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INTRODUCTION

The evolutionary conservation of protein structure has been the
subject of much research during the past 30 years. In contrast, struc-
tural divergence has received much less attention. In a significant
piece of work, Ortiz and coworkers focused on structural differences
between homologous proteins and showed that most evolutionary
structural divergence is contained within a subspace spanned by a
few low-energy collective normal modes.1 The dominant contribu-
tion of the lowest normal modes to structural divergence was inter-
preted as being somehow related to their functional importance.1,2

The underlying assumption in such function-based interpretations is
that it is natural selection that drives structural changes along the
lowest (functional) normal modes.

To gain further insight into the mechanism of protein structural
divergence, we recently proposed a ‘‘Linearly Forced Elastic Network
Model’’ (LFENM) that models mutations by adding a linear pertur-
bative term to the coarse grained ENM Hamiltonian of the unper-
turbed protein.3 This model predicted that even unselected random
mutations would make the native structure change along the lowest
normal modes. The LFENM results agreed quantitatively with those
obtained for homologous proteins. Therefore, the suggestion was put
forward that such behavior would be just what is expected from the
response of proteins to random mutations. The reasoning behind
this suggestion was of the ‘‘Ockham’s Razor’’ type: if mutation is
enough to account for the normal-mode pattern of structural
variation, there is no need to resort to natural selection.

If the LFENM is essentially correct, then the lowest normal modes
should dominate structural change not only for homologous pro-
teins, but also for unselected mutants. More generally, the LFENM
can be seen as a model of the structural effect not only of mutations
but of any type of perturbation. Therefore, if the model is correct,
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ABSTRACT

It was recently found that the lowest-energy col-
lective normal modes dominate the evolutionary
divergence of protein structures. This was attrib-
uted to a presumed functional importance of
such motions, i.e., to natural selection. In con-
trast to this selectionist explanation, we pro-
posed that the observed behavior could be just
the expected physical response of proteins to
random mutations. This proposal was based on
the success of a linearly forced elastic network
model (LFENM) of mutational effects on struc-
ture to account for the observed pattern of
structural divergence. Here, to further test the
mutational explanation and the LFENM, we ana-
lyze the structural differences observed not only
in homologous (globin-like) proteins but also in
unselected experimentally engineered myoglobin
mutants and in wild-type variants subject to
other perturbations such as ligand-binding and
pH changes. We show that the lowest normal
modes dominate structural change in all the
cases considered and that the LFENM reprodu-
ces this behavior quantitatively. The collective
nature of the lowest normal modes results in
global conformational changes that depend little
on the exact nature or location of the perturba-
tion. Significantly, the evolutionarily conserved
structural core matches the regions observed to
be more robust with respect to mutations, so
that the core would be more conserved even
under unselected random mutations. In a word,
the observed patterns of structural variation can
be seen as the natural response of proteins to
perturbations and can be adequately modeled
using the LFENM, which serves as a common
framework to relate a priori different
phenomena.
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nonmutational perturbations should also change the pro-
tein’s structure mainly along the lowest normal modes.

In a previous brief report, we proposed the LFENM
and compared its predictions with a normal mode analy-
sis of the structural divergence of a set of homologous
globin-like proteins. The aim of the present study is to
see if the LFENM predictions hold also for unselected
mutations and, more generally, other types of perturba-
tion. To this end, in addition to a set of globin-like
evolutionary related proteins, we studied a set of experi-
mentally engineered mutants of sperm whale myoglobin
and a set of unmutated wild-type variants that result
from other perturbations such as ligand-binding, pH
changes, and Fe oxidation state changes. We also present
a detailed derivation of the model.

MATERIALS AND METHODS

Linearly forced elastic network model
(LFENM)

The LFENM models the effect of a mutation upon a
reference ‘‘wild-type’’ protein. Here we show the main
equations.3 A detailed derivation can be found in the
Supporting Information Appendix.

ENM of the reference protein

We consider the backbone fluctuations of the reference
‘‘wild-type’’ protein around its equilibrium conformation
to be described by a coarse-grained elastic network model
(ENM), which represents the protein as a network of
nodes placed at the a carbons (Ca) connected by
springs.4–8 In general, the ENM potential is of the form

Vwt ¼
1

2
ðr# !rwtÞTKðr# !rwtÞ; ð1Þ

where, for a protein of N sites, r is a column vector with 3N
elements: the x, y, z coordinates of theN Ca,!rwt is the equilib-
rium structure, and K is the ‘‘stiffness’’ matrix, which repre-
sents the network’s topology and spring force constants.

LFENM model of mutant proteins

We model a point mutation (amino acid replacement)
by adding a linear perturbative term to the reference
potential Eq. (1):

Vmut ¼ Vwt # fT ðr# !rwtÞ; ð2Þ

where f is a column vector with 3N elements that models
the mutation. Since f ¼ # @Vmut

@r

! "
r¼!rwt

, it can be inter-
preted as a force that drives the mutant’s structure away
from that of the wild type. Eq. (2) can be derived by
expanding the ENM potential in Taylor series with
respect to parameter variations and keeping only first
and second order terms, as is shown in the Supporting
Information Appendix.

Change of equilibrium structure

The equilibrium structure of the mutant !rmut is the
value of r that minimizes Vmut. Using Eqs. (1) and (2)
we find the structural variation due to the mutation:

d!r % !rmut # !rwt ¼ K#1f : ð3Þ

This equation shows that the structural perturbation
introduced by a mutation is related to the mutation (f)
and to the network of oscillators, via K21. We should
note here that K21 is actually the pseudo inverse, because
K has six zero eigenvalues, corresponding to translations
and rotations, so that it is not invertible (Supporting
Information Appendix).

Model parameters

To completely specify the model, we must choose K
and f. There are a number of alternative ENMs.5,7,8 In
the current implementation, we have used the ‘‘beta
Gaussian Network Model’’ (bGNM), which builds K
from the coordinates of Ca and Cb, and uses a higher
force constant for consecutive residues than for non-con-
secutive ones.8

To calculate f, given a mutation at a site l, each site i
in contact with l is assigned a force fl?i directed along
the l-i contact and site l is assigned a reaction force
f l ¼ #

P
i 6¼l f l!i . This form of f is not arbitrary, as

shown in the Supporting Information Appendix. To sim-
ulate random mutations, the magnitudes of fl?i were
randomly picked from a uniform distribution in [2fmax,
fmax]. The forces for different contacts were picked inde-
pendently. Since fmax does not affect the results, we set
fmax 5 1. We can think of the range [2fmax, fmax] as a
continuous approximation of the perturbations intro-
duced by the 20 3 19 5 380 possible mutations, cover-
ing from mutations between physicochemically similar
amino acids (f & 0) up to mutations between very differ-
ent amino acids
(f & 'fmax).

Datasets

LFENM

We used the entry 1a6m of the Protein Data Base
(PDB) as reference protein. This contains the structure
determined by x-ray diffraction of the 151 sites long
sperm whale oxy-myoglobin crystallized at pH 7. Start-
ing from 1a6m, we simulated 151 3 100 5 15,100 sin-
gle-point mutants using random forces as described in
the previous section. To take into account the heme
into the ENM we placed five extra nodes at the posi-
tions of the heme’s Fe and the four CH porphyrin
atoms. The structure of each mutant was calculated
using Eq. (3).
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Random

As a reference model, a null model to compare the
LFENM with, we used a dataset of 1510 simulated struc-
tures obtained by adding to the wild-type (reference)
structure a vector of dimension 3N with random
elements picked from a uniform distribution with values
in (2n, n) with n 5 0.1.

Globin-like

This dataset includes 1a6m and 21 members of the
superfamily of globin-like homologous proteins, as
classified in the SCOP database.9 It includes one neural
globin, two truncated hemoglobins, and 19 globins. For
details, see Supporting Information Table I.

Mutants

This dataset contains 119 sperm whale myoglobin
mutant structures: 22 single mutants, 77 double mutants,
7 triple mutants, and 13 quadruple mutants. Members of
this dataset may also differ from 1a6m in the ligand
bound to Fe and/or pH. Also, in most cases, the heme
iron is in its Fe(II) state, but there are some cases with
Fe(III). Finally, in one case Fe is replaced by Mn(III) and
in another by Cr(III) (for details, see Supporting Infor-
mation Table II). The total number of mutations is 249
and their distribution is uneven (Supporting Information
Figure): for most (108) cases the aspartic acid in position
122 is replaced by asparagine. Most of the rest of the
mutations are at sites 29, 64, 68, and 67 (site numbers
correspond to the reference protein 1a6m).

Wild-type variants

This dataset includes 1a6m and 48 structures that have
the same (wild-type) sequence. Different members of this
set have different ligands, pH, and/or Fe oxidation state.
There are also 3 members with Co(II) replacing Fe(II).
For details see Supporting Information Table III.

Analysis

Structural differences

For each dataset, we computed the structural variation
with respect to the reference protein as follows. First,
structures were aligned with the reference protein using
the structural alignment program Multiple Alignment
with Translations and Twists (Matt).10 For the alignment
of a given protein ‘‘p’’ with the reference protein, the
structural core consists of aligned positions with no gaps.
Once aligned, vectors of core Ca coordinates !rpcore and

!rrefcore were obtained for protein p and the reference,
respectively. Then the structural variation was calculated
using

D!r ¼ !rpcore # !rrefcore: ð4Þ

Normal mode analysis

The normal mode analysis of structural changes was
performed by projecting the structural differences onto
the normal modes of the reference protein. The normal
modes qn and eigenvalues kn of 1a6m were obtained
solving the eigenvalue equation:

Kqn ¼ knqn: ð5Þ

There are 3N-6 nonzero eigenvalues, which correspond
to the vibrational modes, numbered n 5 0,2,. . .3N 2 7.
For a single protein pair with structural difference

vector D!r, we calculated the normal mode contributions
using:

Pn %
ðqTnD!rÞ

2

P
n
ðqTnD!rÞ

2 : ð6Þ

The dot product in this equation is calculated over the
aligned positions only. The structural variations Dr were
calculated using Eq. (4). The normal mode contributions
calculated using Eq. (6) satisfy

P
n Pn ¼ 1. We also

calculated the overall cumulative contribution of the
lowest n normal modes:

Qn %
Xn

m¼0

Pm: ð7Þ

For datasets, Pn and Qn were averaged over all
members.

Root mean square deviation (RMSD) profiles

To visualize the structural difference between a given
protein and the reference protein in a cartesian-coordi-
nates representation, we calculated the square deviation
of each Ca:

jjD!rijj2 ¼ D!x2i þ D!y2i þ D!z2i ; ð8Þ

where D!ri ¼ ðD!xi D!yi D!ziÞT is the column vector of
cartesian displacements of the ith Ca with respect to the
reference structure obtained from Eq. (4). Since we are
interested in the relative variability of different sites,
deviations obtained using Eq. (8) were renormalized so
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that the sum over sites of square deviations adds up to 1.

Root square deviations RMSDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjD!rijj2

q
were plotted

as a function of i to obtain site-dependent structural
variation profiles. For datasets of proteins, we averaged
over the dataset:

RMSDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjD!rijj2
$ %q

; ð9Þ

where h))i stands for averaging over the set of pairs.

RESULTS AND DISCUSSION

To see whether the lowest normal modes dominate
structural variation, we calculated the structural differen-
ces between the members of each dataset and the refer-
ence protein 1a6m and projected them onto the normal
modes of the latter. Figure 1 shows the normal-mode
contributions averaged over each of the datasets consid-
ered: LFENM, globin-like, mutants, and wild-type var-
iants. The LFENM (Fig. 1, top panel), predicts a rapid
decrease of normal-mode contributions with increasing
normal mode number. It was shown before that the nor-
mal-mode projections are proportional to the inverse
eigenvalues.3 It can be seen from Figure 1 that a similar
behavior is found for the other three datasets. The Pear-
son correlation coefficients between the LFENM profile
and the experimental profiles of Figure 1 are 0.76, 0.74,
and 0.74 for the globin-like, mutants, and wild-type
datasets, respectively. These are all significant with P *
1022 and they are not significantly different from each
other.

Figure 2 shows the average cumulative contributions
for the datasets of Figure 1 and also for the dataset
obtained by introducing random structural perturba-
tions. For any given n, the average contribution of the
lowest n normal modes for the LFENM and the three
experimental datasets is significantly higher than that
expected for random structural changes. The structural
variation of the backbone is dominated by the lowest
normal modes for all three experimental datasets, in
agreement with what is expected from the LFENM cal-
culations.

To perform a more detailed comparison, for each pro-
tein of each dataset we calculated the cumulative contri-
bution of the lowest 100 modes, Q100, and estimated the
probability density distribution for each dataset using
kernel density estimation. We used 100 modes because it
is the number necessary to describe approximately 85%
of the LFENM structural variation. Results are shown in
Figure 3. This figure shows that the experimental Q100

values lie in the range expected from the LFENM simula-
tions and outside the range expected from random struc-
tural variations. A likelihood ratio test (not shown)

results in discarding the (null) random model in favor of
the LFENM model with P * 1022 for all cases. It is not
expected that the experimental distributions are identical
to the LFENM distribution. The model distribution is
that expected from random mutations equally distributed
among all sites. In contrast, the mutants dataset is highly
biased: mutations at only five sites are significantly repre-
sented. Similarly, the wild-type dataset corresponds basi-
cally to changes in ligand (i.e., near the active site) and
pH (i.e., at the few amino acids the protonation state of
which will change with pH). In the case of globin-like
proteins, which are very divergent, the Q100 distribution
is shifted toward higher normal modes. This is an artifact
due to alignment procedure, which introduces gaps at
sites for which the structural divergence is too large.
Despite these differences, the overall model–experiment
agreement is very good.

Figure 1
Normal mode patterns of structural variation: average projections. This
figure plots normal mode contributions Pn as a function of normal
mode number averaged over four datasets. From top to bottom:
LFENM, globin-like, mutants, and wild-type variants. Normal modes
correspond to the reference protein 1a6m.

J. Echave and F.M. Fernández

176 PROTEINS



The Q100 values are correlated with RMSD, the magni-
tude of structural change. Figure 3 shows that the
LFENM Q100 distribution is rather complex. The peaks
of the distribution cannot be assigned to single sites.
Accordingly, inspection of the Q100 values for the
mutants and wild-type datasets does not lead to an easy
correlation of Q100 with perturbed site. Even if there is

no obvious interpretation of Q100 in terms of the per-
turbed site, there is a correlation between the overall
magnitude of structural variation and Q100. This can be
seen in Figure 4, which shows the Q100 vs. RMSD for
mutants and wild-type variants superimposed with the
two-dimensional RMSD-Q100 distribution obtained using
the LFENM. Perturbations that result in higher values of
Q100 (i.e., more global changes) also result in larger
structural variation (RMSD).
To complete the analysis, it is instructive to look at the

structural variation using the more familiar representa-
tion of Ca cartesian coordinates. Figure 5 shows the
RMSD profile predicted by the LFENM compared with
those obtained using the globin-like, mutants, and wild-
type variants datasets. The Pearson correlation coeffi-
cients between the LFENM profile and the experimental
profiles are 0.53, 0.51, and 0.54 for the globin-like,
mutants, and wild-type datasets, respectively (correlations
calculated over aligned sites without gaps). These are all
significant with P < 1022 and they are not significantly
different from each other. We should note that these val-
ues are smaller than those obtained from the normal
mode representation of the structural variation, discussed
in the first paragraph of this section. However, this does
not mean that the LFENM prediction is worse in the car-
tesian representation than in the normal mode one: the

Figure 2
Normal mode patterns of structural variation: average cumulative
contributions. This figure plots cumulative normal mode contributions
Qn averaged over LFENM, globin-like, mutants, and wild-type variants
datasets. The null model of random structural changes is also included.
Normal modes correspond to the reference protein 1a6m.

Figure 3
Normal mode patterns of structural variation: distributions of Q100.
This figure shows the distribution functions, obtained using the Kernel
Density Estimation method, of Q100, the projection onto the subspace
spanned by the lowest 100 modes, for the following datasets: LFENM
(15100 proteins), globin-like (20 proteins), mutants (119 proteins),
wild-type variants (48 proteins), and random (1510 proteins).

Figure 4
Correlation between normal mode contributions and magnitude of
structural variation. This figure shows the two-dimensional distribution
of (RMSD, Q100) for the LFENM dataset and the (RMSD, Q100) points
for each of the members of the mutants and wild-type variants datasets.
The LFENM RMSD values are proportional to fmax, which was scaled to
make the average RMSD of the LFENM dataset equal to the average
over the mutants and wild-type datasets.
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Pearson correlation coefficient for datasets of 20 simu-
lated mutants compared with the whole dataset of 15,100
mutants has an average value of 0.52 and a standard
deviation of 0.08. This shows that the values obtained for
the experimental datasets are within the range expected
from the model.

To summarize, Figures 1–4 show that the lowest
normal modes dominate structural variation for the
globin-like, mutants, and wild-type variants datasets. The
pattern predicted by the LFENM agrees with those
obtained from three experimental datasets, which, in
turn, are very similar to each other. These results support
the idea that these patterns are just the expected response
of protein structure to any type of perturbation such as
mutations, ligand-binding, and pH changes.

Regarding protein evolution, the present results sup-
port the mutational explanation of the observed patterns
of evolutionary structural divergence. The lowest normal

modes would dominate such divergence even under ran-
dom mutations, so that there is no need to resort to
function-based selectionist interpretations to account for
this dominance. In the cartesian representation, the dom-
inance of the lowest normal modes, which are collective,
is reflected in the global nature of the RMSD profiles
shown in Figure 5. The patterns of structurally con-
served/variable regions for the three experimental datasets
and the LFENM predictions are similar, which means
that the conserved regions (structural core) would be
conserved even under random mutations with no natural
selection.
The present results are consistent with previous find-

ings on the structural changes resulting from mutations
and ligand binding. To our knowledge, this is the first
normal mode analysis of backbone structural changes
due to mutation. However, it has been reported that
local mutations at different protein sites result in global
changes of the backbone conformation, the results being
rather independent of the mutated site or the chemical
nature of the mutation.11 The present work accounts
for this observation: mutations act via the lowest
normal modes, which, being collective, result in global
conformational changes. Regarding nonmutational
perturbations, the results presented here are consistent
with the now established fact that a few low-energy
normal modes are enough to account for the backbone
conformational changes resulting from ligand-
binding, including protein-protein and protein-DNA
binding.12–18

CONCLUSION

We showed that proteins subject to different perturba-
tions including mutations, ligand-binding, and pH
changes, among others, experiment structural changes of
the backbone dominated by the lowest-energy normal
modes. Since these modes are collective, the resulting
conformational changes are global, even under local per-
turbations. The observed patterns are well reproduced by
the linearly forced elastic network model (LFENM),
which, therefore, provides a common framework to
understand the role of the lowest normal modes in
directing structural change due to a priori different
causes: they are all just perturbations, and the protein
responds in similar ways.
The similarity between evolutionary deformations and

perturbational deformations supports a mutational inter-
pretation of the observed patterns of evolutionary struc-
tural divergence. Mutations make protein structures
evolve along the lowest energy normal modes, and the
observed structurally conserved regions match those
whose conformation is more robust with respect to
mutations. Of course, this does not mean that natural
selection plays no role in protein evolution. Using a

Figure 5
Patterns of structural variability along the backbone. This figure shows
the Ca RMSD profiles for the LFENM, globin-like, mutants, and wild-
type variants datasets. Site numbers correspond to the reference protein
1a6m.

J. Echave and F.M. Fernández

178 PROTEINS



simple neutral-evolution model of selection, we found
that the observed patterns of structural variation (i.e., the
relative contributions of different normal modes) may
reflect the mutational effects even under the effect of
natural selection.3 Moreover, if there were no natural
selection, different sites would have the same evolution-
ary rates, which is not the case. Natural selection does
operate, it is just not the reason behind the observed
dominance of the lowest normal modes.

A related issue that deserves consideration is that of
the functional importance of the lowest normal modes.
Numerous studies successfully used normal modes to
interpret protein function.2 Moreover, it has been shown
that functionally different homologous protein families
cluster in different regions of normal-mode space.1 Simi-
larly, in this work we found that the distribution of Q100

for the globin-like dataset shown in Figure 3 is bimodal:
the peak located at smaller values of Q100 is due to
neuroglobins (one case) and truncated hemoglobins (two
cases), whereas the peak at higher Q100 values corre-
sponds to globins. Interpretations that regard this cluster-
ing as being obviously connected with the functional role
of these modes implicitly assume adaptive natural
selection.1,2 However, since proteins diverge within a
subspace spanned by the lowest normal modes even
under unselected mutations or neutral selection,3 differ-
ent protein families might cluster in different regions of
normal mode space because of phylogenetic history.
Further studies would be needed to disentangle the
effects of mutation and natural selection.

The LFENM is based on the ENM, which has been
thoroughly validated. The normal mode analysis of
experimental datasets does not depend on the assump-
tions of the LFENM, just on those of the ENM. The
ability of elastic network models to produce accurate
backbone normal modes has been shown in several
assessments.6–8,19–21 They have also proved useful in
many applications aimed at gaining insight into the func-
tional role of collective motions (for a comprehensive
review see Ref. 2).

Despite the assumptions of the LFENM, it is validated
by its agreement with experimental results. The LFENM
adds only one extra parameter to the ENM, fmax, and the
results reported are independent of its value. The agree-
ment of LFENM predictions with the results obtained for
the different experimental datasets validate the model. To
further test the model, we repeated the computations by
changing the model parameters (spring force constants
and cutoff value to define contacts) by 20%, which had
almost no effect on the results (not shown). A detailed
all-atom model may be necessary to predict the effect of
a single specific perturbation, such as binding of a
specific ligand, or a specific point mutation, but the
coarse grained LFENM has enough detail to produce
averages and distributions in accordance with
experimental observations.

Before finishing, we compare the LFENM with other
related approaches. A linear response approximation
(LRA) based on an all-atom representation of a protein
subject to a linear perturbative force was used to success-
fully predict ligand-binding effects on structure.22 The
later approach did not propose a Hamiltonian to model
the perturbed protein, and did not analyze the results in
terms of normal modes, but is related to the LFENM in
that for the LFENM Hamiltonian the LRA would be
exact. The LRA formula to calculate the structural change
expected from an external force for an ENM is identical
to Eq. (3).8 Another perturbational approach based on
perturbing the spring force-constants has also been pro-
posed.23 Perturbing the force constants amounts to
modifying the stiffness matrix in Eq. (1) and would not
produce a change in conformation; therefore such an
approach cannot be used to predict conformational vari-
ation. Rather than the force-constants, the LFENM per-
turbs the equilibrium lengths of the springs connecting
the network’s nodes, which results in a structural change.
Finally, we mention that the LFENM is similar to a per-
turbative model developed independently to predict con-
formational changes using distance constraints,24 the
main difference being that, in our case, the perturbative
term models mutations rather than distance constraints.
To finish, we would like to mention that the LFENM

can be extended to study the evolutionary divergence of
protein motions. Because the LFENM does not take into
consideration changes of the stiffness matrix of the elastic
network, the normal modes of the simulated mutants are
identical to those of the wild type. It is known that the
overall pattern of protein flexibility is evolutionarily con-
served,25 but not all modes are conserved in the same
degree: the lowest normal modes are the most con-
served.26–29 Normal mode conservation patterns can be
accounted for by an extension of the LFENM that takes
into account changes of the stiffness-matrix due to struc-
tural perturbations in a self-consistent way, as we will
show elsewhere.
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