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We establish a dictionary between the Cacti algebra axioms 
on a Cacti algebra structure with underlying free associative 
algebra, under suitable good behavior with degrees. Using 
these ideas, for an associative algebra A and a bialgebra H, 
we also translate Cacti algebra maps Ω(H) → C•(A) (where 
Ω(H) stands for the cobar construction on H and C•(A) is 
the Hochschild cohomology complex) with H-module algebra 
structures on A, and illustrate with examples of applications.
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Introduction and preliminaries

In [4], the author defines a Cacti algebra structure on Ω(H), the cobar construction 
of a d.g. bialgebra H. Recall that Ω(H) = TV the tensor algebra on V = Ker ε, with 
differential of the form di + dΔ. That is, one differential coming from the original differ-
ential on the d.g. bialgebra H and a second one coming from its coalgebra structure. In 
the mentioned article, the author works over Z/2Z. In [11], signs are introduced for any 
characteristic. This construction gives examples of Cacti algebras of special type, they 
are not only graded but naturally bigraded, and operations have extra properties with 
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respect to this bigrading. We call these properties well graded (see Definition 1.3). We 

prove a kind of converse for this construction that includes the characterization of the 

image of the functor Ω : d.g.bialg → Cacti-alg. More precisely, we prove that if a Cacti 
algebra T is well graded and freely generated as associative algebra by elements of (ex-
ternal) degree one, namely T ∼= TV as associative algebras (TV = the tensor algebra on 

a graded vector space), then the Cacti algebra structure on T determines uniquely a d.g. 
bialgebra structure on H = V ⊕ k1H , and hence T = Ω(H) for a uniquely determined 

d.g. bialgebra H.
The examples arising from the Kadeishvili construction are not the only well graded 

ones. The historically most important family of Cacti algebras, namely the Hochschild 

complex C•(A) of an associative (eventually d.g.) algebra A is also a well graded Cacti 
algebra. In Lemma 2.1, we study morphisms between well graded Cacti algebras. A con-
sequence of this result can be seen as a continuation of the dictionary between Cacti 
algebras and bialgebras. More precisely (Theorem 2.5) we prove that, given an (eventu-
ally d.g.) bialgebra H and associative algebra A, the set of morphism between bigraded 

Cacti algebras {Ω(H) → C•(A)} is in 1–1 correspondence with structures of H-module 

algebra on A.
We end with examples of applications to the Gerstenhaber algebra structure on the 

Hochschild cohomology of an algebra.
We also mention that an action on TV of a certain PROP that contains the operad of 

spineless cacti was given in [7] (see Theorem C of [7]). This generalizes an example that 
appears [3]. This connection exists when V merely has the structure of a vector space 

(with non-degenerate pairing in some cases). These actions are not d.g. however. Part 
of our results can be seen as determine what properties V has to have in order to get 
a d.g. action. We thanks the referee for pointing out this bridge, between the two types 
of examples in the original work of Gerstenhaber [3] and its Deligne conjecture/string 

topology generalizations in [7].
For the purpose of this work, a Cacti algebra is an algebra over the operad X2 a 

suboperad of X defined in [1]. This operad is (up to a sign convention) isomorphic to S2

(see [8]) and the operad of cellular chains of normalized spineless cacti in [5,6] (where the 

graphical notation is taken from). An algebra over this operad is a Gerstenhaber–Voronov 

algebra [10]. We briefly recall the definition: a Cacti algebra is a differential graded vector 
space (T, d) with operations

1. C2 : T ⊗ T → T , an associative product: C2 ◦1 C2 = C2 ◦2 C2 =: C3,
2. for any n ≥ 2, Bn : T⊗n → T are brace operations,

satisfying a set of compatibility relations that we list below. In order to write them, it 
is convenient to use a graphic representation:
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C2 = , C3 = , B2 = , Bn =

For example, the brace relations can be described pictorially as

Bn ◦1 Bm = ◦1

=
∑

possibilities
±

where the sign is given by the permutation of the dots belonging to Bn and Bm.
The distributivity law between C2 and Bm is:

◦1 =
∑
k

And finally, the relation with the differential is ∂C2 = 0 and

∂Bm = ∂

( )
= +

m−1∑
i=2

(−1)i+1 + (−1)m+1

where, if P : T⊗n → T is an operation, ∂P is by definition the operation given by

(δP )(t1 ⊗ · · · ⊗ tn) = d
(
P (t1 ⊗ · · · ⊗ tn)

)
−

n∑
i=1

(−1)|P |+
∑i−1

j=1 |tj |P
(
t1 ⊗ · · · ⊗ d(ti) ⊗ · · · ⊗ tn

)
In particular, ∂C2 = 0 means that in any Cacti algebra, the differential is a derivation 
for the product C2.

1. Cacti-algebra structure in TV

Let V be a graded vector space, then TV =
⊕

n≥0 V
⊗n is a free associative algebra, 

and it is bigraded taking, for vk ∈ Vik

bideg(v1 ⊗ · · · ⊗ vn) =
(

n∑
|vi|V , n

)

i=1
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We call 
∑n

i=1 |vi|V the internal degree, and n the external or tensorial degree. We remark 
that the total degree

|v1 ⊗ · · · ⊗ vn|tot =
(

n∑
i=1

|vi|V

)
+ n

is the same as the usual degree on the tensor algebra of ΣV , the suspension of V . This 
total degree is most usually considered, but we prefer to keep the information of the 
bigrading by reasons that will be clear in the rest of this work.

Remark 1.1. Let V be a trivially graded vector space (i.e. V = V0), then the data 
of a square zero differential in A = TV of total degree one is equivalent to give a 
(non-necessarily counital) coassociative coalgebra structure in V .

If V is arbitrarily graded, then the data of a square zero differential in TV is equivalent 
to a differential in V together with an up to homotopy coassociative coalgebra structure 
in TV , but if the differential in TV is of the form D = di + de where bideg di = (1, 0)
and bideg de = (0, 1) then to give D is equivalent to a (strict) coassociative differential 
coalgebra structure in V . Take simply dV = di|V , and Δ′ = de|V .

Remark 1.2. The non-necessarily counital coassociative structures in V are in 1–1 corre-
spondence with the unital coassociative structures in H := V ⊕ k1H , where 1H is a new 
formal element satisfying Δ(1H) = 1H ⊗ 1H . The correspondence is given by Δ′ ↔ Δ

with

Δ : H → H ⊗H

Δ(v) := Δ′(v) + 1H ⊗ v + v ⊗ 1H = v1 ⊗ v2 + 1H ⊗ v + v ⊗ 1H

for v ∈ V , Δ1H := 1H ⊗1H . And given Δ : H → H⊗H, let π : H → V be the canonical 
projection with respect to the direct sum decomposition H = V ⊕ k1H , then

Δ′(v) := (π ⊗ π) ◦Δ

The counit in H is given by ε(v) = 0 if v ∈ V and ε(1H) = 1. Working with elements 
one can easily see that the coassociativity equation for Δ and Δ′ is the same, so Δ is 
coassociative iff Δ′ is, and letting 1H having internal degree 0 (but tensorial degree 1), 
and di(1H) = 0 the correspondence works equally well for the graded case.

We will consider Cacti-algebra structures on TV of a certain type. Recall that the 

cactus C2 = provides a strict associative product. We will say that the Cacti algebra 

structure on TV extends the one in TV if (x, y) = x ⊗ y (where x, y ∈ TV ). Notice 
that in TV , this property implies that every element of A can be obtained from V and 
the action of the cactus Cn, namely if x = x1 ⊗ . . .⊗ xn then x = Cn(x1, . . . , xn).
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The next definition is motivated by the example of the Hochschild complex C•(A) of 
an associative algebra A. Recall that in C•(A), if f : A⊗n → A, then the brace operation 
is a formula of type

f{g1, . . . , gk} =
∑

±f
(
· · · , g1(−), · · · , g2(−), · · ·

)
and this implicitly says that if n < k then

f{g1, . . . , gk} = 0

These brace operations correspond to the cactus

Bk+1 =

Definition 1.3. Let C be bigraded vector space

C =
⊕
p,q

Cp,q

with a Cacti algebra structure on it with respect to the total degree. We will say that 
this structure is well graded if

a ∈ C•,p, p < n− 1 =⇒ Bn(a, . . .) = 0

and the differential is compatible with the bigrading in the sense that d = di + de where

di : Tn,• → Tn+1,•

de : T •,n → T •,n+1

Moreover, we ask C2 and Bm (m ≥ 2) to be homogeneous with respect to the internal 
degree.

Notice that if C is a cactus algebra that is graded (and not bigraded), then it can 
be considered as trivially bigraded with C0,q = Cq and Cp,q = 0 for p �= 0, and the 
definition of well graded makes sense.

Example 1.4. The Hochschild complex of an associative algebra is a well graded Cacti 
algebra, this example is trivially bigraded. But also if A is a differential graded associative 
algebra, then C(A) is well graded. In both cases, the bidegree is given by

Cp,q(A) = Hom
(
A⊗q, A

)

p
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where Hom(−, −)p is the set of homogeneous linear transformations of degree p (between 
two graded vector spaces).

Example 1.5. If (H, ·, Δ, d) is a differential graded associative bialgebra, then in particular 
it is a differential graded coalgebra, and the cobar construction makes sense

Ω(H) = (TV, d)

where V = H = Ker ε and d = dH + dΔ. In [4], Kadeishvili exhibits (in characteristic 2) 
a Cacti-algebra structure on Ω(H) coming from the bialgebra structure of H. In [11]
the author introduce appropriate signs showing that Ω(H) is a Cacti algebra in any 
characteristic (e.g. 0). In this construction, the brace structure is given by

Bm(x,y) :=
∑

1≤i1<...<im−1≤n

±x1 ⊗ . . .⊗ (xi1 · y1) ⊗ . . .⊗ (xim−1 · ym−1) ⊗ . . .⊗ xn

where in each term, the sign is the Koszul-permutation sign of the symbols

· . . . · x1 . . . xny1 . . .ym−1 �→ x1 . . . xi1 · y1xi1+1 . . . xim−1 · ym−1 . . . xn

and the notation is x = x1 ⊗ · · · ⊗ xn, and y = (y1 . . . , ym−1). We remark that here, for 
x ∈ H, its symbol has degree |x|tot = |x|H + 1, and if y = y1 ⊗ · · · ⊗ yn, then its symbol 
has degree n +

∑n
i=1 |yi|H .

In this formula, it is implicitly assumed that m − 1 ≤ n, otherwise it is zero, so this 
is also an example of well-graded Cacti algebra.

Definition 1.6. Let C be an arbitrary Cacti algebra and let us denote ∗ the operation 

induced by B2 = in C. More precisely,

a ∗ b := (−1)|a| (a, b) = (−1)|a|B2(a, b)

This product is always pre-Lie (see the proof of the next lemma), but in well graded 
Cacti algebras, it is associative when restricted to external degree one:

Lemma 1.7. Let C be a well graded Cacti algebra, set C1 = ⊕pC
p,1 the subspace of 

elements of external degree one and define · := ∗|C1×C1 , the restriction of ∗ to elements 
of external degree one. Then · : C1 ×C1 → C1 is associative; moreover, for y, z ∈ C and 
x ∈ C1

(x ∗ y) ∗ z = x ∗ (y ∗ z)

Notice that Cn ∗ Cm ⊆ Cn+m−1 so, in particular, (C1, ·) is a (non-necessarily unital) 
associative algebra and Cn is a C1-module.
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Proof. We will compute the associator of B2 and see that it is governed by B3, more pre-
cisely, it is the 2–3-symmetrization of B3 (in particular B2 is pre-Lie). But by hypothesis 
B3 acts by zero when the first variable belongs to C1.

Let x, y, z ∈ C with x ∈ C1, we have

(x ∗ y) ∗ z − x ∗ (y ∗ z) = (−1)|y|+1

(
(x, y), z

)
− (−1)|x|+|y|

(
x, (y, z)

)

= (−1)|y|+1

( (
( , ),

)
+

(
, ( , )

))
(x, y, z)

= (−1)|y|+1

(
◦1 + ◦2

)
(x, y, z)

= (−1)|y|+1

(
+ − −

)
(x, y, z)

= (−1)|y|+1

(
−

)
(x, y, z)

(Signs are due to Koszul rule for the total degree of the symbols x, y, z ∈ C and B2.)

Because we assume C is well graded, the cactus and act trivially when the 
first variable is in C1, so the associator vanishes. �
Corollary 1.8. Let V be a graded vector space and suppose a well graded Cacti algebra 
structure is given in TV , then this structure induces by restriction an associative product 
· : V × V → V .

From now on we concentrate in the bigraded associative algebra TV , and we will 
consider all possible well-graded Cacti algebra structures on it. We recall that the external 
degree is the tensorial degree, and hence a d-dimensional cactus acts as an operation of 
(external) degree −d, and the differential is of total degree one.

Remark 1.9. A (non-necessarily unitary) operation · : V × V → V can be extended to 
H := V ⊕ k1H declaring 1H as formal unity for ∗, namely

1H · v := v =: v · 1H (∀v ∈ V ) and 1H · 1H := 1H

Notice that · is associative in V if and only if it is associative in H.
Recall that a (well graded) differential in TV induces (by restriction to V ) a coasso-

ciative and counitary comultiplication in H via
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Δ1H = 1H ⊗ 1H

Δv = de(v) + v ⊗ 1H + 1H ⊗ v

In this way, if TV is given a structure of a well graded Cacti algebra with multiplication 
equal tensor product, then H is simultaneously a counitary coassociative coalgebra, and a 
unitary associative algebra. The next theorem shows that H is necessarily a bialgebra. In 
other words, the coproduct in H is multiplicative, and hence TV = Ω(H), the Kadeishvili 
construction.

Theorem 1.10. Let V be a graded vector space, the following are equivalent

(i) To give a well graded Cacti algebra structure on TV , extending the (free) associative 
product in TV and well graded with respect to the bigrading on TV .

(ii) To give a unitary and counitary differential graded associative bialgebra structure 
on H = V ⊕ k1H .

More precisely, the correspondence is given in the following way:
From (i) to (ii), the internal differential in TV , restricted to V gives a differential on 

V , and the external differential induces the restricted comultiplication in V , that produces 
the counitary comultiplication in H. The action of B2 gives the associative product.

From (ii) to (i), we only notice that (TV, d) = Ω(H), and Kadeishvili construction 
gives a Cacti algebra structure that is well graded.

Proof. We only need to prove (i) ⇒ (ii), and in this part, we only have to check that 
the comultiplication in H is multiplicative. Namely,

Δ(x · y) = (−1)|x(2)|i|y(1)|i(x(1) · y(1)) ⊗ (x(2) · y(2))

Recall the Sweedler-type notation Δx = x(1) ⊗ x(2). We observe that, for a ∈ TV ,

da = Δ(a) − [1H , a] + di

where [−, −] is the super-commutator (using the total degree) in TH , so

[1H , a] = 1H ⊗ a− (−1)|a|a⊗ 1H = 1H ⊗ a− (−1)|a|H+1a⊗ 1H

Now, in every Cacti-algebra one has

− = δ = d + d
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because the first equality comes from computing the boundary of the cactus and 
the second is the differential of an operation. When evaluating in elements, using that 
d = Δ − [1, ] + di one gets

− (x, y) = d (x, y) + (dx, y) + (−1)|x| (x, dy)

− (x, y) = Δ

(
(x, y)

)
+ (Δx, y) + (−1)|x| (x,Δy)

−
[
1, (x, y)

]
−

(
[1, x], y

)
− (−1)|x|

(
x, [1, y]

)

+ di

(
(x, y)

)
+ (dix, y) + (−1)|x| (x, diy)

or equivalently, changing notation from to · or ∗,

−[x, y] = (−1)|x|Δ(x · y) + (−1)|x|+1Δx ∗ y + x ∗Δy

+ −(−1)|x|[1, x · y] − (−1)|x|+1[1, x] ∗ y − x ∗ [1, y]

+ (−1)|x|di(x · y) + (−1)|x|+1dix ∗ y + x ∗ diy

In order to prove what we want, we will use some identities:

di(x · y) = dix ∗ y + (−1)|x|ix ∗ diy

[x, y] = (−1)|x|[1, x · y] − (−1)|x|[1, x] ∗ y

x ∗ [1, y] = (−1)|x|+1Δx ∗ y

x ∗Δy = (−1)|x|+1+|x(2)|i|y(1)|i(x(1) · y(1)) ⊗ (x(2) · y(2))

The first one is simply that the internal differential is a derivation for the product. The 
second comes from the identity in Cacti

◦1 = +

because, if one evaluates this in elements, we get that ∗ verifies a left distributive law 
with respect to tensor product:
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(a⊗ b) ∗ c = a⊗ (b ∗ c) + (−1)|b|(|c|+1)(a ∗ c) ⊗ b

= (a ∗ 1) ⊗ (b ∗ c) + (−1)|b|(|c|+1)(a ∗ c) ⊗ (b ∗ 1)

and this implies immediately the equation (considering a = 1H , b = x and c = y).
The last two equations have terms of the form a ∗ (b ⊗ c) (on their left side). The 

central idea is that, in any Cacti-algebra, even thought ∗ is not distributive on the right 
with ⊗, the failure of this is given by the boundary of B3. The hypothesis of well graded 
allows us to control it. In this way, we obtain that a ∗ (b ⊗ c) has to be the diagonal 
action. In order to see this, we calculate δB3:

δ = − +

and when we evaluate in elements x, y, z ∈ V we have

δ (x, y, z) =
(

− +
)

(x, y, z)

= (−1)|x||y|+|x|+|y|y ⊗ (x · z)
− (−1)|x|x ∗ (y ⊗ z)

+ (−1)|x|(x · y) ⊗ z

But also δB3 = dB3 −B3d in TV , so

(δB3)(x, y, z) = d
(
B3(x, y, z)︸ ︷︷ ︸

=0

)
−B3(dx, y, z)

+ (−1)|x| B3(x, dy, z)︸ ︷︷ ︸
=0

− (−1)|x|+|y| B3(x, y, dz)︸ ︷︷ ︸
=0

(the vanishing terms are due to the well grading hypothesis). So,

−B3(dx, y, z) = (−1)|x||y|+|x|+|y|y ⊗ (x · z) − (−1)|x|x ∗ (y ⊗ z) + (−1)|x|(x · y) ⊗ z

Now, for elements in tensorial degree two x = x1 ⊗ x2, the cactus B3 acts by

B3(x, y, z) = B3(x1 ⊗ x2, y, z) = (−1)|x2|+|y|+|x2||y|(x1 · y) ⊗ (x2 · z)

because in Cacti we have

◦1 = + +

where only the second term acts non-trivially in V ⊗4.
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Using this identity for x = dx and recalling

dx = Δ(x) − [1H , x] = x(1) ⊗ x(2) − 1H ⊗ x + (−1)|x|x⊗ 1H

one has

B3(dx, y, z) = B3
(
x(1) ⊗ x(2) − 1H ⊗ x + (−1)|x|x⊗ 1H , y, z

)
= (−1)|x(2)|+|y|+|x(2)||y|(x(1) · y) ⊗ (x(2) · z)

− (−1)|x|+|y|+|x||y|y ⊗ (x · z)

+ (−1)|x|+1+|y|+1|y|(x · y) ⊗ z

= (−1)|x(2)|+|y|+|x(2)||y|(x(1) · y) ⊗ (x(2) · z)

− (−1)|x|+|y|+|x||y|y ⊗ (x · z)

− (−1)|x|(x · y) ⊗ z

from which one gets the equation

x ∗ (y ⊗ z) = (−1)|x|+|x(2)|+|y|+|x(2)||y|(x(1) · y) ⊗ (x(2) · z)

namely, the diagonal action.
From this general equation, using [1H ⊗ y] instead of y ⊗ z, we deduce

x ∗ [1, y] = (−1)|x|+1Δx ∗ y

And replacing again y ⊗ z by Δy = y(1) ⊗ y(2) (and of course taking into account the 
signs, noticing that if v ∈ V then |v|tot = |v|i + 1):

x ∗ (Δy) = (−1)|x|+1+|x(2)|i|y(1)|i(x(1) · y(1)) ⊗ (x(2) · y(2))

that is precisely the last thing we needed to verify. �
Example 1.11. Let g be a Lie algebra and consider H = U(g), and as always V = U(g) =
Ker(ε : U(g) → k), then the cohomology of (TV, d) is

H•(TV ) � Λ•g

(where here Λg is the non-unital exterior algebra in g). Even more, in degree one, the 
Lie bracket in H1(TV, d) is the commutator of the primitive elements in Ug, namely, 
the Lie bracket in g. Since Λ•g is generated (as associative algebra) in degree one, 
the Gerstenhaber structure is determined by the bracket in this degree. So we get the 
standard Gerstenhaber algebra structure in Λ•g from the Cacti-algebra in TV . In other 
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words, the Gerstenhaber algebra structure in Λ•g lifts to a well graded Cacti-algebra 
structure in TV = T (U(g)).

As a subexample, if W is any vector space and g = Lie(W ) is the free Lie algebra on 
W , then Λ•g = Λ•Lie(W ) is the free Gerstenhaber algebra in W . Again this structure 
lifts to a (well graded) Cacti-algebra structure in TV = T (U(Lie(W ))) = TTW , in the 
sense that its Cacti-algebra structure induces the Gerstenhaber algebra structure on its 
homology.

Remark 1.12. There is another way of giving algebraic structure to TV that is relevant 
to Cacti, but different from the one we described before. If A is a Frobenius algebra, 
then one has a particular way of identifying A∗ ∼= A and so one have isomorphisms of 
vector spaces

⊕
n≥0

Hom
(
A⊗n, A

) ∼= ⊕
n≥0

(
A∗)⊗n ⊗A ∼=

⊕
n≥0

(A)⊗n+1 = TA

This is considered in [6] in relation with the cyclic version of Deligne’s conjecture.

2. Morphisms and well gradings

Recall the notation, for a bigraded algebra T =
⊕

p,q T
p,q

Tn :=
⊕
q∈Z

Tn,q

The next lemma is relatively simple to proof, but is the key point of our main result. 
It formalizes the fact that in TV , all the Cacti-algebra structure depends on B2, the 
differential, and the associative product.

Lemma 2.1. Let T and C be two well graded Cacti algebras, and f : T → C a linear 
transformation, that is homogeneous with respect to the bigrading. If we assume that

• T is generated by T 1 as associative algebra (in particular T =
⊕

n≥1(T 1)n),
• f is a morphism of associative algebras,
• f(dt) = df(t) for all t ∈ T 1,
• f |T 1 : (T 1, ·) → (C1, ·) is a morphism of associative algebras,

then f is a morphism of Cacti-algebras.

Proof. Let us denote by ∪ the associative product given by C2 (in T and in C). In an 
analogous way to Theorem 1.10, the signs are given by the Koszul rule, but in this proof 
it is not necessary to make them explicit, so we will omit then for clarity.
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The proof consists of the following reductions:

1. If f(B2(x, y)) = B2(fx, fy), then f(M, x1, . . . , xn) = f(M, fx1, . . . , fxn) for every 
cactus M .

Proof. Since Cacti is generated by C2 and Bm (m ≥ 2), it is enough to see that f
commutes with this operations. Notice that f is a morphism of associative algebras 
by assumption. In order to reduce from Bm to B2, we proceed by induction in the 
external degree. Recall the identity

◦1 =
∑
k

If we want to compute Bm(x, y1, . . . , ym−1), with x ∈ T p,•, the well grading implies 
that the non-trivial terms are only with p ≥ m. Considering elements x = x1 ∪ x′

with x ∈ T 1 and x′ ∈ Tm−1 (this is possible because we assume T is generated by 
T 1) we have

Bm

((
x1 ∪ x′),y1, . . . ,ym−1

)
=

m∑
k=1

±Bk

(
x1, ,y1, . . . ,yk−1) ∪Bm−k+1

(
x′,yk, . . . ,ym−1)

and because of the well-grading (|x1|e = 1, so every term is zero except two of them)

Bm

(
C2

(
x1,x′),y1, . . . ,ym

)
= ±C2

(
x1, Bm

(
x′,y1, . . . ,ym−1))

± C2
(
B2(x1, y1), Bm−1

(
x′,y2, . . . ,ym−1))

where the first term has |x′|e < |x|e, and the second is written using B2 and Bm−1. 
Hence, f commutes with all Bm if it does with B2. �

2. If fB2(x, y) = B2(fx, fy) for all x ∈ T 1, y ∈ T , then fB2(x, y) = B2(fx, fy) for 
all x, y ∈ T .

Proof. If x = x1 ∪ . . . ∪ xr, since B2 distribute the ∪-product in the first variable, 
we have

B2(x,y) =
r∑

k=1

±x1 ∪ . . . B2(xk,y) . . . ∪ xr

so the claim follows. �



308 M.A. Farinati, L.E. Lombardi / Journal of Algebra 427 (2015) 295–316
3. If fB2(x, y) = B2(fx, fy) for all x, y ∈ T 1 (which is true by assumption), then 
fB2(x, y) = B2(fx, fy) for all x ∈ T 1, y ∈ T .

Proof. Let y = y′ ∪ y′ ∈ T , notice that the external degree of y′ and y′′ are both 
strict less than the degree of y. For x ∈ T 1, we compute

B2(x,y) = B2
(
x,y′ ∪ y′′) = B2 ◦2 C2

(
x, y′, y′′

)
= ±B2

(
x,y′) ∪ y′′ ± y′B2

(
x,y′′) + (δB3)

(
x,y′,y′′)

Notice that (due to the well grading and the fact that x ∈ T 1):

(δB3)
(
x,y′,y′′) = d

(
B3

(
x,y′,y′′)) + B3

(
dx,y′,y′′)

±B3
(
x, dy′,y′′)±B3

(
x,y′, dy′′)

= B3
(
dx,y′,y′′)

Now, since dx ∈ T 1 ⊕ T 2 and T is generated by T 1 as associative algebra, we can 
write

dx = dix +
∑

x1 ∪ x2

and so

B3
(
dx,y′,y′′) = B3

(
dix,y′,y′′) + B3

(
x1 ∪ x2,y′,y′′)

= B3
(
x1 ∪ x2,y′,y′′)

= (B3 ◦1 C2)
(
x1, x2,y′,y′′)

= ±B3
(
x1,y′,y′′) ∪ x2

±B2
(
x1,y′) ∪B2

(
x2,y′′)

± x1 ∪B3
(
x2,y′,y′′)

= ±B2
(
x1,y′) ∪B2

(
x2,y′′)

(we have used again the well grading hypothesis and the fact that dix, x1 and x2
belong to T 1).
We conclude

B2(x,y) = ±B2(x,y) ∪ y′′ ± y′ ∪B2
(
x,y′′)±B2

(
x1,y′) ∪B2

(
x2,y′′)

With this in mind, we compute

f
(
B2(x,y)

)
= f

(
±B2

(
x,y′) ∪ y′′ ± y′B2

(
x,y′′)±B2

(
x1,y′) ∪B2

(
x2,y′′))
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and since f commutes with ∪

= ±fB2
(
x,y′) ∪ fy′′ ± fy′ ∪ fB2

(
x,y′′)± fB2

(
x1,y′) ∪ fB2

(
x2,y′′)

Because y′ and y′′ have strict less external degree than y, we may assume inductively 
that f preserves the operation B2(x, −) in those degrees, and so the above formula 
is equal to

= ±B2
(
fx, fy′) ∪ fy′′ ± fy′ ∪B2

(
fx, fy′′)±B2

(
fx1, fy′) ∪B2

(
fx2, fy′′)

and since f preserves degrees, and also C is well graded, the arguments used to 
eliminate the terms of type B3(x, −) can also be used for B3(fx, −), and we conclude

= ±B2
(
fx, fy′) ∪ fy′′ ± fy′ ∪B2

(
fx, fy′′)±B2

(
fx1 ∪ fx2, fy′ ∪ fy′′)

= ±B2
(
fx, fy′) ∪ fy′′ ± fy′ ∪B2

(
fx, fy′′)±B2

(
fdx, f

(
y′ ∪ y′′))

Finally because f commutes with the differential in T 1, we have that fdx = d(fx)
and so

= B2
(
fx, fy′ ∪ fy′′) = B2(fx, fy) �

Since the requirement of the last reduction holds by assumption of the lemma, we 
have finished the proof. �

As an immediate corollary, we see that Theorem 1.10 actually gives an equivalence 
of categories between d.g. bialgebras and Cacti algebras that are well graded and freely 
generated in external degree one:

Corollary 2.2. Let H and H ′ be two (d.g.) unitaries and counitaries bialgebras, and endow 
ΩH = TH and ΩH ′ = TH ′ with its natural Cacti algebra structure, then

HomCacti
(
ΩH,ΩH ′) ∼=−−→ Homd.g.bialg

(
H,H ′)

Proof. We only remark that both ΩH and ΩH ′ are well graded and generated in external 
degree one, so the lemma above applies. �
Remark 2.3. The Cacti algebra structure on ΩH is unique if one requires well grading, 
and that the operation B2 restricted to H agree with the product of H. This is true 
because if Ω̃H is equal to Ω(H) as d.g. algebras, but with eventually different Cacti 
algebra structure with this properties, then the identity map ΩH → Ω̃H verifies the 
hypothesis of the above lemma, and hence it must be a Cacti-algebra isomorphism.

The next theorem is a continuation of the dictionary between Cacti axioms and bial-
gebra axioms. Before presenting it, we recall a standard definition of a module-algebra.
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Definition 2.4. Let A be a unital associative algebra and H a unitary and counitary 
bialgebra. We say that ρ : H ⊗A → A is an H-module algebra structure on A if it makes 
A into an H-modulo but also satisfying the property that the multiplication map

mA : A⊗A → A

is H-linear (with the diagonal action on A ⊗A).
In case A is a d.g. algebra and H a d.g. bialgebra, the H-module algebra structure is 

called differential if

d
(
h(a)

)
= dH(h)(a) + (−1)|h|h

(
dA(a)

)
or equivalently if the map

ρ : H ⊗A → A

is a morphism of complexes.

Theorem 2.5. Let A be a d.g. unital associative algebra and H a d.g. unital and couni-
tal bialgebra. Then there exists a 1–1 correspondence between Cacti algebra morphism 
Ω(H) → C•(A) and differential H-module algebra structures on A. The correspondence 
is given by restriction:

HomCacti
(
ΩH,C•(A)

)
→ Homd.g.alg

(
H,End(A)

)
∼= Homd.g.alg1

(
H,End(A)

) ∼= Hom(H ⊗A,A)

and in the other direction, if ρ : H → End(A), x �→ ρx, the map Ω(H) → C•(A) is given 
by

TV � x1 ⊗ · · · ⊗ xn �→
(
a1 ⊗ · · · ⊗ an �→ ρx1(a1) · · · ρxn

(an)
)

In this theorem, d.g.alg means non-necessarily unital differential graded associative 
algebras, and d.g.alg1 are the d.g.alg maps that also preserve the unit.

Proof. Since ΩH and C(A) are both well graded Cacti algebras, we can use Lemma 2.1. 
Then, a morphism f : ΩH → C(A) is the same as a d.g. algebra morphism such that 
its restriction on elements of external degree one (i.e. to elements of H) is multiplicative 
with respect to the operation ∗. This produces a morphism

ρ := f |V : V → End(A)

where V = H = Ker(ε). This shows that morphisms whose restriction are ∗-multiplicative 
are the same as (non-unital) V -modulo structures on A, that is the same as unital 
H-module structures on A.



M.A. Farinati, L.E. Lombardi / Journal of Algebra 427 (2015) 295–316 311
Notice that given an H-module structure ρ : H → End(A), the restriction to V
produces a multiplicative map V → End(A). Then, the universal property of the tensor 
algebra gives a multiplicative map ρ̂ : (TV, ⊗) → (C(A), ∪). The theorem follows if we 
show that “ρ̂ commutes with the differential if and only if the H-module structure is a 
(differential) H-module algebra structure”.

Let us denote, for h ∈ H and a ∈ A,

h(a) :=
(
ρ(h)

)
(a)

When computing the Hochschild boundary of ρ(h) we get

(
deρ(h)

)
(a⊗ b) = −ah(b) + h(ab) − h(a)b

On the other hand, the internal differential is

(
diρ(h)

)
(a) = d

(
h(a)

)
− (−1)|h|h

(
d(a)

)
Because d = de + di and their bidegrees are different, the equality

dρ(h) = ρ̂dh

is equivalent to two equations

deρ(h) = ρ̂deh, diρ(h) = ρdih

The equation with de tells us that A is an H-module algebra, because

(ρ̂deh)(a⊗ b) =
(
ρ̂(Δh− 1H ⊗ h− h⊗ 1H)

)
(a⊗ b)

=
(
ρ̂(h1 ⊗ h2 − 1H ⊗ h− h⊗ 1H)

)
(a⊗ b)

= h1(a)h2(b) − h(a)b− ah(b)

and hence

∂ρ(h) = ρ̂deh ⇐⇒ h(ab) = h1(a)h2(b)

And the equation with di says

(
diρ(h)

)
(a) = dA

(
h(a)

)
− (−1)|h|h

(
dA(a)

)
= dH(h)(a)

namely, the d.g. condition for ρ. �
An immediate consequence is the following
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Corollary 2.6. Let H be a bialgebra and A an H-module algebra with structure map 
H ⊗A ρ−→ A. Then ρ induces a Gerstenhaber algebra map

H•(ΩH, d) → HH•(A)

Examples

Let g be a Lie algebra and H = U(g). If A is an associative algebra, then an H-module 
algebra map is the same as an action of g by derivations. If one takes g = Der(A), then 
the morphism ΩH → C(A) induces a map on homology

Λ•Der(A) → HH•(A)

whose image is the associative subalgebra of HH•(A) generated by derivations. This ex-
ample shows that the map from Theorem 2.5 is in general non-trivial. But it can happen 
that a bialgebra H has no primitive elements but non-trivial cohomology. This will pro-
duce maps with no derivations in its image, but giving elements of higher (cohomological) 
degree. We present a minimal example of this situation.

Let H = k1 ⊕kx ⊕kg⊕kgx be the Sweedler or Taft algebra of dimension 4, that may 
be described in terms of generators and relations as the k-algebra generated by x and g
with relations

x2 = 0, g2 = 1, xg = −gx

(we assume characteristic different from 2). This algebra is a bialgebra with comultipli-
cation determined by

Δ(g) = g ⊗ g, Δx = x⊗ 1 + g ⊗ x

This algebra has no primitive elements, so H1(ΩH) = 0, but a direct computation shows 
that the (class of the) element xg⊗x generates H2(ΩH) over k. A less direct computation 
shows that H•(ΩH) is a polynomial ring on one variable, with generator in degree two 
(given by this element). Next, we include the verification of this fact, that follows from 
the following three items:

• H ∼= H∗ as Hopf algebras, for instance, taking the elements in H∗ defined by

ĝ :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 �→ 1
g �→ −1
x �→ 0
xg �→ 0

x̂ :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 �→ 0
g �→ 0
x �→ 1
xg �→ 1
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one can easily verify that ĝ2 = ε, ĝx̂ = −x̂ĝ, x̂2 = 0. For that reason, we have an 
isomorphism

H•(ΩH) = Ext•H∗(k, k) ∼= Ext•H(k, k)

• Also, H = (k[x]/x2)#kZ2, so one can compute Ext with the formula

Ext•H(k, k) = Ext•k[x]/x2(k, k)Z2

(see for instance [9]).
• Ext•k[x]/x2(k, k) is a polynomial ring in one variable, call it D, of degree one (this is the 

easiest example of classical quadratic Koszul algebra). There are two possibilities: 
the action of the generator of Z2 is trivial in D, or it acts by D �→ −D. In the 
first case it should be Extk[x]/x2(k, k)Z2 = k[D], while in the second it should be 
Extk[x]/x2(k, k)Z2 = k[D2]. But in H there are no primitive elements, so H1(ΩH) = 0
and only the second possibility can be true.

A consequence of this commutation is that the Gerstenhaber bracket (in cohomology) 
of the generator with itself is trivial, just by degree considerations. This implies that in 
any H-module algebra A, the bilinear map given by

Ψ : A⊗2 → A

a⊗ b �→ xg(a)x(b)

is an integrable 2-cocycle in the sense that [Ψ, Ψ ] = 0.
We finally recall that the data of an H-module algebra structure on A is the same 

as a Z2-grading (given by the eigenvectors of eigenvalues ±1 of g, we assume char �= 2) 
and a square zero super-derivation (with respect to that grading), because the general 
formula

h(ab) = h1(a)h2(b)

for h = x says (if a is homogeneous):

x(ab) = x(a)b + g(a)x(b) = x(a)b + (−1)|a|ax(b)

In that way, every square zero super-derivation x in A gives an unobstructed formal 
deformation of A.

We finish by collecting some general information on Hopf algebras and its cohomology:

1. If H is finite dimensional bialgebra, then

H•(Ω(H)
)

= Ext•H∗(k, k) = H•(H∗, k
)
⊂ HH•(H∗)
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These equalities are immediate from the definition if one uses the standard complex 
for solving H∗ as H∗-bimodule when computing Hochschild cohomology. The last 
inclusion was proved (to be a split inclusion) in [2], by giving a specific map at the 
level of complexes, that reserves the cup product and i-th compositions. Now this 
map can be interpreted from the fact that any finite dimensional bialgebra is an 
H∗-module algebra. The finite dimensional hypothesis is only needed for H∗ to be a 
bialgebra as well.

2. If H is any bialgebra and H ′ is a bialgebra in duality with H, namely there is a 
pairing (−, −) : H ⊗H ′ → k satisfying

(
Δa, x′ ⊗ y′

)
=

(
a, x′ ⊗ y′

)
and

(a⊗ b,Δx) =
(
ab, x′)

then H is an H ′-module algebra.
3. If A is an H-comodule algebra, that is, it is given a comodule structure map

A → A⊗H

such that the multiplication mA : A ⊗A → A is H-colinear, and H ′ is in duality with 
H, then A is an H ′-module algebra. Geometrical examples come in this way: if X
and G are affine algebraic varieties and G is an algebraic group, to have an algebraic 
action of G on X is the same as a comodule algebra structure OX → OX ⊗ OG. If 
g is the Lie algebra associated to the algebraic group G, then Ug is in duality with 
OG, and hence A is a Ug-module algebra.

4. If G is a discrete group and H = k[G], an H-module algebra structure on A is the 
same as a G-grading, but this gives nothing interesting because k[G] is cosemisimple.

5. The general Taft algebra H = Tm: This algebra is generated by x, g with relations

gp = 1; xm = 0; gx = ξxg

where ξ is a primitive m-th root of unity. The comultiplication is given by Δg =
g ⊗ g, Δx = x ⊗ g + 1 ⊗ x. In order to compute the cohomology, one can see H ∼=
(k[x]/xm)#k[G] with G = 〈g : gm = 1〉, and so H∗ is also of the form H∗ ∼= A#kG. 
The same result in [9] gives the formula

H•(A#kG, k
)

= H0(kG, H•(A, k)
)

= H•(A, k)0

where H•(A, k)0 is the homogeneous component of degree zero with respect to the 
G-grading of H•(A, k).
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6. Let g be a group-like element in some bialgebra H, and denote ug = g − 1H (notice 
g /∈ Ker ε, but ug ∈ Ker ε). Then d(ug) = Δ′ug = ug ⊗ ug. If h is another grouplike
element and x is g–h-primitive, namely Δx = g⊗x +x ⊗h, then dx = ug⊗x +x ⊗uh.

Proof.

d(ug) = d(g − 1H) − 1H ⊗ ug − ug ⊗ 1H = g ⊗ g − 1H ⊗ 1H − 1H ⊗ ug − ug ⊗ 1H
= g ⊗ g − 1H ⊗ 1H − 1H ⊗ g + 1H ⊗ 1H − g ⊗ 1H + 1H ⊗ 1H
= (g − 1H) ⊗ (g − 1H) = ug ⊗ ug

The formula dx = ug ⊗ x + x ⊗ uh is proved in an analogous way, we omit it. �
This computation allows us to generalize the example of the H-module algebra action 
of the Sweedler algebra in the following way:
Let d1, . . . , dn: A → A be skew-derivation of an associative algebra A. That means 
there exist automorphisms gi and hi of algebras of A such that

di(ab) = gi(a)di(b) + di(a)hi(b) ∀a, b ∈ A

Let f : A⊗n → A be defined as

f(a1, . . . , an) = d1(a1) · · · dn(an)

If, in addition, g0 = gn+1 = Id and hi = gi+1 for all i = 1, . . . , n − 1, then f is a 
Hochschild n-cocycle, coming from Ω(H) for some bialgebra H.

Proof. Let us consider the free algebra generated by xi : i = 1, . . . , n and Gi : i =
0, . . . , n + 1, with comultiplication determined by

ΔGi = Gi ⊗Gi; Δxi = Gi ⊗ xi + xi ⊗Gi+1

and define the H-module structure on A by

xi(a) = di(a), Gi(a) = gi(a)

where, by notation, gn+1 = hn. Then A is an H-module algebra. We need to check 
that ω := x1 ⊗ · · · ⊗ xn ∈ Ω(H) satisfies dω = 0. But this is easy because

dω = d(x1 ⊗ · · · ⊗ xn) =
n∑

i=1
(−1)i+1x1 ⊗ · · · ⊗ d(xi) ⊗ · · · ⊗ xn

=
n∑

(−1)i+1(x1 ⊗ · · · ⊗ uGi
⊗ xi ⊗ · · · ⊗ xn + x1 ⊗ · · · ⊗ xi ⊗ uGi+1 ⊗ · · · ⊗ xn)
i=1
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and all terms cancel telescopically except the first and the last:

= uG0 ⊗ x1 ⊗ · · · ⊗ xn + (−1)n−1x1 ⊗ · · · ⊗ xn ⊗ uGn+1

But uG0 = uGn+1 = uid = 0, so dω = 0, and hence ∂f = 0 in C•(A). �
We remark that also the other Cacti operations that one may do with f in C•(A)
may also be done in Ω(H).

It would be interesting to know, given an associative algebra A, whether or not any 
class in HH•(A) comes from an element in H•(Ω(H)), for some bialgebra H acting 
on A, making A into an H-module algebra.
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