
Journal of Symbolic Computation 73 (2016) 157–174
Contents lists available at ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

Solving a sparse system using linear algebra

César Massri 1,2

Department of Mathematics, FCEN, University of Buenos Aires, Argentina

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 May 2014
Accepted 12 May 2015
Available online 12 June 2015

MSC:
14M25
13P15

Keywords:
Multiplication matrix
Eigenvector
Sparse system
Toric varieties

We give a new theoretical tool to solve sparse systems with 
finitely many solutions. It is based on toric varieties and basic 
linear algebra; eigenvalues, eigenvectors and coefficient matrices. 
We adapt Eigenvalue theorem and Eigenvector theorem to work 
with a canonical rectangular matrix (the first Koszul map) and 
prove that these new theorems serve to solve overdetermined 
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0. Introduction

0.1. Overview of the problem

In this article we generalize two methods to solve systems of polynomial equations using a coeffi-
cient matrix. One method is based on the eigenvalue theorem, first noticed in Lazard (1981). Another, 
on the eigenvector theorem, first described in Auzinger and Stetter (1988). Let us start describing 
them.

For simplicity, consider a generic system of n polynomial equations with finitely many solutions 
in C

n , all with multiplicity one,
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f1(x1, . . . , xn) = 0
...

fn(x1, . . . , xn) = 0

where f1, . . . , fn are polynomials in C[x1, . . . , xn]. The quotient ring,

R =C[x1, . . . , xn]/〈 f1, . . . , fn〉,
is a finite-dimensional vector space and its dimension is the number of solutions (we are assuming 
that all the solutions have multiplicity one).

Every polynomial f ∈C[x1, . . . , xn], determines a linear map M f :R →R,

M f (g) = f g, g ∈C[x1, . . . , xn],
where g denotes the class of the polynomial g in the quotient ring R. The matrix of M f is called the 
multiplication matrix associated to the polynomial f .

Theorem (Eigenvalue Theorem). The eigenvalues of M f are { f (ξ1), . . . , f (ξr)}, where {ξ1, . . . , ξr} are the 
solutions of the system of polynomial equations. See Dickenstein and Emiris (2005, Theorem 2.1.4) for a proof.

Theorem (Eigenvector Theorem). Let f = α1x1 + . . . + αnxn be a generic linear form and let M f be its 
multiplication matrix. Assume that B = {1, x1, . . . , xn, . . .} is a finite basis of R formed by monomials. Then 
the left eigenvectors of M f determine all the solutions of the system of polynomial equations. Specifically, if 
v = (v0, . . . , vn, . . .) is a left eigenvector of M f such that v0 = 1, then (v1, . . . , vn) is a solution of the system 
of polynomial equations. See Dickenstein and Emiris (2005, §2.1.3) for a proof.

Now, let us describe the construction of the coefficient matrix (also in the case of polynomial 
equations).

Let d = d1 + . . . + dn − n + 1, where di = deg( f i), 1 ≤ i ≤ n. Let Sd be the space of polynomials of 
degree ≤ d. Consider the following sets of monomials,

Bn = {xm1
1 . . . xmn

n ∈ Sd : dn ≤ mn}
Bn−1 = {xm1

1 . . . xmn
n ∈ Sd \ Bn : dn−1 ≤ mn−1}

...

B1 = {xm1
1 . . . xmn

n ∈ Sd \ B2 : d1 ≤ m1}
B0 = {xm1

1 . . . xmn
n ∈ Sd \ B1}.

Using these sets, we can consider the following linear map,

� : 〈B0〉 × . . . × 〈Bn〉 → Sd, �(g0, . . . , gn) = f0 · g0 +
n∑

i=1

f i · gi,

where the polynomial f0 is a generic linear form and 〈Bi〉 is the vector space generated by Bi , 
0 ≤ i ≤ n. The coefficient matrix M is the matrix of � in the monomial bases B0, . . . , Bn . It is a square 
matrix and can be divided into four blocks,

M =
(

M11 M12
M21 M22

)
.

The relation between the coefficient matrix and the multiplication matrix is the following,
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Theorem. For generic systems f1, . . . , fn in n variables, the multiplication matrix associated to f0 in R is the 
Schur complement of M22 in the coefficient matrix M,

M f0 = M11 − M12M−1
22 M21.

See Emiris and Rege (1994) and Mourrain and Pan (2000) for a proof.

There are several technical difficulties in order to generalize the previous constructions. For exam-
ple, the choices of the sets B0, . . . , Bn and the fact that we need a generic system of n polynomial 
equations in n variables. The sets B0, . . . , Bn are given to assure that M22 is a non-degenerate matrix 
and that M is a square matrix. Another technical difficulty is that the system must have simple roots 
and that f0 must be linear. All these difficulties may be solved to give generalizations of the construc-
tions, not only to polynomial equations, but also to sparse systems. See in the next subsection for the 
existing work.

In this article, we propose a simpler approach to deal not only with polynomial equations, but also 
with sparse systems in general. We make a canonical choice for the map � (the first Koszul map) 
and we make no assumption on f0 nor on the multiplicities of the solutions. We construct a matrix 
M11 + M12 F , where F satisfies the linear equation M22 F = −M21 and such that every solution ξ of 
the sparse system determines an eigenvalue f0(ξ) and a left eigenvector of M11 + M12 F . The matrix 
M11 + M12 F can be obtained by elementary column operations on M .

Our construction can be used to solve overdetermined sparse systems and also, to count the ex-
pected number of solutions. The main problem of our matrix M is its size.

0.2. Existing work

Several classes of scientific and engineering problems are expected to reduce to algebraic systems 
with sparse structure. Sparse systems are typical for such a situation. For example, problems in vision 
(Emiris, 1997), edge detection, robot kinematics (kinematics of molecueles/mechanisms), calibration 
of Gough/Stewart platforms (Daney and Emiris, 2001; Mourrain, 1993), structural biology and compu-
tational chemistry (Emiris and Mourrain, 1999a).

Given a sparse system, we could ask if there exist solutions. Just as in the affine case, where 
the classical Hilbert Nullstellensatz is available, we can apply the Sparse Nullstellensatz to obtain an 
answer (Sombra, 1999, Theorem 2.13).

Theorem (Corollary of the Sparse Nullstellensatz). If the ideal generated by f1, . . . , fk contains the unity 
1 ∈ 〈 f1, . . . , fk〉, then the sparse system has no solution in (C \ 0)n.

The most common way to check the hypothesis of this theorem is using elimination theory 
(Jouanolou, 1991). The central object in elimination theory is the resultant, which characterizes the 
solvability of a sparse system with prescribed support. The resultant is a polynomial in the coefficient 
of the sparse system, { f1, . . . , fn}. It provides a necessary (and generically sufficient) condition for 
the existence of solutions. If the system has a solution, the resultant R f1,..., fn is non-zero. The most 
famous example of resultant is the determinant of a system of linear equations.

The first mathematicians who worked in elimination theory were Gauss, Bézout and Euler in the 
eighteenth century. The study of resultants, in the second half of the nineteenth century, started with 
Sylvester, Cayley, Macaulay and Dixon. In the last decade of the twentieth century, the theory was 
reborn with the pioneering work of Jouanolou in 1991 (Jouanolou, 1991). Today, the resultant may be 
considered, not only in affine or projective space, but also in the toric case. The foundations were laid 
in the work of Gel’fand, Kapranov and Zelevinsky (Gel’fand et al., 1994). Subsequence papers extended 
the theory into several different directions, see Kapranov et al. (1992); Pedersen and Sturmfels (1993).

In order to compute the resultant, several algorithm are given. In Canny and Emiris (1993) the 
authors proposed a formula for the resultant of a system of n + 1 Laurent polynomials in n variables. 
They constructed a matrix whose determinant is a non-zero multiple of the resultant. This construc-
tion is closely related to that of Macaulay’s, who called these matrices, coefficient matrices (Macaulay, 
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1902). In general, the construction of the coefficient matrices needs a clever choice of monomials. 
In Emiris and Rege (1994) the authors used a coefficient matrix to obtain a monomial basis for the 
coordinate ring generated by the given polynomials.

A number of methods exist for constructing matrices whose determinant is the resultant or, more 
generally, a non-trivial multiple of it. These matrices represent the most efficient way for computing 
the resultant and for solving sparse systems by means of the resultant method. For the classical 
resultant method see Lazard (1981); Canny (1990). For the sparse resultant see Emiris (1994), where 
an efficient and general algorithm is given. The author studied the complexity of the algorithm and 
also the numerical issues.

There are several articles that used coefficient matrices and/or multiplication matrices to com-
pute the solutions of a system of polynomial equations. For example, in Auzinger and Stetter (1988); 
Bondyfalat et al. (2000) and Mourrain (2006) the authors gave an algorithm to compute the solutions 
of a system of polynomial equations with the same number of variables and equations. In Elkadi and 
Mourrain (2007, §6.2) the authors showed a generalization of the method to solve an overdetermined 
system of polynomial equations and in Emiris (1996, 1997, 2001); Emiris and Mourrain (1999b) and 
Emiris and Rege (1994) the authors gave another generalization, but to solve a sparse system with 
the same number of variables and equations.

In Emiris and Canny (1995), the authors gave an algorithm using a coefficient matrix that can 
treat an overdetermined sparse system. The authors wrote “An important aspect of the algorithm is that 
it readily extends to systems of more than n + 1 polynomials in n variables”. They proposed a method to 
construct the coefficient matrix minimizing its size. This method was implemented in Emiris (1997).

As a final remark, let us mention that there exists another theory to solve a system of equations 
using a topological point of view. It is a called homotopy method. Essentially, first define a trivial 
system of equations to which all solutions are easily known. Then, deform the trivial system into the 
original system. As the system is deformed the solutions are deformed also, thereby creating paths 
of solutions. These paths start from each of the trivial solutions and connect to the solutions of the 
original system. By following these paths from the trivial system, all the solutions of the original 
system can be determined, see Morgan and Sommese (1987).

0.3. Main result

We propose a general framework to solve a sparse system using a rectangular coefficient matrix. 
Known methods require the construction of a square matrix adapted to each specific system, see for 
example Bondyfalat et al. (2000, 3.1) and Mourrain (1998, §3.2.3). One advantage of this new method 
is that the construction of the rectangular matrix is canonical and does not require a clever choice of 
the monomials for its construction. Our contribution to the theory is the exposure of the properties 
of the rectangular coefficient matrix M associated to the first Koszul map of a sparse system.

Given that our coefficient matrix is rectangular, it is not possible to use the previous theorems 
where a square matrix is required (see (Emiris, 1996) for the sparse case). Hence, we adapted them 
to our requirements. This means that we generalized known theorems to the case of a rectangular 
coefficient matrix.

Let us list the main results of this article (for definitions and notations see below). Let f0, . . . , fk be 
Laurent polynomials with Newton polytopes A0, . . . , Ak respectively. Let Bi =A0 + . . .+Âi + . . .+Ak , 
0 ≤ i ≤ k and let E =A0 + . . . +Ak .

The coefficient matrix M associated to the sparse system { f1, . . . , fk} and f0 is the matrix of � in 
the monomial bases Bi ∩Z

n , 0 ≤ i ≤ k and E ∩Z
n ,

� : SB0 × . . . × SBk −→ SE , �(g0, . . . , gk) = f0 · g0 +
k∑

i=1

f i · gi .

Matrix M is rectangular and can be divided into four blocks,

M =
(

M11 M12
M M

)
, M11 ∈C

p×p, p = dim(SB0).

21 22
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Main Hypotheses. Assume that 0 ∈ A0 and f0 is a non-constant Laurent polynomial, that the lattice 
polytope E is full dimensional and finally, that 〈 f0, f1, . . . , fk〉 = S . �

Using the matrix M , we can test the last assumption adapting a theorem due to Macaulay, see 
Macaulay (1902) or Mourrain (1998, Theorem 3.7).

Proposition (Corollary 4). Assume that E is full dimensional. Then, M has full rank if and only if
〈 f0, . . . , fk〉 = S. �

Using the previous new proposition and as a benefit of our approach, we obtained a proof of a 
conjecture due to J. Canny and I. Emiris (Canny and Emiris, 2000).

Conjecture (8.3, Sparse Effective Nullstellensatz over C). Suppose f0, . . . , fk are arbitrary Laurent poly-
nomials in S = C[x±1

1 , . . . , x±1
n ] with Newton polytopes Ai , 0 ≤ i ≤ k such that the generated ideal is S, 

〈 f0, . . . , fk〉 = S. Then there exist Laurent polynomials g0, . . . , gk ∈ S, with Newton polytopes Bi , 0 ≤ i ≤ k, 
such that

1 =
k∑

i=0

f i · gi, Bi ⊆ A0 + . . . + Âi + . . . +Ak.

Proof. Given that 〈 f0, . . . , fk〉 = S , � is surjective, hence 1 ∈ SE . �
Another new result that we proved is a formula to count the number of expected solutions of 

a sparse system using M and also, our main theorem; an adaptation of the Eigenvalue/Eigenvector 
Theorem to the case of a rectangular coefficient matrix.

Theorem (Theorem 3(a)). The sparse system { f1, . . . , fk} has a finite number of expected solutions equal to

rk(M) − rk

(
M12
M22

)
≥ 0.

Theorem (Theorem 5, Proposition 6). Let F be a solution of the linear equation M21 + M22 F = 0. Then, every 
solution, ξ , of the sparse system determines a left eigenvector of M11 + M12 F with eigenvalue f0(ξ). The 
multiplicity of f0(ξ) is greater than or equal to the multiplicity of ξ . �
0.4. Summary

This paper is organized as follows. In Section 1 we present some preliminaries about toric varieties 
and lattice polytopes. In Lemma 1 we construct an irreducible projective toric variety X associated to 
a full dimensional lattice polytope E and relate N-Minkowski summands of E with invertible sheaves 
on X generated by their global sections. In Section 2 we construct a stably twisted Koszul complex 
and we apply it in two different ways. Firstly, in Theorem 5, we use it to prove that every solution 
of the sparse system determines a left eigenvector/eigenvalue of a matrix built from this complex. 
Secondly, in Theorem 3(a), we use it to count the number of expected solutions of the sparse system 
(counted with multiplicities). In Section 3 we give an application.

1. Preliminaries

A sparse system is a collection of Laurent polynomials, { f1, . . . , fk},

f i =
∑

v∈Q
ci,v xv1

1 . . . xvn
n , 1 ≤ i ≤ k,
i
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where Qi are fixed finite subsets of Zn . The set Qi is called the support of f i . The convex hull Ai
of Qi ,

Ai = conv(Qi) ⊆R
n,

is called the Newton polytope of f i , denoted N( f i), 1 ≤ i ≤ k.

Definition. A lattice polytope A ⊆R
n is the convex hull of a finite set Q ⊆ Z

n , A = conv(Q).
The dimension of a lattice polytope A ⊆R

n , is the dimension of the smallest affine subspace of Rn

containing A. We say that A is a full dimensional lattice polytope when the dimension of A ⊆ R
n is n.

Notation. Let S = C[x±1
1 , . . . , x±1

n ] be the algebra of Laurent polynomials. Given a lattice polytope A, 
let SA be the vector space of polynomials with Newton polytopes in A,

SA = {g ∈ S : N(g) ⊆ A}.
The dimension of SA is equal to the cardinal of A ∩ Z

n ,

dim(SA) = #(A∩Z
n).

The finite set A ∩Z
n determines a monomial basis for SA .

Definition. Given lattice polytopes B and E in Rn , we say that B is an N-Minkowski summand of E if

B + B′ = kE

for some positive integer k and lattice polytope B′ ⊆ R
n .

For example, 2E is an N-Minkowski summand of E .

Remark. In the proof of the next lemma we use basic definitions from algebraic geometry that can be 
found in Hartshorne (1977). For example the definitions of irreducible varieties, projective varieties, 
complete varieties, normal varieties, invertible sheaves, Cartier divisors, Weyl divisors and basepoint 
free divisors.

Also, we use some definitions and concepts from toric geometry (Cox et al., 2011). For example 
the toric variety associated to a fan, a torus-invariant divisor, a nef divisor and finally, Demazure 
Vanishing. We give a precise reference where the reader can find the definitions and results about 
toric geometry.

Lemma 1. Given a full dimensional lattice polytope E , there exists an irreducible projective normal toric variety 
X such that every N-Minkowski summand B of E defines an invertible sheaf OX (D) with

H0(X,OX (D)) = SB, H p(X,OX (D)) = 0, p > 0.

Even more, if B1 and B2 are two N-Minkowski summands of E and OX (D1) and OX (D2) are the corre-
sponding invertible sheaves of B1 and B2 respectively, then the invertible sheaf associated to B1 + B2 is 
OX (D1 + D2).

Proof. Given a full dimensional lattice polytope, we can construct a normal fan � (Cox et al., 2011, 
Theorem 2.3.2), and a normal toric variety X� (Cox et al., 2011, Theorem 3.1.5).

The normal fan associated to a full dimensional lattice polytope is complete (Cox et al., 2011, 
Proposition 2.3.8). Then X� is also a complete variety (Cox et al., 2011, Theorem 3.4.6).

There exists a more direct construction of X� using a multiple of the full dimensional lattice 
polytope E , but by Proposition 3.1.6 (Cox et al., 2011) both constructions agree, X�

∼= XE . The benefit 
of this direct construction is that XE proves to be an irreducible projective variety. Let us call X the 
irreducible projective normal toric variety X� .
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Let B be an N-Minkowski summand of E . By Corollary 6.2.15 (Cox et al., 2011) there exists a torus 
invariant basepoint free Cartier divisor D on X such that

H0(X,OX (D)) = SB.

This last equality follows from Proposition 4.3.3 (Cox et al., 2011) and the fact that in a normal variety, 
every Cartier divisor is a Weyl divisor (Cox et al., 2011, Definition 4.0.12).

Let us apply Demazure Vanishing (Cox et al., 2011, Theorem 9.2.3). By definition, the support of 
a complete fan is Rn (Cox et al., 2011, Definition 3.1.18). In particular, it has a convex support of full 
dimension (Cox et al., 2011, §6.1). Then the basepoint free Cartier divisor D is nef (Cox et al., 2011, 
Theorem 6.3.12). Applying Demazure Vanishing, we obtain,

H p(X,OX (D)) = 0, p > 0.

Let us prove the last paragraph of the lemma. Let D be a torus-invariant Cartier divisor on X . Then 
there exists a polytope PD such that H0(X, OX (D)) = SPD (Fulton, 1993, Lemma, p. 66). Even more, 
if D is the torus-invariant basepoint free Cartier divisor associated to an N-Minkowski summand B, 
then PD = B (Fulton, 1993, p. 68); (Cox et al., 2011, Corollary 6.2.15).

Let B1 and B2 be two N-Minkowski summands of E and OX (D1) and OX (D2) be the correspond-
ing invertible sheaves associated to B1 and B2 respectively. Given that the sheaves are generated by 
global sections, we obtain PD1+D2 =PD1 +PD2 (Fulton, 1993, Exercise, p. 69).

Let OX (D) be the invertible sheaf associated to the N-Minkowski summand B1 +B2 of E . Then,

PD = B1 + B2 = PD1 +PD2 = PD1+D2 .

This implies that OX (D) ∼=OX (D1 + D2). �
Definition. Let { f1, . . . , fk} be a sparse system in (C \ 0)n with r′ < ∞ solutions counted with mul-
tiplicities. The torus (C \ 0)n is contained in the variety X of Lemma 1 as an open subset (Cox et 
al., 2011, Definition 3.1.1). Homogenizing every equation of the sparse system, we can consider the 
system in X . For the homogenization process, see Cox et al. (2011, §5.4).

Let Z ⊆ X be the zero-scheme of the resulting system and let r ≥ r′ be the number of points in 
Z counted with multiplicities. We say that the sparse system { f1, . . . , fk} has no solution at infinity if 
r = r′ . Otherwise, we say that it has solution at infinity. The number r is called the expected number of 
solutions of the sparse system.

2. Solving a sparse system

The following notations and assumptions will be used in the rest of the section.

Assumption 2. Let f0, . . . , fk be Laurent polynomials with Newton polytopes A0, . . . , Ak respectively. 
Let Bi =A0 + . . . + Âi + . . . +Ak , 0 ≤ i ≤ k and let E =A0 + . . . +Ak . Let I = 〈 f1, . . . , fk〉 ⊆ S be the 
ideal generated by the sparse system.

Assume,

• 0 ∈A0 and f0 is a non-constant Laurent polynomial.
• The lattice polytope E is full dimensional.
• 〈 f0, f1, . . . , fk〉 = S . �

Remark. If 0 /∈ A0, we can divide the equation f0 by some monomial or we can consider the convex 
hull of 0 and A0 as the new lattice polytope A0. These operations does not change the number of 
expected solutions nor the solutions in (C \ 0)n of the sparse system. Then without loss of generality, 
we can assume 0 ∈ A0. This assumptions implies that B0 is contained in E =A0 +B0.

If E is not full dimensional, there exists an affine change of variables such that the variables, say 
xs+1, . . . , xn , are missing in the sparse system. This implies that we could work in S = C[x±1

1 , . . . , x±1
s ]
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making E a full dimensional lattice polytope. This change of variables involves the computation of 
Smith Normal Forms (Hafner and McCurley, 1991). Another remark, is that it is easy to prove that if 
A0 is full dimensional, then E is full dimensional. Hence, we can consider A0 as a full dimensional 
lattice polytope.

It follows from 〈 f0, f1, . . . , fk〉 = S that the associated zero-scheme in X is empty. We prove in 
the next theorem that a sparse system satisfying the previous assumptions will have a finite number 
of expected solutions (possible zero). This assumption is the most important one.

Theorem 3. Same notation as before. Suppose f0, . . . , fk are Laurent polynomials as in Assumption 2. Then,

(a) The co-rank of the following linear map is the expected number of solutions (possibly zero),

� : SB1 × . . . × SBk → SE , �(g1, . . . , gk) =
k∑

i=1

f i · gi .

In particular, if the system has no solution at infinity, it is equal to the number of solutions in (C \ 0)n.
(b) The lattice polytope B0 ⊆ E satisfies

SB0/(Im(�) ∩ SB0)
∼= SE/Im(�).

(c) The following linear map is surjective,

� : SB0 × SB1 × . . . × SBk −→ SE , �(g0, g1, . . . , gk) = f0 · g0 +
k∑

i=1

f i · gi .

Proof. Let us work with the projective variety X of Lemma 1. For every integers d0, . . . , dk ≥ 0 con-
sider the invertible sheaf OX (d0, . . . , dk) associated to the N-Minkowski summand d0A0 + . . . + dkAk
of E . Then

H0(X,OX (d0, . . . ,dk)) = Sd0A0+...+dkAk , H p(X,OX (d0, . . . ,dk)) = 0, p > 0.

Also, from the last paragraph of Lemma 1 we have the following property. Let di, d′
i be non-negative 

integers such that di ≥ d′
i ≥ 0 for all 0 ≤ i ≤ k. Then,

OX (d′
0, . . . ,d′

k) ⊗OX OX (d0 − d′
0, . . . ,dk − d′

k)
∼= OX (d0, . . . ,dk) �⇒

OX (d0 − d′
0, . . . ,dk − d′

k)
∼= OX (d0, . . . ,dk) ⊗OX OX (−d′

0, . . . ,−d′
k),

where OX (−d′
0, . . . , −d′

k) denotes the dual sheaf of OX (d′
0, . . . , d

′
k).

Let ei ∈ Z
k+1 be the vector with 1 in the (i + 1)-coordinate and 0 in the rest, 0 ≤ i ≤ k. For 

example, e0 = (1, 0, . . . , 0) and ek = (0, . . . , 0, 1). The Laurent polynomials { f1, . . . , fk} determine a 
OX -linear map

OX → F, F = OX (e1) ⊕ . . . ⊕OX (ek),

given by g �→ ( f1 g, . . . , fk g). Then, we can construct the dual Koszul complex associated to F ,

0 →
k∧
F∨ → . . . →

i∧
F∨ → . . . → F∨ → OX ,

where F∨ denotes the dual of F and
s∧
F∨ =

⊕
1≤i1<...<is≤k

OX (−ei1 − . . . − eis ), 2 ≤ s ≤ k.

Let Z ⊆ X be the zero scheme of the global section ( f1, . . . , fk) ∈ SA1 ⊕ . . . ⊕ SAk
∼= H0(X, F). 

Let us prove that Z is empty or of dimension 0. Assume that Z is not empty. Let H ⊆ X be the 
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hypersurface given by the zeros of the section f0 ∈ SA0
∼= H0(X, OX (1, 0, . . . , 0)). Take an embedding 

of X is some PN and let Ĥ ⊆ P
N be an hypersurface such that Ĥ ∩ X = H . Given that the zero locus of 

{ f0, . . . , fk} is empty in X , we have ∅ = Z ∩ H = Z ∩ (Ĥ ∩ X) = Z ∩ Ĥ . Using Theorem 7.2 in Hartshorne
(1977), we obtain dim(Z) = 0.

Let us work with the augmented dual Koszul complex associated to F ,

0 →
k∧
F∨ → . . . →

i∧
F∨ → . . . → F∨ → OX → OZ → 0.

By §2, 1B, Proposition 1.4 (a) (Gel’fand et al., 1994) it is an exact complex.
Let U ⊆ X be an affine open subset containing Z . Let T be the coordinate ring of U and let J be 

the ideal of Z ⊆ U . Then,

H0(X,OZ (d0, . . . ,dk)) = H0(U ,OZ ) = T /J , ∀d0, . . . ,dk ≥ 0.

Recall from Proposition 2.9 (Hartshorne, 1977) that cohomology commutes with direct sums and 
from Theorem 6.0.18 and Proposition 6.0.17 (Cox et al., 2011) that invertible sheaves are locally free.

(a) The exactness of the augmented dual Koszul complex associated to F is preserved by twisting 
with the invertible sheaf OX (1, . . . , 1), and giving that each term of the resulting complex has no 
higher cohomology, the following complex of vector spaces is exact (Gel’fand et al., 1994, §2, 2A, 
Lemma 2.4),

SB1 × . . . × SBk

�−→ SE → T /J → 0.

If the sparse system has no solution at infinity, we can take the torus as the open set U , then 
Z ⊆ (C \ 0)n and T /J = S/I .

(b) In a similar way, twisting the augmented dual Koszul complex associated to F with the invertible 
sheaf OX (0, 1, . . . , 1), the following map is surjective,

SB0 → T /J → 0.

Let K be the kernel of SB0 → T /J . Then,

0 K SB0

≡

T /J 0

0 Im(�) SE T /J 0

The inclusion B0 ⊆ E follows from the assumption 0 ∈ A0. Given that both rows are exact, K
must be equal to SB0 ∩ Im(�). Then,

SB0/(SB0 ∩ Im(�)) ∼= T /J ∼= SE/Im(�).

(c) Finally, given that the zero locus of { f0, . . . , fk} is empty in X , we can use similar arguments as 
before with the sheaf F ′ =OX (e0) ⊕ . . . ⊕OX (ek) to prove that the following map is surjective,

SB0 × . . . × SBk

�−→ SE → 0.

Specifically, the augmented dual Koszul complex associated to F ′ is

0 →
k+1∧

F ′ ∨ → . . . →
i∧
F ′ ∨ → . . . → F ′ ∨ → OX → 0.

The result follows by twisting it with OX (1, . . . , 1) and taking global sections. �
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Remark. From the previous proof, part (c), we obtain a formula involving the number of lattice 
points in E . The augmented dual Koszul complex associated to F ′ = OX (e0) ⊕ . . . ⊕ OX (ek) twisted 
by OX (1, . . . , 1) is exact and each term has no higher cohomology. Hence its Euler characteristic is 
zero,

#(E ∩Z
n) −

k∑
i=0

#((A0 + . . . + Âi + . . . +Ak) ∩Z
n) + . . . − (−1)k

k∑
i=0

#(Ai ∩Z
n) + (−1)k

= 0.

This formula is similar to the alternate volume formula in Bernstein (1975).
For example, consider the simplex � ⊆ R

3, � =A0 +A1 +A2, where

A0 = conv((0,0,0), (p,0,0)), A1 = conv((0,0,0), (0,q,0)),

A2 = conv((0,0,0), (0,0, r))

and p, q, r are three positive prime numbers. Then #(� ∩Z
3) is equal to

(p + q + 1) + (p + r + 1) + (q + r + 1) − (p + 1) − (q + 1) − (r + 1) + 1 = p + q + r + 1.

When p = q = r = 1, the standard simplex in R3 has 4 points in Z3.
For more on counting points in a lattice polytope, see De Loera (2005). �
The following corollary is an adaptation of a theorem in Macaulay (1902).

Corollary 4. Suppose f0, . . . , fk are Laurent polynomials with Newton polytopes A0, . . . , Ak respectively. Let 
Bi =A0 + . . . + Âi + . . . +Ak, 0 ≤ i ≤ k and let E =A0 + . . . +Ak.

Let � be the following linear map,

� : SB0 × SB1 × . . . × SBk −→ SE , �(g0, g1, . . . , gk) = f0 · g0 +
k∑

i=1

f i · gi .

Assume that E is full dimensional. Then,

rk(�) = #(E ∩Z
n) ⇐⇒ 〈 f0, . . . , fk〉 = S.

Proof. If 〈 f0, . . . , fk〉 = S , by Theorem 3(c), � is surjective. Analogously, if � is surjective, there exists 
a monomial xm ∈ SE = Im(�) ⊆ 〈 f0, . . . , fk〉. In particular, 1 ∈ 〈 f0, . . . , fk〉. �
Notation. Notations and assumptions as in Assumption 2. Consider E ∩ Z

n and Bi ∩ Z
n as monomial 

ordered bases of SE and SBi respectively, 0 ≤ i ≤ k. Let p be the cardinal of B0 ∩ Z
n , pi the cardinal 

of Bi ∩ Z
n , 1 ≤ i ≤ k and p + q be the cardinal of E ∩ Z

n . Given that f0 is not a constant in SA0 , the 
inclusion B0 ⊆ E is proper, thus q > 0.

B0 ∩Z
n = {m1, . . . ,mp}, E ∩Z

n = {m1, . . . ,mp,mp+1, . . . ,mp+q},
where mi is a point in Zn , 1 ≤ i ≤ p + q.

Let us define the coefficient matrix M associated to the sparse system { f1, . . . , fk} and f0. Let 
M ∈C

(p+q)×(p+p1+...+pk) be the rectangular matrix associated to � in these bases,

M =
(

M11 M12
M21 M22

)
, M11 ∈C

p×p, M22 ∈C
q×(p1+...+pk).

Then,

( xm1 . . . xmp xmp+1 . . . xmp+q )

(
M11 M12
M M

)
= ( f0xm1 . . . f0xmp f1 · B1 . . . fk · Bk ) ,
21 22
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where f i · Bi is the row vector obtained by multiplying f i with the monomials in Bi ∩ Z
n , 1 ≤ i ≤ k. 

We are abusing the notation; the point m = (m1, . . . , mn) ∈ Z
n corresponds to the monomial xm =

xm1
1 . . . xmn

n . �
Theorem 5. Same notation as before. Suppose f0, . . . , fk are Laurent polynomials as in Assumption 2. Let 
F ∈C

(p1+...+pk)×p be a solution of the linear equation M21 + M22 F = 0.
Then, every solution, ξ , of the sparse system determines a left eigenvector of M11 + M12 F . Even more, f0(ξ)

is the eigenvalue of that left eigenvector.

Proof. Let us see that the hypotheses given in Assumption 2 imply that the rectangular matrix M22
has full rank q. The matrix M22 is the matrix of the composition of the following maps,

SB1 × . . . × SBk

�−→ SE
π−→ SE/SB0 ,

where π is the quotient map. Then the rank of M22, t , is equal to rk(π �) and

Im(π�) = π(Im(�)) = Im(�)/
(
Im(�) ∩ SB0

) �⇒
t := rk(M22) = dim(Im(�)/

(
Im(�) ∩ SB0

)
) = dim(Im(�)) − dim(Im(�) ∩ SB0).

Note that the dimension of SE/SB0 is equal to q,

dim(SE/SB0) = dim(SE ) − dim(SB0) = (p + q) − p = q.

Let us prove q = t . Using Theorem 3(b), we get

dim(SE/Im(�)) = dim(SB0/
(
Im(�) ∩ SB0

)
) �⇒

dim(SE ) − dim(Im(�)) = dim(SB0) − dim(Im(�) ∩ SB0) �⇒
q = dim(SE ) − dim(SB0) = dim(Im(�)) − dim(Im(�) ∩ SB0) = t.

Now that we know that rk(M22) = q, it is easy to prove that there exists a matrix F such that

M22 F = −M21, F ∈ C
(p1+...+pk)×p .

Each column of F , c1, . . . , cp , is a solution of the linear system M22ci = bi , where bi ∈ C
q is the 

i-column vector of −M21, 1 ≤ i ≤ p.
Let ξ ∈C

n be a solution of the sparse system, f1(ξ) = . . . = fk(ξ) = 0. Then

( ξm1 . . . ξmp ξmp+1 . . . ξmp+q )

(
M11 M12
M21 M22

)
= f0(ξ) · ( ξm1 . . . ξmp 0 ) �⇒

( ξm1 . . . ξmp ξmp+1 . . . ξmp+q )

(
M11 M12
M21 M22

)(
I 0
F I

)
= f0(ξ) · ( ξm1 . . . ξmp 0 )

(
I 0
F I

)
�⇒

(ξm1 . . . ξmp ) (M11 + M12 F ) = f0(ξ) · (ξm1 . . . ξmp ).

Then ξ determines a left eigenvector of M11 + M12 F with eigenvalue f0(ξ). �
Remark. In the previous theorem we proved that every solution of a sparse system as in Assump-
tion 2 determines a left eigenvector of the square matrix M11 + M12 F . If the geometric multiplicity 
of an eigenvalue (the dimension of its left eigenspace) is greater than one, then we cannot use the 
computation of left eigenvectors to deduce the solutions of the sparse system. �

Let us relate the multiplicity of a root ξ with the multiplicity of the eigenvalue f0(ξ) in the matrix 
M11 + M12 F .

Proposition 6. Same notation as before. Suppose f0, . . . , fk are Laurent polynomials as in Assumption 2. Let 
ξ ∈ (C \ 0)n be a solution of the sparse system with multiplicity μ. Then, the eigenvalue f0(ξ) of M11 + M12 F
has multiplicity greater than or equal to μ.
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Proof. The characteristic polynomial of the multiplication map M f0 : S/I → S/I is

χ(t) = (t − f0(ξ1))
μ1 . . . (t − f0(ξs))

μs ,

where ξ1, . . . , ξs are the solutions of the sparse system in (C \ 0)n and μ1, . . . , μs their respective 
multiplicities (see Dickenstein and Emiris (2005, 2.1.14)).

Let us relate the multiplication matrix M f0 with our matrix M . Recall that the columns of the 
matrix of � are the multiples of { f1, . . . , fk},

[�] =
(

M12
M22

)
.

Also, that the matrix of the map �|SB0
: SB0 → SE corresponds to the multiples of f0,(

M11
M21

)
.

In order to find the class of f0 ∈ S/I , we need to add/substract monomial multiples of { f1, . . . , fk} to 
f0. This process may be done by column operations in M . In particular, the matrix(

M11 + M12 F M12
0 M22

)
=

(
M11 M12
M21 M22

)(
I 0
F I

)
obtained by column operations from M , also determines the class in S/I of f0. Specifically, the class 
of xm j f0 in S/I is the same as the class of the j-column of M and the j-column of M11 + M12 F , 
1 ≤ j ≤ p,

xm j f0 ≡
p+q∑
i=1

xmi ai j ≡
p∑

i=1

xmi bi j mod I,

where aij = Mij , bij = (M11 + M12 F )i j and the first p monomials are in B0 ⊆ E and the last q mono-
mials are in E \B0.

Let us call σ f0 the map associated to M11 + M12 F ,

σ f0 : SB0 → SB0 , σ f0(xm j ) =
p∑

i=1

xmi bi j 1 ≤ j ≤ p.

Then, we have the following commutative diagram,

SB0

≡σ f0

π S/I

M f0

SB0
π S/I

By Theorem 3(b), the map π above is an epimorphism. Hence the characteristic polynomial of M f0

divides the characteristic polynomial of the matrix M11 + M12 F , that is, χσ f0
(t) = χ(t)P (t), where 

P (t) is some polynomial (it depends on F ). �
To end this section, let us give an example on how to apply the previous theorems,

Example. Consider the intersection of a line with a parabola,{
f1 = 1 + x + y = 0
f2 = 1 + x2 + y = 0

They intersect in (1, −2) and (0, −1) ∈ C
2. Note that the ideal generated by 〈 f1, f2〉 is radical. Let 

f0 = x − 2y be a linear form. The value of f0 at each solution is f0(1, −2) = 5 and f0(0, −1) = 2.
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Let us identify the monomial xn ym with the point (n, m) ∈ Z
2. Take the lattice polytopes associated 

to f0, f1 and f2,

A0 ∩Z
2 = A1 ∩Z

2 = {1, x, y}, A2 ∩Z
2 = {1, y, x, x2}.

Then,

B0 ∩Z
2 = {1, x2 y, x2, y2, x3, xy, x, y},

E ∩Z
2 = {1, x2 y, x2, y2, x3, xy, x, y, x3 y, xy2, y2x2, x4, y3}.

In these bases the coefficient matrix M is equal to,⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 −2 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 −2 1 0 0 1 0 0 0 1 1 0 1 0 0 1 0
0 0 0 0 0 0 0 −2 0 0 0 1 0 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

−2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1
0 1 0 0 0 −2 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0
0 0 −2 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0
0 −2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 −2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Using Corollary 4, rk(M) = 13 = #(E ∩Z
2) implies that the ideal 〈 f0, f1, f2〉 is S as we already knew. 

Also, we can recover the expected number of solutions, Theorem 3(a),

#(E ∩Z
2) − rk

(
M12
M22

)
= 13 − 11 = 2.

Let us compute a matrix F and M11 + M12 F ,

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 3 2 −3 0 −3 0 0
0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −3 0 0 0 3 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M11 + M12 F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 5 3 −3 −2 −3 0 0
0 0 2 −3 0 0 −2 1
0 0 0 2 0 0 0 −2
0 0 0 0 0 0 1 0
0 0 0 0 1 −1 0 0
1 0 0 0 0 0 0 0

−2 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The characteristic polynomial of M11 + M12 F is equal to t4(t + 1)(t − 2)2(t − 5) and its minimal 
polynomial is t3(t + 1)(t − 2)2(t − 5). The left eigenspace associated to 2 is 〈(1, 0, 0, 1, 0, 0, 0, −1)〉, 
and the left eigenspace associated to 5 is 〈(1, −2, −2, 4, 1, 1, 1, −2)〉. Then, looking at the last two 
coordinates (the monomials x and y), we get the two solutions (0, −1) and (1, −2).

Note that the characteristic polynomial and the minimal polynomial of M11 + M12 F are different. 
Also, that the multiplicity of 2 = f0(0, −1) is two.

In this example, it is possible to choose another F (without changing f0) to get eigenvalues with 
multiplicity one in M11 + M12 F ,

F ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 3 −2 −9 0 1 0 0
0 1 4 8 0 −6 0 0
0 1 0 −4 0 3 0 0
0 −1 4 10 0 −6 0 0
0 7 −8 −28 0 15 0 0
0 −2 −2 −1 0 5 0 0
0 −3 −2 1 0 2 0 0
0 −5 4 16 0 −5 0 0
0 −1 −2 −3 0 1 0 0
0 0 −2 −7 0 3 0 0
0 1 −4 −8 0 6 0 0
0 2 2 1 0 −6 0 0
0 −5 6 21 0 −10 0 0
0 2 0 −2 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. �

Remark (About the size of the matrices). It is important to mention that our matrix construction pro-
duce an extremely large matrix. In the previous example we produced a matrix in C13×22, but 
considering different monomial bases it is possible to construct a smaller matrix in C6×7. The fol-
lowing monomials were suggested by a referee. Let B0 ∩ Z

2 = B1 ∩ Z
2 = {1, x, y} and B2 ∩ Z

2 = {1}. 
Then, the coefficient matrix in these bases is

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 1
1 0 0 1 1 0 0

−2 0 0 1 0 1 1
0 1 0 0 1 0 1
0 −2 1 0 1 1 0
0 0 −2 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

Applying the same procedure as before, the matrix M11 + M12 F has three eigenvalues, 0, 2 and 5 with 
left eigenvectors (1, 6, 4), (1, 0, −1) and (1, 1, −2) respectively.

Let us explain briefly why this matrix works. In this example, the polytope E = A0 + B0 satisfies 
E ∩Z

2 = {1, x, y, x2, xy, y2}, then the projective variety X of Lemma 1 is the projective plane P2. The 
invertible sheaf associated to OX (d0, d1, d2) is equal to OP2 (d0 +d1 + 2d2). Then, the augmented dual 
Koszul complex associated to the section ( f1, f2) is

0 → OP2(−3) → OP2(−1) ⊕OP2(−2) → OP2 → OZ → 0.

Using Theorem III.5.1 in Hartshorne (1977), we know that the shaves OP2 (−1) and OP2 (−2) have no 
higher cohomology.

In order to prove that M22 has full rank we need to prove Theorem 3(b) and use the first part 
of the proof in Theorem 5. Twisting the previous complex by OP2 (1) and taking global sections, we 
obtain that the map SB0 → S/I is surjective. Hence, M22 has full rank.

To prove that the co-rank of the column block matrix (M12; M22) is 2, we need to prove Theo-
rem 3(a). It follows by twisting with OP2 (2) and taking global sections.
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In the same way, it is easy to prove that M has full rank twisting by OP2 (2) and taking global 
sections the dual Koszul complex associated to ( f0, f1, f2)

0 → OP2(−4) → OP2(−2) ⊕OP2(−2) ⊕OP2(−3) → OP2(−1) ⊕OP2(−1) ⊕OP2(−2)

→ OP2 → 0.

All of our results are based on Demazure Vanishing in Lemma 1. In this particular example the 
sheaves OP2 (−1) and OP2 (−2) have no higher cohomology by different reasons. It is worth mention-
ing that the construction of M can be improved to produce smaller matrices. The size is controlled 
by the lattice polytope E and the space of global sections H0(X, F ′ ∨(1, . . . , 1)), where X = XE is 
the projective variety of Lemma 1 and F ′ is the sheaf associated to the sparse system and f0. Our 
approach gives a canonical matrix to work in general.

Let us mention the following related result on reducing the size of the coefficient matrix. In Canny 
and Emiris (1993), the authors work with (essentially) the same map � , the first Koszul map, to pro-
duce a formula of the sparse resultant of n +1 Laurent polynomials in n variables. Using a Row content 
function they constructed a square coefficient matrix such that its determinant is a non-zero multiple 
of the sparse resultant. Continuing this work, in Emiris and Canny (1995), the authors proposed an 
incremental algorithm to obtain this submatrix. Finally, in Dickenstein and Emiris (2003), the authors 
provided a coefficient matrix of optimal size for the case of multihomogeneous systems.

3. Application

To conclude this article, let us give an application to approximate the maximum of a generic 
trilinear form over a product of spheres,

� : Rn+1 ×R
m+1 ×R

s+1 →R, �(x, y, z) =
(n,m,s)∑

(i, j,k)=0

aijkxi y j zk, max‖x‖=‖y‖=‖z‖=1
|�(x, y, z)|,

where the norm is the usual 2-norm. This problem was studied in Massri (2013). In the literature, the 
maximum of � over a product of spheres, is called the first singular value of � (Lim, 2005, §3).

Using Lagrange method of multipliers (Apostol, 1974, §13.7) the extreme points of � over a product 
of spheres, Sn × S

m × S
s , satisfy

⎧⎨
⎩

∂�/∂xi(x0, . . . , xn, y0, . . . , ym, z0, . . . , zs) = 2αxi, 0 ≤ i ≤ n,

∂�/∂ y j(x0, . . . , xn, y0, . . . , ym, z0, . . . , zs) = 2β y j, 0 ≤ j ≤ m,

∂�/∂zk(x0, . . . , xn, y0, . . . , ym, z0, . . . , zs) = 2λzk, 0 ≤ k ≤ s,

α,β,λ ∈R, ‖x‖ = ‖y‖ = ‖z‖ = 1.

These equations imply that the vector ∂�/∂x(x, y, z) is a multiple of x. Same for y and z. In other 
words, considering the system in Pn × P

m × P
s , we can hide the variables α, β and λ,

⎧⎨
⎩

x j∂�/∂xi(x, y, z) = xi∂�/∂x j(x, y, z), 0 ≤ i < j ≤ n,

y j∂�/∂ yi(x, y, z) = yi∂�/∂ y j(x, y, z), 0 ≤ i < j ≤ m,

z j∂�/∂zi(x, y, z) = zi∂�/∂z j(x, y, z), 0 ≤ i < j ≤ s.

Given that � is trilinear, the expression x j∂�/∂xi(x, y, z) is equal to �(x jei, y, z), where ei ∈ R
n+1 is 

the vector with 1 in the i-coordinate and 0 in the rest. Same for y and z. Summing up, the extreme 
points of � satisfy the following system of equations in Rn+1 ×R

m+1 ×R
s+1,
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�(x jei − xie j, y, z) = 0, 0 ≤ i < j ≤ n,

�(x, y jei − yie j, z) = 0, 0 ≤ i < j ≤ m,

�(x, y, z jei − zie j) = 0, 0 ≤ i < j ≤ s,

x2
0 + . . . + x2

n = 1,

y2
0 + . . . + y2

m = 1,

z2
0 + . . . + z2

s = 1.

Assume that � is generic and 2n, 2m, 2s ≤ n + m + s (Gel’fand et al., 1994, §14, 1.3), hence the 
extreme points are finite with multiplicity one. Enumerate the equations, f1, . . . , fk . Let λ1, . . . , λr be 
the real eigenvalues of M11 + M12 F associated to solutions of the system f1 = . . . = fk = 0 and to the 
generic trilinear form �. If |λ1| ≥ |λi|, 2 ≤ i ≤ r, then |λ1| is the maximum value of � over Sn ×S

m ×S
s .

Remark (Numerical Issues). The previous application has several numerical issues. For example, the 
computation of eigenvalues (Corless et al., 1997; McNamee, 2002; Oishi, 2001; Rouillier and Zim-
mermann, 2004; Rump, 2001), the test of the genericity of � and also, the evaluation of a possible 
root in the equations. These last issues, may be solved using interval arithmetics (Ozaki et al., 2012;
Rump, 1999).

In this application we did not required the computation of eigenvectors. It is a delicate numer-
ical issue. When the matrix M11 + M12 F is non-derogatory, we can apply the work in Rump and 
Zemke (2003). See also, Bondyfalat et al. (2000); Helmberg et al. (1993); Mayer (1994); Oishi (2001); 
Yamamoto (1982). In other cases, it is possible to adapt some ideas from Möller and Stetter (1995). 
For a method that works on general systems, we refer to Graillat and Trébuchet (2009). �
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