

The models analyzed in this section are the same as those
considered by Godoy and Flores [7]. There are four cantilever
cylinders with different geometric relations studied in order to
emphasize the differences in the behavior according to changes in
their geometric relations. These models represent tanks clamped
at the base and free at the upper edge without any reinforcing
ring and with constant thickness. The material is steel, with
elastic modulus E¼206 GPa and Poisson ratio n¼0.3. The main
geometric properties for the models are summarized in Table 4
as imperfection

0.5 0.75 1
perfection  ξ  / tmin

H/D = 0.24
H/D = 0.40
H/D = 0.56
H/D = 0.63
H/D = 0.79
H/D = 0.95

sitivity analysis using the first eigenmode as imperfection shape.

20 25 30 35 40
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Non-linear mode at 

maximum load

-linear mode at advanced 

led state

buckling modes.
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where Z is the Batdorf parameter given by

Z ¼
H2

Rt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�n2Þ

q
ð4Þ

where H is the height, R the radius, t the thickness and n the Poisson’s
coefficient. The Batdorf parameter is a measure of the slenderness of
the cylindrical shell and as its value increases, the slenderness of the
shell increases. Fig. 7 provides a graphical representation of the
geometries. The discretization of the shells is carried out using STRI3
finite elements and the load distribution in the cylindrical shell is the
same as that used for the conical roof tanks.
3.1. Computational model for classical buckling analysis

For the set of open tanks described above, classical linear
buckling analysis was performed. For the wind pressures given by
Eq. (1), the classical critical pressures were calculated and
contrasted with the results reported in [7]. To understand the
influence of the specific finite element employed, the critical
values were also calculated using S8R5 elements. The results
obtained with the proposed discretization using STRI3 elements
predict values are close to those calculated with S8R5 elements,
Table 4
Open tanks: geometric properties.

Model
Diameter Height Thickness

Non-dimensional parameters

D (m) H (m) t (m) H/D R/t Z

M1 24.0 4.0 0.006 0.17 2000 212

M2 14.0 3.5 0.004 0.25 1750 417

M3 9.0 4.5 0.003 0.50 1500 1431

M4 5.0 5.0 0.002 1.00 1250 4770

M1 
H/D = 0.17

Z = 212 

M2 
H/D = 0.25

Z = 417 

D 

H 

Fig. 7. Relative size of open tank mo

Table 5
Open tanks: classical critical loads (eigenvalue analysis).

Model Non-dimensional parameters lc (kN/

H/D R/t Z Ref. [7

M1 0.17 2000 212 2.282

M2 0.25 1750 417 –

M3 0.50 1500 1431 –

M4 1.00 1250 4770 1.558
and they are in good agreement with the previously reported
results [7]. Table 5 summarizes the results.

3.2. Lower bound using reduced energy method

As in the conical roof models, the deflections in the buckled
mode are concentrated in the windward zone and the suction has
almost no effect on the deflected shape. Also, as the slenderness
increases, the number of waves decreases and the deflected shape
concentrates in the upper zone of the cylinder. Abaqus [19]
normalizes the mode using the maximum displacement, so that
the maximum normalized displacement is equal to one.

Those normalized first modes were used to calculate the lower
bound pressures using the reduced energy method. For conve-
nience, a scaling factor 1/1000 was used for the modes, although
using other scaling factors leads to identical results. The knock-
down factor Z¼Ub/(Um+Ub) calculated for each model is illu-
strated in Fig. 8 where it is seen that the knock-down factor
converges to a constant value for a larger than 100 and is
practically independent of the model geometry.

3.3. Lower-bound via non-linear analysis

According to the results reported by Godoy and Flores [7],
the knock-down factor should lead to different lower bounds as the
geometry of the tank changes. However, Fig. 8 shows that all the
models tend to approximately the same lower limit. For example,
consider just two extreme cases, model M1 (H/D¼0.17) and model
M4 (H/D¼1.00): the reduction factors according to results reported
in [7] are approximately ZM1¼0.60 and ZM4¼0.95. Those results
have been reproduced with the models used here (see Fig. 9), using
element STRI3 and geometrical non-linear analysis. Clearly, the
lower bound estimates shown in the previous section are not in
M4 
H/D = 1.00 
Z = 4770

M3 
H/D = 0.50

Z =1431 

dels considered for the analysis.

m2) Critical wind gust Speed (Km/h)

] S8R5 STRI3

2.201 2.225 225

2.107 2.137 220

1.683 1.694 196

1.500 1.518 186
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good agreement with the non-linear results. An alternative for
overcoming such differences are proposed in the next section.
4. An alternative for improving the lower bound
computations

In sight of the results described in the previous sections, it is
apparent that the proposed lower bound approach has not been
able to capture the expected behavior displayed in the non-linear
analysis. Changes in the mode normalization to compute the
energy is proposed here to overcome such differences.

To understand the reasons of the discrepancies in the results,
we write the classic eigenvalue problem as

FT
1½K�lCKGðNF Þ�F1 ¼ 0 ð5Þ

where FT
1 is the first eigenmode in the classic eigenvalue analysis,

K is the stiffness matrix, KG is the geometric matrix assembled
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with the contributions of the initial stresses NF in the fundamental
state and lC is the classical critical load. Matrix K has a membrane
(Km) and a bending (Kb) component, thus

FT
1½ðKmþKbÞ�lCKGðNF Þ�F1 ¼ 0 ð6Þ

Next, the membrane stiffness is eroded in the reduced
eigenproblem, so that the lower bound should be computed as

F�T ½ðKbÞ�l
�KGðNF Þ�F� ¼ 0 ð7Þ

where F�T is the mode in the lower bound state and ln is the
reduced critical load. Eqs. (6) and (7) can be written in terms of
computable energies as

FT
1½ðKmþKbÞ�F1 ¼ lCFT

1½KGðNF Þ�F1 ð8Þ

F�T ½ðKbÞ�F
�
¼ l�F�T ½KGðNF Þ�F� ð9Þ

The left side in Eq. (8) corresponds to the energy computed
with the complete contribution of membrane and bending
stiffness. The right side of Eq. (8) contains an energy term
involving the geometric matrix that is not easily computable
because, although the modes are known from the classical
eigenproblem, the geometric matrix KG is not explicitly available
in Abaqus. In this case, a different normalization of the
eigenvector, similar to what is used in structural dynamics, is to
let FT

1½KGðNF Þ�F1 ¼ 1. Before the normalization, the scalar

FT
½KGðNF Þ�F� ¼c ð10Þ

is used to normalize this term in a way that the energy involving
the geometric matrix becomes one. Thus, Eq. (8) takes the
following form:

FT
1½ðKmþKbÞ�F1 ¼ lCc ð11Þ

After normalization, we get a mode F1 ¼F1=
ffiffiffiffi
c

p
, and

FT
1ffiffiffiffi
c

p ðKmþKbÞ½ �
F1ffiffiffiffi
c

p
¼ lC

ð12Þ

From Eq. (12), Abaqus can compute the energy FT
1½ðKmþKbÞ�F1,

as well as lC; then, the normalization factor c is calculated from
those values as

c¼
FT

1½ðKmþKbÞ�F1

lC
ð13Þ

Repeating the same procedure in Eq. (9), we get:

F�T ½KGðNF Þ�F� ¼ r ð14Þ

Then, the reduced eigenproblem in Eq. (9) becomes

F�T ½Kb�F
�
¼ l�r ð15Þ

or else:

F�Tffiffiffiffirp Kb½ �
F�ffiffiffiffirp ¼ l�

ð16Þ

Notice that the normalization factors r and c are quite
different (rac). There are two unknowns in Eq. (15): the reduced
eigenvalue ln, which is the lower bound, and the mode ^

n for
such reduced eigenvalue. Notice that the main objective of this
proposed procedure is to find ln as well as ^

n without using non-
linear imperfection analysis.

First, we assume that the reduced eigenmode ^
n is available

from the non-linear analysis. Then, the left side of Eq. (15) can be
computed. However, in the other side, even with the assumed ^

n,
r is also a function of matrix KG. This matrix is the same as that
used in Eq. (8) because the lower bound must occur along the
same fundamental path as the classical critical load, so that the
initial stresses in both states must be the same.

The most important unknown is still the reduced eigenvalue ln

and although the term ^
nT[Kb]^n in Eq. (15) can be computed, the
absence of ln or r does not allow to proceed with the compu-
tations. An additional condition is needed to overcome that
restrictive situation. The key limitation is that Abaqus [19] does
not allow the user to compute KG individually and extract that
result separately. Regardless of this limitation, the knock-down
factor can be expressed in the form:

Z¼ l�

lC
¼

c
r

F�T1 ½Kb�F
�
1

FT
1½ðKmþKbÞ�F1

ð17Þ

From this last equation, except for r, it is possible to compute
all the other terms and the reduction factor would be only a
function of a constant multiplied by the inverse of r, that is

Z¼ l�

lC
¼

1

r
C ð18Þ

where the constant C is

C ¼c
F�T ½Kb�F

�

FT
1½ðKmþKbÞ�F1

ð19Þ

Graphically, Eq. (18) is a hyperbola and contains the values of
the normalization factors c and r. If we rewrite the constant C

remembering that

1

a
KmþKb

� �
-Kb as a-1 ð20Þ

substituting Eqs. (20) into (19), we get

C ¼c
F�T ½ð1=aÞKmþKb�F

�

FT
1½ðKmþKbÞ�F1

ð21Þ

Eq. (21) substituted into Eq. (18) leads to a family of
hyperbolas for different values of the reduction factor a, which
are illustrated in Figs. 10 and 11 for models M1 and M4,
respectively. For our purposes, it is interesting to find the
limiting values of c and r to predict accurate values of Z as
geometry changes. In the graphs, cC indicates the value for which
C is computed with a equal to one, say with no membrane
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Table 6
Normalized factor for open tank models.

Model H/D Z Z r�

M1 0.17 212 0.598 0.1228

M2 0.25 417 0.647 0.1324

M3 0.50 1431 0.718 0.1379

M4 1.00 4770 0.904 0.1248
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Fig. 12. (a) Variation of r� as a function of H/D and Z. (b) Variation of Z as a
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Table 7
Normalized factor for cone roof tank models.

Model H/D Z r�

MC2 0.63 0.606 0.3082

MC4 0.79 0.603 0.3316

MC6 0.95 0.605 0.3205
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stiffness reduction. Also, rC indicates the value of C for a large
reduction in the membrane stiffness, say a-N. Then, rn must be
between these two values, which is the value that satisfies
Eq. (18) for a correct lower bound critical load.

As previously mentioned, an additional condition is needed to
find that value in absence of the capability of computing using KG

and mode ^
n, but this condition is not available from the

formulation. However, from Figs. 10 and 11, in the range cC–rC,
every value of r can be normalized as

r¼ r�rC

cC
�rC

ð22Þ

Particularly, for rn there is a normalized value r�, given by

r� ¼ r��rC

cC
�rC

ð23Þ

This normalized coefficient indicates how distant is rn from rC

according to the model and it is computed for open tank models
in order to see if it changes as the geometry and the knock-down
factor change.

For open tank models, from Table 6 and Fig. 12(a), it is seen
that r�is about 0.13 and seems to be almost constant for different
geometries (described by Z or H/D) and for expected values of Z
obtained from the geometric non-linear analysis. Normalized
hyperbolas for all the open tank models are depicted in Fig. 12(b),
where each model is characterized by a different curve and a
different knock-down factor. However, for all the curves, the
normalizing factor is defined by an almost constant value of r�.

The same normalization was implemented in three models of
cone roof tanks. Particularly, for models MC2, MC4 and MC6,
Table 7 and Fig. 13(a) summarize the computed values of r� ,

which remain almost constant at about 0.32 for all models.
Different from the case of the open tanks models, notice that in
Table 7, the knock-down factor Z is practically the same.
Additionally, the normalized hyperbolas shown in Fig. 13(b) are
almost coincident. The cause may be that the models considered
have similar deflected patterns in the buckled zone, which in turn
have the same thickness configuration and lead to almost
identical classical eigenvalues. Also, the non-linear behavior is
similar for the three models as illustrated previously in Fig. 5.

From this proposed normalization in the range cC–rC, it is
possible to see that the change from the classical eigenmode to
the reduced eigenmode (obtained in this case from a geome-
trically non-linear analysis) follows a uniform pattern described
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by the uniformity in the values ofr�. These values indicate the
fraction necessary to add to the classical rC to obtain the true r*
and consequently the right knock-down factor Z for each model.

Clearly, in this alternative procedure to improve the results
obtained previously for wind pressures, it is necessary to compute
a non-linear path for a high amplitude imperfection (typically x/
t¼1 or 2) in order to determine the mode and the maximum load
reached for that level of imperfection. Furthermore, the procedure
requires computing the energy for the reduced membrane
stiffness in addition to computing energies using the classical
eigenmode. All these operations were done here to understand
the reason for the differences in the results on models under wind
loads, but they cannot be implemented as a standard simple
procedure to find the knock-down factor for the classical buckling
load. This is a limitation of the method described in [15] and it
restricts its applicability to those cases in which the classical
eigenmode is quite similar to the reduced energy mode.
5. Conclusions

From the results obtained in the previous sections using a
general purpose finite element code and a lower bound buckling
formulation, it is possible to obtain a preliminary general
conclusion. The proposed reduced energy method is not able to
estimate the lower bound for wind pressures. For cone roof tanks,
the non-linear imperfection-sensitivity analysis shows results
that are similar for all models, but with a tendency to estimate a
lower critical load than that predicted by the reduced energy
method. Although the differences in the knock-down factors are
not significant (about 10%), the lower bound predicted by the
reduced energy method is unsafe for design.

The differences in the results for open top models are more
important. Significant discrepancies were found in comparison
with a non-linear analysis. The main source of the discrepancies
seems to be the shape of the mode used in the computations of
the energy. This feature was verified from the geometrically non-
linear analysis, and it is seen that the modal shape changes
from the full membrane stiffness configuration to the reduced
membrane configuration. This change in the modal shapes seems
to invalidate one of the main assumptions made in the formula-
tion of the reduced energy method, namely that the buckling
mode in the lower bound is the same as in the unreduced mem-
brane stiffness state. Considering those observations, an attempt
to apply an alternative way to improve the method using a code
like Abaqus requires at least one additional condition to find the
correct knock-down factor. However such a condition is not
available from the proposed formulation or requires additional
computations that are useful to understand the differences in the
results but are beyond the purpose of implementing the reduced
energy method for wind loads in a simple way.
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