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Abstract. We consider a strictly convex billiard table with C2 boundary, with

the dynamics subjected to random perturbations. Each time the billiard ball hits

the boundary its reflection angle has a random perturbation. The perturbation

distribution corresponds to the physical situation where either the scale of the sur-

face irregularities is smaller than but comparable to the diameter of the reflected

object, or the billiard ball is not perfectly rigid. We prove that for a large class of

such perturbations the resulting Markov chain is uniformly ergodic, although this

is not true in general.
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1. Introduction

Billiards with a stochastic perturbation of the outgoing angle are very natural models

motivated by microscopic kinetic problems, theoretical computer science, etc., and

have been receiving increased attention from deterministic and stochastic dynamics

communities in the last decade. In most of the studied cases, the outgoing angle is

either uniformly distributed, or it is chosen according to the Knudsen cosine law,

see for instance [Eva01, FZ12, KY13]. These types of reflection laws are physically

relevant for billiards where the micro-structure and irregularities of the boundaries

have a typical length-scale larger than the diameter of the billiard ball.

In the present work we focus on the case of stochastic perturbations of the classical

deterministic billiard corresponding to the physical situation where either the billiard

ball is not perfectly rigid, or the scale of the surface irregularities is smaller than

but comparable to the diameter of the reflected object, see Figure 1.

Deterministic billiards on sufficiently smooth strictly convex tables are non-

ergodic [Laz73, KH95]. We show that, in contrast to the deterministic situation,

for a certain class of physically relevant stochastic perturbations of a reflection law,

the associated Markov process is uniformly ergodic, and that any probability mea-

sure converges exponentially fast to a unique invariant probability measure. We

note that this is not true in general: there are examples of stochastic perturbations

under which the resulting system is not ergodic. Our result holds for billiard tables

which are strictly convex, with C2 boundary, including the possibility of isolated

points of null curvature.
1
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Figure 1. Perturbation on the reflexion angle motivated by microscopic

roughness and ball radius. From left to right: microscopic paradigm of

round particle reflecting on a rough surface; equivalent microscopic model

of point particle reflecting on a smooth surface; effective macroscopic

model.

The mathematical setup is informally described as follows. Given a prescribed family

of independent random variables {Yθ}θ∈[0,π], the dynamics obeys a stochastic rule.

If the outgoing angle after a deterministic collision would have been θ, it is taken

as θ + Yθ instead. The family {Yθ}θ∈[0,π] is chosen in such a way that typically

the influence of Yθ is negligible compared to θ. However, it becomes substantial

when the incidence angle gets too small. The latter property reflects an increased

sensitivity to surface rugosity.

Stochastic perturbations of classical billiard systems have been proposed and studied

before, see [CPSV09, FZ10, CF12, CCF13, Yar13]. Yet, we are not aware of prior

studies of perturbations similar to those considered here.

This paper is divided as follows. In Section 2 we describe the model and state

the main result. Basic properties of convex billiard tables are briefly reviewed in

Section 3. The main technical result of this paper is Proposition 5, which is stated

in Section 4, and from which Theorem 1 is derived at end of this section. Section 5 is

dedicated to the main technical proofs, culminating with the proof of Proposition 5.

2. Models and result

We begin with the description of the deterministic billiard in D, a connected domain

in R
2. We assume throughout this paper that D is strictly convex with C2 boundary.

Notice that isolated points with null curvature are allowed.

The billiard in D is the dynamical system describing the free motion of a point mass

inside D with elastic reflections at its boundary Γ. Let n(q) be the unit normal to

the curve Γ at the point q pointing towards the interior of D. The phase space of

such a dynamical system is {(q, v) : q ∈ Γ, |v| = 1, 〈v, n(q)〉 > 0}.

The image of a point (q0, v0) by the deterministic billiard map T is denoted by

T (q0, v0) = (q1, v1)
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and defined as follows. First, q1 is the point where the oriented line through (q0, v0)

hits Γ. Finally, v1 is the velocity vector after the reflection at q1, i.e. v1 = v0 −

2〈n(q1), v0〉n(q1).

We take the set of coordinates (s, θ), where s is the arc-length parameter along Γ

and θ ∈ [0, π] is the angle between v and the oriented tangent line to the boundary

at q. The phase space under these coordinates is given by the cylinder

M = {(s, θ) : 0 6 s < |Γ|, 0 6 θ 6 π}.

For x = (s, θ) ∈M , we write s(x) = s, θ(x) = θ, and also q(x) for the corresponding

point in Γ. The map T is a diffeomorphism defined on the compact setM with fixed

points at ∂M = {(s, θ) : θ = 0 or π}.

Moreover, T is a twist diffeomorphism. This means that the image of any vertical

line (s = constant) is a smooth curve with slope positive and bounded away from

infinity, see [KH95, Section 9.2].

If D is strictly convex with sufficiently smooth boundary, by KAM theory there exist

invariant curves of the billiard map as close as we want to the boundary ∂M , see

the end of Section 3. Therefore, if the initial angle is small it remains small along

the whole trajectory. We show that this regularity can be broken using arbitrarily

small random perturbations.

We consider the system with random perturbations that act on the outgoing an-

gle, independently of the position, by adding a random variable to θ. Our choices

of perturbations are motivated by physical situations where either the scale of the

surface irregularities is smaller than but comparable to the diameter of the reflected

object, or the billiard ball is not perfectly rigid. Fix 0 < ǫ < π
2
. For θ away from

0 and π, we take the probability density of the outgoing angle as a constant on the

interval [θ− ǫ, θ+ ǫ] (the correct law derived from Figure 1 would not have constant

density, but this is irrelevant for the qualitative behavior of the model). The partic-

ular choice of perturbation becomes more delicate when the collision angle is close

to the extremes. We give three specific examples to illustrate possible behaviors.

Example 1. For every point x = (s, θ) ∈M , define θǫ := min{max(θ, ǫ), π − ǫ}, and

consider the measure Qǫ
x on M given by

Qǫ
x(A) =

∫ θǫ+ǫ

θǫ−ǫ

1A(s, u)
1

2ǫ
du.

In other words, the random outgoing angle is distributed uniformly on [θǫ−ǫ, θǫ+ǫ].

Example 2. Outgoing angle uniformly distributed on [max{θ − ǫ, 0},min{θ + ǫ, π}]

Example 3. Outgoing angle uniformly distributed on [0, 2θ] for θ < ǫ, and defined

analogously for θ > π − ǫ.
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In Examples 1 and 2, the outgoing angle is uniformly distributed over an interval

whose length is at least ǫ: for θ < ǫ, Example 1 replaces θ by a uniform on [0, 2ǫ],

whereas Example 2 replaces θ by a uniform on [0, θ + ǫ]. Example 3, on the other

hand, is very different in nature. For a trajectory where the outgoing angle would

be almost tangent to the boundary Γ, the replacement by a uniform on [0, 2θ] keeps

it very close to being tangent. We find the first two examples natural to justify for

a physical situation of a rigid sphere hitting a rough surface, as shown in Figure 2.

From now on we concentrate on Example 1, bearing in mind that all the arguments

translate seamlessly to Example 2 or other similar cases.

Figure 2. Microscopic view of a rigid ball colliding with a rough surface.

Or, equivalently, point mass colliding with an irregular but microscopically

smooth surface. When the incidence angle is very small, the randomness of

the outgoing angle is no longer determined by how the particle hits a given

protuberance: it is rather sensitive to which parts of the protuberances are

visible to the particle. For the reflected angle to be yet smaller than the

incidence angle, it would require the particle to hit the surface on the back

side, which becomes less likely as the incidence angle tends to zero.

Denote by B the Borel σ-field on M , and P the set probability measures on B, and

the total variational distance on P denoted by ‖µ− ν‖ = supA∈B |µ(A)− ν(A)|.

Definition. The stochastic perturbation of the map T is given by the transition

kernel Pǫ(x,A) = Qǫ
Tx(A), x ∈M, A ∈ B.

Observe that Pǫ(., A) is a measurable function for every A ∈ B, and Pǫ(x, .) is a

measure on B for every x ∈M .

The push-forward operator µ 7→ µPǫ for µ ∈ P is given by

µPǫ(A) =

∫

M

µ(dx)Pǫ(x,A),

and we say that µ ∈ P is invariant for Pǫ if µPǫ = µ, see Section 4.

Theorem 1. Suppose that D is strictly convex and its boundary Γ is C2. For each

0 < ǫ < π
2
, there exists a unique invariant measure νǫ for Pǫ, and moreover there

exists γ > 0 such that
∥∥µP n

ǫ − νǫ
∥∥ 6 e−γn for all µ ∈ P and n ∈ N.

Theorem 1 remains valid, with essentially the same proof, for a much broader class

of distributions. What is important is that the probability density of the outgoing
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angle is bounded from below on some interval around θ whose length is also bounded

from below.

Yet, the validity of the Theorem 1 is far from being general. Stochastic dynamics

constructed using the distribution of Example 3 is not only non-ergodic, but it gets

quickly absorbed by a random point at the boundary ∂M . We omit the proof of

this fact.

3. Basic properties of deterministic billiards in convex tables

The map T preserves the probability measure ν defined by dν = 1
2|Γ|

sin θ ds dθ.

It satisfies an involution property: if I : M → M is defined by I(q, θ) = (q, π − θ),

then T−k ◦ I = I ◦ T k, k ∈ Z.

If k > 2, T is a Ck−1 diffeomorphism in the interior of M . For every x ∈ M , the

matrix of the differential DxT reads as

DxT =

(
κ(x)t(x)−sin θ(x)

sin θ(Tx)
t(x)

sin θ(Tx)
κ(Tx)κ(x)t(x)−κ(Tx) sin θ(x)

sin θ(Tx)
− κ(x) κ(Tx)t(x)

sin θ(Tx)
− 1

)
,

where κ(x) is the curvature of Γ at q(x), and t(x) is the distance between q(x) and

q(Tx). Both values are continuous for x ∈ intM, the interior of M (see [CM06] for

a proof, noticing that here we use a different parametrization of angles).

Lemma 2. If T (x) = (s1(x), θ1(x)), then
(
∂s1
∂θ

)−1
can be continuously extended to

the boundary of M . In particular, ∂s1
∂θ

is bounded away from zero.

Proof. Using the expression of DxT we obtain that ∂s1
∂θ

= t(x)
sin θ1(x)

. If xn is a sequence

converging to a boundary point x, then both t(xn) and sin θ1(xn) converge to 0, but

in this case κ(Txn)t(xn)
2 sin θ(Txn)

tends to 1 and the
(
∂s1
∂θ

)−1
goes to κ(Tx)/2. �

We remark that T being a twist map holds on more general tables, in particular if

D is convex with C1 boundary. In this case the map T is an homeomorphism in

intM that can be extended defining Tx = x for every x ∈ ∂M . For this extension

x 7→ q(T (x)) is not continuous in x if q(x) is in the interior of a segment of the

boundary, but x 7→ θ(T (x)) is nonetheless continuous.

For any 0 < a < π
2
, we define the cylinder Ma = [0, |Γ|)× [a, π − a].

Lemma 3. Suppose that D is convex with C1 boundary. Given ǫ > 0, there exist

0 < c2 < c1 < ǫ satisfying the following conditions: Mǫ ⊂ T (Mc1), Mc1 ⊂ T 2(Mc2)

and T 2(Mc1) ⊂ Mc2.

Proof. Although T may not be continuous in M , θ(Tx) is still continuous. This

implies that for sufficiently small a > 0 there exists δ1(a), δ2(a) > 0 such that

Mδ1(a) ⊂ T (Ma) ⊂ Mδ2(a), and that δ1(a), δ2(a) converge to 0 as a→ 0. �
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For the deterministic billiard on a sufficiently smooth table, Lazutkin [Laz73] proved

the following regularity result, see also [Dou82]. If D is convex with smooth bound-

ary and curvature bounded from below then there exists a subset M ′ of the phase

space M that has positive measure and is foliated by invariant curves; the set M ′

accumulates on the horizontal boundaries of M , the map T restricted to each such

curve is topologically equivalent to an irrational rotation; close to the boundary

(θ = 0 or π in the phase space) there is a set of positive measure with regular

behavior. In fact in the circle or the ellipse the whole phase space is foliated by in-

variant curves. Theorem 1 shows that this regularity can be broken by an arbitrarily

small stochastic perturbation.

There are billiards on convex regions with no invariant curves near the boundary.

These billiards have trajectories with an infinite number of bounces in finite time. as

it approaches to a point of the boundary. They can be constructed either violating

the condition on the curvature or the differentiability of the boundary. In [Hal77],

Halpern constructed a curve that has nowhere vanishing curvature but unbounded

third derivative, and proved that there are trajectories baring this pathological be-

havior. Mather [Mat82] constructed a convex billiard with C2 boundary violating

the condition of non-null curvature, and which has trajectories coming arbitrarily

close to being positively tangent to the boundary and then arbitrarily close to being

negatively tangent to the boundary.

4. Markov chains and their densities

Recall that the stochastic perturbation of the map T is given by the transition kernel

Pǫ(x,A) = Qǫ
Tx(A), x ∈M, A ∈ B.

Let P n
ǫ denote the n-th power of the kernel

P n+1
ǫ (x,A) =

∫

M

Pǫ(x, dy)P
n
ǫ (y, A).

P n
ǫ (x, .) is a probability measure on B for every x ∈ M . Moreover, as operators on

P they satisfy µP n
ǫ = (µP n−1

ǫ )Pǫ, and defining P 0
ǫ (x,A) = 1A(x), the set (P n

ǫ )n∈N0

forms a semi-group.

Proposition 4. For the stochastic billiard map there exist density functions pnǫ (x, y)

such that, for every x ∈M , n > 2, and A ∈ B,

P n
ǫ (x,A) =

∫

A

pnǫ (x, y)dy.

Proof. If A = [s̃, ŝ] × [θ̃, θ̂], x = (s, θ), Tx = (s1, θ1), z = (s1, θ
′), T z = (s′1, θ

′
1) then,

for z ∈ T̂ x(s′ = s1), we have

P 2
ǫ (x,A) =

1

4ǫ2

∫

[θǫ
1
−ǫ,θǫ

1
+ǫ]

dθ′
∫

[−ǫ,ǫ]

IA(s
′
1, θ

′ǫ
1 + u)du.
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Changing variables dθ′ = ∂θ′

∂s′
1

ds′1, and using Lemma 2, we obtain the desired density.

The general case is analogous. �

A Markov chain is said to satisfy Döblin’s condition if there exists a probability mea-

sure λ,m > 0 and δ1 < 1, δ2 > 0 such that, whenever λ(A) > δ1, then P
n
ǫ (x,A) > δ2,

for all x ∈M .

Theorem 1 is a consequence of the following result.

Proposition 5. Suppose that D is strictly convex and its boundary Γ is C2. Then

for every 0 < ǫ < π/2, there exist b > 0 and N > 0 such that

pNǫ (x, y) > b, ∀ x, y ∈M.

We postpone its proof to the next section.

Proof of Theorem 1. Proposition 5 implies that the chain is aperiodic ψ-irreducible

and satisfies Döblin’s condition; then it is uniformly ergodic, see [MT09, Theo-

rem 16.2.3]. The result then follows from [MT09, Theorem 16.0.2]. �

5. Proof of Döblin’s condition

Before proving Proposition 5 and Theorem 1, we need a few additional technical

steps, summarized in the next two propositions.

Definition. We say that a sequence ξ = (ξk)k∈[0,...,l], ξk = (sk, θk) ∈ M is an

ǫ-angular perturbed orbit of length l if, for all 0 6 k < l, s(T (ξk)) = sk+1 and

|θ(T (ξk))− θk+1| < ǫ.

Let Oǫ,l denote the set of ǫ-angular perturbed orbits of length l. For n > 0 define

T̂ n
ǫ (x) := {y : ∃ ξ ∈ Oǫ,n, such that ξ0 = x, ξn = y}.

Starting at a point x, T̂ n
ǫ (x) is the set of points that may be reached in n steps by

following the deterministic billiard but allowing for perturbations smaller than ǫ in

the reflection angle.

Proposition 6. If 0 < l < n, n > 3, y ∈ T̂ n
ǫ (x) and there exists z in the interior

of M such that z ∈ T̂ l
ǫ (x) and y ∈ T̂ n−l

ǫ (z), then pnǫ is continuous at (x, y) and

pnǫ (x, y) > 0.

Proof. From the above definition we have that T̂ n
ǫ (x) =

⋃
z∈T̂n−1

ǫ (x) T̂ǫ(z), and if

y ∈ T̂ 2
ǫ (x) and y do not belong to the boundary of M , then y belongs to the interior

of the support of p2ǫ(x, .) and p
2
ǫ is continuous at (x, y). �

Proposition 7. Suppose that D is convex with C1 boundary given by the union a

finite number of C2 arcs and line segments. For every ǫ > 0, there exists N ∈ N

such that, for all x, y ∈M , there exists ξ ∈ Oǫ,N , such that ξ0 = x and ξN = y.
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Proof. We split the proof in two steps. First we show that it is possible to move

between points in a given small neighborhood. Finally we use this fact to cover the

whole phase space.

Step 1. By definition, if θ1 = θ(Tx) ∈ [ǫ, π − ǫ], or equivalently Tx ∈ Mǫ, then

T̂ǫx = {s1} × (θ1 − ǫ, θ1 + ǫ). In any case T̂ǫx = {s1}× (θ1 − ǫ, θ1 + ǫ)∩M , and T̂ 2
ǫ x

is a distorted rectangle. If x does not belong to the boundary of M , then T 2x lies

in the interior of T̂ 2
ǫ x. Now, take c2(ǫ) > 0, fixed by the modulus of continuity of T

as in Lemma 3. If δ < c2 is sufficiently small, then for all x in Mc2 , both T
2(B2δ(x))

and B2δ(T
2x) are contained in T̂ 2

ǫ x.

Consider a set U ⊂ Mc1 with measure ν(U) > 0 and with diameter smaller than δ,

and let x1 be a point in U . As a consequence of the Poincaré Recurrence Theorem

and Birkhoff-Khinchin Ergodic Theorem, there exists a point z in U and n
U

6

(ν(U))−1 with T n
U (z) in U .

By choice of δ, we have that z2 = T 2(z) ∈ T̂ 2
ǫ (x1). From this we have that

T nU−4(z2) = T nU−2(z) belongs to T̂ nU−2
ǫ (x1). Note that, by the choice of c2, since

T nU (z) belongs to Mc1 , then T nU−2z belongs to Mc2 and so, again by the choice

of δ, the ball of radius 2δ and center T 2T nU−2(z) is contained T̂ 2
ǫ (T

nU−2z) and so

U ⊂ T̂ 2
ǫ (T

nU−2z) ⊂ T̂ nU
ǫ x1. Therefore our dynamics moves any point of U to any

other point in U by the step nU 6 (ν(U))−1.

Step 2. We partition the cylinder Mc1 into k rectangles R1, . . . , Rk based on a rect-

angular grid of size less then δ/2, and consider the collection Q1, . . . , Ql of rectangles

of diameter less then δ, made of two adjacent rectangles Ri, Rj.

Let N0 be such that N−1
0 is smaller that the minimum of ν(Qj), 1 6 j 6 l. Then

N0 only depends on ǫ, and for each Qj , there exists nQj
< N0 such that, for any

two points x, y in Qj , y belongs to T̂
nQj
ǫ (x). Let N1 be the least common multiple

of {1, . . . , N0− 1}. Then, repeatedly applying the same reasoning in each rectangle,

any two points in the same rectangle can be joined by a random trajectory at step

N1. More precisely, T̂N1

ǫ x contains Qj for each x ∈ Qj.

Consider two points x0, y in Mc1. There exists a sequence of adjacent rectangles

R0, R1, . . . , Rm, m < k, such that x0 ∈ R0 and y ∈ Rm. Choose xi ∈ Ri, 1 6 i 6

m − 1 and let xm = y. By construction, for any 0 6 i 6 m − 1 there exists ji
such that both xi and xi+1 belong to Qji. Thus xi+1 ∈ T̂N1

ǫ (xi). By induction,

xm ∈ T̂mN1

ǫ (x0). On the other hand, as a consequence of the recurrence of Rm by

T̂ǫ, xm ∈ T̂N1

ǫ (xm) and so we have that xm ∈ T̂ nN1

ǫ (x0) for any n > m. Since x0 and

y were arbitrary and m < k, for any x in Mc1, T̂
kN1

ǫ (x) contains Mc1.

For any x in M, T̂ǫx intersects Mǫ ⊂ Mc1 , and so T̂ kN1+1
ǫ x contains Mc1. Now

observe that if θ(Tx) is smaller than ǫ or greater than π − ǫ, then T̂ǫx contains

the segment (s(Tx)× [0, ǫ]) or the segment (s(Tx)× [π − ǫ, π]). Then, since Mǫ ⊂

T (Mc1), T̂ǫ(Mc1) =M we have that T̂ kN1+2
ǫ x =M for any x ∈M . �
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Proof of Proposition 5. By Proposition 7, there exists N > 2 such that, for all

x, y ∈ M, y ∈ T̂N
ǫ (x). In particular, by Proposition 6, pNǫ is continuous and strictly

positive in (x, y). The result follows by compactness. �
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