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a b s t r a c t

This paper proposes a contemporaneous-threshold multivariate smooth transition autoregressive
(C-MSTAR) model in which the regime weights depend on the ex-ante probabilities that latent regime-
specific variables exceed certain threshold values. A key feature of themodel is that the transition function
depends on all the parameters of the model as well as on the data. Since the mixing weights are also
a function of the regime-specific noise covariance matrix, the model can account for contemporaneous
regime-specific co-movements of the variables. The stability and distributional properties of the proposed
model are discussed, aswell as issues of estimation, testing and forecasting. The practical usefulness of the
C-MSTAR model is illustrated by examining the relationship between US stock prices and interest rates.
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1. Introduction

It has been long recognized that economic variablesmaybehave
very differently in different states of the economy such as, for
example, high/low inflation, high/low growth, or high/low stock
prices (relative to dividends). This behavior may be attributable
not only to state-dependent response of economic variables to
policy shocks but also to state-dependent response on the part of
the authorities responsible for fiscal and monetary policies. In an
attempt to capture state-dependent or regime-switching behavior,
a variety of nonlinear models has been proposed for describing the
dynamics of economic time series subject to changes in regime
(see, e.g.,Tong (1983, 1990), Hamilton (1993), van Dijk et al. (2002)
and Dueker et al. (2007)).

Researchers are often interested in studying the interrelation-
ships between several economic/financial variables. To this end,
several multivariate models have been considered in the litera-
ture, includingMarkov-switching autoregressivemodels (e.g., Sola
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and Driffill (1994)), threshold autoregressive models (Tsay, 1998),
smooth transition autoregressive (STAR) models (van Dijk et al.,
2002), functional-coefficient autoregressive models (Harvill and
Ray, 2006) and mixture autoregressive models (Fong et al., 2007;
Bec et al., 2008). In spite of some obvious difficulties associated
with the practical use of many of these models (e.g., choice of an
appropriate threshold variable, number of regimes, transition
function, functional forms), they are potentially very useful for an-
alyzing state-dependent multivariate relationships. Well-known
examples of such relationships, which have been the focus of
recent research, are nonlinear money-output Granger causality
patterns (e.g., Rothman et al. (2001) and Psaradakis et al. (2005)),
nonlinearities in the term structure of interest rates (e.g., Sola and
Driffill (1994), Tsay (1998) and De Gooijer and Vidiella-i-Anguera
(2004)) and nonlinearities in business-cycle relationships (e.g., Al-
tissimo andViolante (2001) andKoop and Potter (2006)), inter alia.

One of the major challenges faced in a multivariate framework
is how best to capture the state-dependent behavior that the com-
ponents of amultiple time series may exhibit, as well as the poten-
tially changing interrelationships between the variables, in a way
which is both statistically sound and economically meaningful. In
many instances, different states of the economy can be character-
ized in terms of high and low values of certain economic/financial
variables (e.g., high/low inflation or high/low growth). The econ-
omy typically behaves differently in these regimes and it is
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reasonable to expect that the contemporaneous and feedback re-
lationships between variables will also be regime specific. An
econometric model will be useful in such cases if it is capable
of both identifying the periods associated with different states of
nature and capturing the state-specific interrelationships among
variables. A Markov-switching autoregressive model, for exam-
ple, which allows for shifts in the mean or the intercept can
capture extreme events associated with the level of the series
but cannot account for state-dependent interrelationships among
the variables. The latter may be accounted for by allowing all the
parameters of the model to switch, but this usually results in iden-
tifying as separate regimes periods which do not necessarily corre-
spond to economically meaningful states of nature (e.g., high/low
growth rates). Multivariate threshold autoregressive and STAR
models typically associate different regimes with small and large
values of the transition variables and are capable of characterizing
state-dependent interactions among the variables.

This paper contributes to the literature on multivariate nonlin-
ear models by proposing a contemporaneous-threshold multivari-
ate STAR, or C-MSTAR, model. A key characteristic of the model is
that the mixing (or regime) weights depend on the ex-ante prob-
abilities that latent regime-specific variables exceed certain (un-
known) threshold values (cf. Dueker et al. (2007)). What is more,
the mixing (or transition) function of the C-MSTARmodel depends
on all the parameters of the model as well as on the data. This
implies that, in contrast to conventional STAR models, there is no
need to choose an appropriate transition variable using amodel se-
lection criterion since, by construction, all the variables that enter
the model’s information set are also present in the transition func-
tion. Furthermore, the dependence of the mixing weights on the
regime-specific noise covariancematrices allows themodel to cap-
ture contemporaneous regime-specific co-movements of the vari-
ables and to exploit the information in these covariancematrices in
order to predict regimes. These important characteristicsmake the
C-MSTAR model capable of describing successfully multiple time
series with a wide variety of conditional distributions and of cap-
turing state-dependent interrelationships among the variables of
interest.

To convey the flavor of contemporaneous-threshold smooth
transition autoregressive (C-STAR) models, the definition and
main characteristics of the univariate C-STAR model is recalled
in Section 2. The C-MSTAR model is introduced and discussed
in Section 3. We examine the stability properties of the model
and use artificial data to analyze the various types of conditional
distributions that can be generated by a C-MSTARmodel. Section 4
discusses estimation and testing, and reports the results of
simulation experiments that assess the finite-sample performance
of the maximum likelihood (ML) estimator and of the related
statistics. In Section 5, we investigate the relationship between
US stock prices and interest rates using a C-MSTAR model, and
evaluate its out-of-sample forecast performance. Our empirical
results suggest that monetary policy has different effects on stock
prices in different states of the economy and that Granger causality
between stock prices and interest rates is regime dependent. A
summary is given in Section 6.

2. Univariate contemporaneous-threshold models

The C-STAR model of Dueker et al. (2007) is a member of the
STAR family. A STAR process may be thought of as a mixture of
two (or more) autoregressive processes which are averaged, at
any given point in time, according to some continuous function
G(·) taking values in [0, 1]. More specifically, a two-regime
(conditionally heteroskedastic) STARmodel for the univariate time
series {xt} may be formulated as

xt = G(zt−1)x1t + [1 − G(zt−1)]x2t , t = 1, 2, . . . , (1)
where zt−1 is a vector of exogenous and/or pre-determined
variables and

xit = µi +

p−
j=1

α
(i)
j xt−j + σiut , i = 1, 2. (2)

In (2), p is a positive integer, {ut} are independent and identically
distributed (i.i.d.) random variables such that ut is independent
of (x1−p, . . . , x0) and E(ut) = E(u2

t − 1) = 0, σ1 and σ2 are
positive constants, and µi and α

(i)
j (i = 1, 2; j = 1, . . . , p) are real

constants. The feature that differentiates alternative STAR models
is the choice of the mixing function G(·) and transition variables
zt−1 (cf. Teräsvirta (1998) and van Dijk et al. (2002)).

Letting zt−1 = (xt−1, . . . , xt−p)
′ and αi = (α

(i)
1 , . . . , α

(i)
p )

′ (i =

1, 2), the (conditionally) Gaussian, two-regime C-STAR model of
order p is obtained by defining the mixing function G(·) in (1) as

G(zt−1)

=
Φ({x∗

− µ1 − α′

1zt−1}/σ1)

Φ({x∗ − µ1 − α′

1zt−1}/σ1)+ 1 − Φ({x∗ − µ2 − α′

2zt−1}/σ2)
,

whereΦ(·) denotes the standard normal distribution function and
x∗ is a threshold parameter.1 Notice that

G(zt−1) =
P(x1t < x∗

|zt−1; ϑ1)

P(x1t < x∗|zt−1; ϑ1)+ P(x2t ⩾ x∗|zt−1; ϑ2)

and

1 − G(zt−1) =
P(x2t ≥ x∗

|zt−1; ϑ1)

P(x1t < x∗|zt−1; ϑ1)+ P(x2t ≥ x∗|zt−1; ϑ2)
,

where ϑi = (µi, α
(i)
1 , . . . , α

(i)
p , σ

2
i )

′ is the vector of parameters
associated with regime i. Hence, (1) may be rewritten as

xt =
P(x1t < x∗

|zt−1; ϑ1)x1t + P(x2t ≥ x∗
|zt−1; ϑ2)x2t

P(x1t < x∗|zt−1; ϑ1)+ P(x2t ≥ x∗|zt−1; ϑ2)
.

Since the values of themixing function depend on the probabil-
ity that the contemporaneous value of x1t(x2t) is smaller (greater)
than the threshold level x∗, themodel is called a contemporaneous-
threshold STAR model. As with conventional STAR models, a C-
STAR model may be thought of as a regime-switching model that
allows for two regimes associated with the two latent variables x1t
and x2t . Alternatively, a C-STARmodel may be thought of as allow-
ing for a continuum of regimes, each of which is associated with a
different value of G(zt−1).2

One of the main purposes of the C-STAR model is to address
two somewhat arbitrary features of conventional STAR models.
First, STAR models specify a delay such that the mixing function
for period t consists of a function of xt−j for some j ≥ 1.
Second, STAR models specify which of and in what way the model
parameters enter the mixing function. C-STAR models address

1 Although conditional Gaussianity is used as a convenient assumption inmuchof
what follows,Φ(·) can be replaced with another continuous distribution function.
2 It is perhaps worth noting here that the C-STAR model allows for realizations

of x1t and x2t such that x1t ≥ x∗ and x2t < x∗ . To illustrate the point numerically,
suppose that x1t = −0.5 + 0.6xt−1 + 3ut and x2t = −0.5 + 0.9xt−1 + 3ut , with
ut ∼ N (0, 1); assume further that xt−1 = 5 and x∗

= 10. Then, the mixing weights
are P(x1t < x∗

|zt−1) = P(3ut < x∗
+ 0.5 − 0.6xt−1|zt−1) = Φ(2.5) = 0.994 and

P(x2t ≥ x∗
|zt−1) = P(3ut ≥ y∗

+ 0.5 − 0.9xt−1|zt−1) = 1 − Φ(1.6666667) =

0.0478, so that G(zt−1) = 0.9541. Hence, conditionally on xt−1 = 5, the C-STAR
model assigns a large weight to the regime associated with x1t , so that most of the
area of the regime-specific conditional distribution is below the threshold and very
little of the area associated with the other regime is above the threshold. It is not,
therefore, against the logic of the model to obtain a realization such as x2t < x∗

(which is very likely to happen); the identifying conditions of the model imply that
the weight given to the regime associated with x2t is going to be small whenever
the realizations of x2t such that x2t < x∗ are likely to occur.
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these twin issues in an intuitive way: they use a forecasting
function such that the mixing function depends on the ex-ante
regime-dependent probabilities that xt will exceed the threshold
value(s). Furthermore, the mixing function makes use of all of the
model parameters in a coherent way.

3. Multivariate contemporaneous-threshold models

In this section, we present a C-MSTAR model which is capable
of both separating different regimes in terms of the probability of
regime-specific latent variables being greater (or smaller) than rel-
evant thresholds as well as allowing the interaction and feedback
relationships between variables to differ between regimes. We be-
gin by defining the model and then proceed to investigate some of
its properties.

3.1. Definition

The C-MSTAR model belongs to the class of multivariate STAR
models. An n-variate (conditionally heteroskedastic) STAR process
{yt} withm regimes may be defined as

yt =

m−
i=1

Gi(zt−1)yit , t = 1, 2, . . . , (3)

where Gi(·) (i = 1, . . . ,m) are continuous functions taking values
in [0, 1], zt−1 is a vector of exogenous and/or pre-determined
variables, and

yit = µi +

p−
j=1

A(i)j yt−j + 6
1/2
i ut , i = 1, . . . ,m. (4)

In (4), p is a positive integer, {ut} is a sequence of i.i.d. n-
dimensional random vectors with E(ut) = 0,E(utu′

t) = In (In
being the identity matrix of order n) and ut independent of
(y1−p, . . . , y0), µi (i = 1, . . . ,m) are n-dimensional vectors of
intercepts, A(i)j (i = 1, . . . ,m; j = 1, . . . , p) are n × n coefficient
matrices, and 6i (i = 1, . . . ,m) are symmetric, positive definite
n × nmatrices.3

For simplicity and clarity of exposition, we shall focus hereafter
on the bivariate, first-order C-MSTAR model, i.e., the model with
n = 2,m = 4, and p = 1. To define this model, let

yt = (xt , wt)
′, yit = (xit , wit)

′, i = 1, . . . , 4,
y∗

1 = (x∗, w∗)′, y∗

2 = (x∗,−w∗)′, y∗

3 = (−x∗, w∗)′,

y∗

4 = (−x∗,−w∗)′,

where x∗ and w∗ are threshold parameters, and xit and wit (i =

1, . . . , 4) are latent regime-specific random variables. Then, {yt}
is said to follow a (conditionally) Gaussian, first-order C-MSTAR
model if it satisfies (3)–(4) with ut ∼ N (0, I2), zt−1 = yt−1, and

Gi(zt−1) = (1/δt)Φ2(6
−1/2
i {y∗

i − µi − A(i)1 yt−1}),

i = 1, . . . , 4, (5)

whereΦ2(·) denotes the N (0, I2) distribution function and

δt =

4−
i=1

Φ2(6
−1/2
i {y∗

i − µi − A(i)1 yt−1}). (6)

3 For a symmetric, positive definitematrix C, C1/2 denotes its symmetric, positive
definite square root.
It can be readily seen that

G1(zt−1) = (1/δt)P(x1t < x∗, w1t < w∗
|yt−1; θ1),

G2(zt−1) = (1/δt)P(x2t < x∗, w2t ≥ w∗
|yt−1; θ2),

G3(zt−1) = (1/δt)P(x3t ≥ x∗, w3t < w∗
|yt−1; θ3),

G4(zt−1) = (1/δt)P(x4t ≥ x∗, w4t ≥ w∗
|yt−1; θ4),

where θi = (µ′

i, vec(A
(i)
1 )

′, vech(6i)
′)′ is the vector of parameters

associated with regime i. Hence the mixing functions Gi(·) reflect
theweighted probabilities that the regime-specific latent variables
xit andwit are above or below the respective thresholds x∗ andw∗.

The first-order model above can be generalized straightfor-
wardly to the case of p ≥ 2 lags. Furthermore, although we do not
pursue this modelling strategy here, the number of lags in (4) may
be allowed to differ over i and thus be regime-specific.4 Regarding
the number of regimes m, it should be remembered that m is al-
ways determined by the dimension n of the C-MSTARmodel.When
n = 2, we havem = 4 by construction since there are four possible
states of nature defined by the regime-specific latent variables and
the thresholds, namely {x1t < x∗, w1t < w∗

}, {w2t < w∗, w2t ≥

w∗
}, {w3t ≥ w∗, w3t < w∗

}, and {w4t ≥ w∗, w4t ≥ w∗
}. For a

modelwith n = 3,wehavem = 9, and so on.5 Finally, as in the uni-
variate case, a (conditionally) non-Gaussian C-MSTAR model can
be obtained by replacing Φ2(·) in (5)–(6) by the distribution func-
tion Ψ (·), say, of another continuous distribution on R2 (having
mean vector 0 and covariance matrix I2). The interpretation of the
model remains the same as long as ut is assumed to be distributed
according to Ψ (·).

3.2. Distributional characteristics

To gain an understanding of the behavior of C-MSTAR time
series, we illustrate some properties of the C-MSTAR model by
using artificial data obtained from the data-generating processes
(DGPs) given in Table 1. These DGPs have been chosen to highlight
some important features of the model related to: (i) the response
of the mixing function to changes in the parameters of the model;
and (ii) the empirical distribution of C-MSTAR data. The errors
ut are contemporaneously uncorrelated under DGP-1, while DGP-
2 and DGP-3 allow for positive and negative contemporaneous
correlation, respectively.

Fig. 1 shows the conditional density functions of the latent
regime-specific random vectors yit (i = 1, . . . , 4) for DGP-1,
given yt−1 = (0.4, 0.6)′, along with the threshold y∗

1 = (0.4,
0.6)′ and the values of the mixing functions Gi(yt−1). Each plot
shows the relevant area of the density (suitably rotated) for
which each regime is defined. The regime-specific conditional
means are E(y1t |yt−1) = (0.35, 0.57)′,E(y2t |yt−1) = (0.29,
0.6)′,E(y3t |yt−1) = (0.59, 0.39)′, andE(y4t |yt−1) = (0.43, 0.66)′.

4 In either case, the number of lags may be selected adaptively by using
complexity-penalized likelihood criteria (see Kapetanios (2001) and Psaradakis and
Spagnolo (2006) for related results concerning univariate nonlinear autoregressive
models).
5 Needless to say, the number of parameters in an C-MSTAR model increases

considerably with the dimension of the model, and hence with the number of
regimes (a problem which is, of course, common to many of the multiple-regime
multivariatemodelsmentioned in Section 1). Oneway of dealingwith this difficulty
may be to allow only some of the components of yit in (4) to have regime-specific
dynamics. To give an example, suppose that yt = (xt , wt , rt )′ , where xt is output
growth, wt is inflation and rt is the change in the exchange rate; since periods of
high inflation are likely to coincide with periods of devaluation, one might allow
the dynamics of output and of only one of the other two variables to be regime-
specific. An alternative approach may be to consider a two-regime model in which
the regimes are defined in terms of a linear combination of the latent variables
being greater (or smaller) than a linear combination of the thresholds. The former
approach has the advantage that the regimes have a clear economic interpretation.
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Table 1
Data-generating processes.

DGP-1

µ1 =

[
−0.05
−0.05

]
, A(1)1 =

[
0.80 0.05
0.10 0.90

]
, 61 = I2

µ2 =

[
−0.05
0.05

]
, A(2)1 =

[
0.75 −0.05
0.05 0.85

]
, 62 = I2

µ3 =

[
0.15

−0.05

]
, A(3)1 =

[
0.75 −0.30
0.20 0.85

]
, 63 = I2

µ4 =

[
0.05
0.10

]
, A(4)1 =

[
0.90 −0.10
0.01 0.90

]
, 64 = I2

(x∗, w∗) = (0.6,−0.4)

DGP-2

Intercepts, autoregressive coefficients and threshold parameters are the same as for DGP-1

61 =

[
1 0.9
0.9 1

]
, 62 =

[
1 0.8
0.8 1

]
, 63 =

[
1 0.3
0.3 1

]
64 =

[
1 0.8
0.8 1

]
DGP-3

Intercepts, autoregressive coefficients and threshold parameters are the same as for DGP-1

61 =

[
1 −0.9

−0.9 1

]
, 62 =

[
1 −0.8

−0.8 1

]
, 63 =

[
1 −0.3

−0.3 1

]
64 =

[
1 −0.8

−0.8 1

]

It can be seen that the values of themixingweightsGi(yt−1)depend
on the values of the regime-specific conditional means relative to
the threshold. More specifically, the larger the area of the con-
ditional distribution which lies above the threshold is, the larger
Gi(yt−1) is. In our example, we have G1(yt−1) = 0.09,G2(yt−1) =

0.48,G3(yt−1) = 0.09, and G4(yt−1) = 0.34.
Conditioning on yt−1 = (−1.5,−2)′ yields the density

functions shown in Fig. 2. The regime-specific conditional means
now are E(y1t |yt−1) = (−1.44,−1.97)′,E(y2t |yt−1) =

(−1.26,−1.97)′,E(y3t |yt−1) = (−1.37,−1.35)′, and E(y4t |yt−1)
= (−1.31,−1.59)′. The mixing functions take the values
G1(yt−1) = 0.88,G2(yt−1) = 0.1,G3(yt−1) = 0.02, and
G4(yt−1) = 0. It is not surprising that the regime associated
with G1(·) is now the most prominent regime since the distance
of E(y1t |yt−1) from each of the thresholds is about one standard
deviation.

The results for DGP-2 and DGP-3 can be summarized as follows.
When we condition on yt−1 = (0.4, 0.6)′, the values of the
mixing functions do not change substantially as a result of the
change in the shape of the conditional distributions (for brevity,
the relevant plots are not included here). We have G1(yt−1) =

0,G2(yt−1) = 0.52,G3(yt−1) = 0.11, and G4(yt−1) = 0.36 under
DGP-2 (positive contemporaneous correlation), while G1(yt−1) =

0,G2(yt−1) = 0.54, G3(yt−1) = 0.07, and G4(yt−1) = 0.38 under
DGP-3 (negative contemporaneous correlation). Interestingly, the
change in the sign of the correlation coefficient results in marginal
changes in the values of the mixing functions; it is the location of
the conditionalmeans relative to the thresholds and the dispersion
of the conditional densities that are of primary importance as far
as the mixing weights are concerned. Similar results are obtained
when we condition on yt−1 = (−1.5,−2)′.

3.3. Stability

3.3.1. Probabilistic properties
In this sub-section,we examine someprobabilistic properties of

the C-MSTAR model. Specifically, we give conditions under which
the C-MSTAR model is stable in the sense of having a Markovian
representation which is geometrically ergodic.6 For simplicity and
clarity of exposition, the discussion is once again focused on the
Gaussian, bivariate, first-order C-MSTAR model.

The stability concept considered here is that of Q -geometric
ergodicity of a Markov chain introduced by Liebscher (2005). To
recall the definition of this concept, suppose that {ξt}t≥0 is a
Markov chain on a general state space S with k-step transition
probability kernel P (k)(·, ·) and an invariant distribution π(·), so
that P (k)(v, B) = P(ξk ∈ B|ξ0 = v) and π(B) =


S
P (1)(v, B)π(dv)

for any Borel set B in S and v ∈ S. If there exists a non-negative
function Q (·) on S satisfying


S
Q (v)π(dv) < ∞ and positive

constants a1, a2 and γ < 1 such that, for all v ∈ S,P (k)(v, ·)− π(·)

τ

≤ {a1 + a2Q (v)}γ k, k = 1, 2, . . . ,

where ‖·‖τ denotes the total variation norm,7 then {ξt} is said to
be Q -geometrically ergodic.

Geometric ergodicity entails that the total variation distance
between the probability measures P (k)(v, ·) and π(·) converges to
zero geometrically fast (as k → ∞) for all v ∈ S. It is well known
that, if the initial value ξ0 of the Markov chain has a distribution
π(·), then geometric ergodicity implies strict stationarity of {ξt}.
Furthermore, provided that ξ0 is such that Q (ξ0) is integrable with
respect to π(·), Q -geometric ergodicity implies that {ξt} is Harris
ergodic (i.e., aperiodic, irreducible and positive Harris recurrent),
as well as absolutely regular (or β-mixing) with a geometric
mixing rate (see Liebscher (2005, Proposition 4)). Such ergodicity
and mixing properties are of great importance for the purposes
of statistical inference in dynamic models since they ensure the
validity of many conventional limit theorems (see, e.g., Doukhan
(1994)).

To give sufficient conditions for Q -geometric ergodicity of a C-
MSTAR process, the concept of the joint spectral radius of a set of
matrices is needed. Suppose that C is a set of real, square matrices

6 For a comprehensive account of the stability and convergence theory ofMarkov
chains the reader is referred to Meyn and Tweedie (2009).
7 Note that

P (k)(v, ·)− π(·)

τ

= 2 supB

P (k)(v, B)− π(B)
.
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Regime 1: E(x1t||t–1)=0.35,  E(w1t||t–1)=0.57.

Regime 3: E(x3t||t–1)=0.59,  E(w3t||t–1)=0.39.

Regime 2: E(x2t||t–1)=0.29,  E(w2t||t–1)=0.6.

Regime 4: E(x4t||t–1)=0.43,  E(w4t||t–1)=0.66.
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Fig. 1. DGP1: distributions conditional on Xt−1 = 0.4 andwt−1 = 0.6,G1(yt−1) = 0.09, G2(yt−1) = 0.48,G3(yt−1) = 0.09,G4(yt−1) = 0.34, x∗
= 0.6,w∗

= −0.4.
and let Ch be the set of all products of length h ≥ 1 of the elements
of C. The joint spectral radius of C is then defined as

ρ(C) = lim sup
h→∞


sup
C∈Ch

‖C‖

1/h

, (7)

where ‖·‖ is an arbitrary matrix norm. We note that the value
of ρ(C) is independent of the choice of matrix norm and that, if
the set C trivially consists of a single matrix, then ρ(C) coincides
with the ordinary spectral radius (i.e., the maximal modulus of the
eigenvalues of the matrix).8

The first-order C-MSTAR model defined by (3)–(6) belongs to
the family of models studied by Liebscher (2005). By appealing
to Theorem 2 and Proposition 5 in that paper, the following
proposition is readily established.9 Here and in the sequel, ‖·‖

is used to denote the Euclidean vector norm and its subordinate

8 Also note that the norm of C in the definition of ρ(C) in (7) may be replaced by
the spectral radius of C as long as C is a finite or bounded set.
9 It can be easily seen that, under the conditions of Proposition 1, the nonlinear

functions that specify the conditional mean and conditional variance of yt , given
yt−1 , satisfy the assumptions in Section 4 of Liebscher (2005).
matrix norm (i.e., ‖v‖ = (v′v)1/2 and ‖C‖ = sup‖v‖=1 ‖Cv‖, for an
n-dimensional vector v and an n × nmatrix C).

Proposition 1. Suppose that, for every compact subset B of R2, there
exist positive constants b1 and b2 such that

6(v)−1
 ≤ b1 and

|det{6(v)}| ≤ b2 for all v ∈ B, where 6(v) =
∑4

i=1 Gi(v)6
1/2
i . If,

in addition, the set A = {A(1)1 ,A
(2)
1 ,A

(3)
1 ,A

(4)
1 } is such that ρ(A) <

1, then the first-order C-MSTAR process {yt} is a Q -geometrically
ergodic Markov chain with Q (v) = ‖v‖.

It follows from our earlier discussion that ρ(A) < 1 guarantees
the existence of a unique invariant distribution for {yt} with
respect to which E(‖yt‖) < ∞; furthermore, if {yt} is initialized
from this invariant distribution, then it is strictly stationary, aswell
as absolutely regular and hence ergodic (in the sense of ergodic
theory). We also note that the conclusion of Proposition 1 remains
true for a non-Gaussian C-MSTAR model in which the distribution
of the noise ut admits a positive Lebesgue density on R2.

Finally, it is worth pointing out that Liebscher’s (2005) ap-
proach, on which we have relied here, delivers conditions for
geometric ergodicity which can sometimes be weaker than alter-
native sufficient conditions (cf. Liebscher (2005, p. 682)). A practi-
cal difficulty, however, is that exact or approximate computation of
the joint spectral radius of a set of matrices is not an easy task, not



316 M.J. Dueker et al. / Journal of Econometrics 160 (2011) 311–325
–0.6
–1.0

–1.4
–1.8

–2.2
–2.6

–3.0

Regime 1: E(x1t||t–1)=–1.44,  E(w1t||t–1)=–1.97.

Regime 3: E(x3t||t–1)=–1.37,  E(w3t||t–1)=–1.35.

Regime 2: E(x2t||t–1)=–1.26,  E(w2t||t–1)=–1.61.

Regime 4: E(x4t||t–1)=–1.31,  E(w4t||t–1)=-1.59.

0.
12

0.
14

0.
16

0.
10

0.
06

0.
08

0.
04

0.
02

–3.0
–2.6

–2.2
–1.8

–1.4
–1.0 0.0

–0.5

–1.0

0.0
–0.5

–1.0

–1.5
–1.5

–2.0
–2.0

–2.5
–2.5

–3.0
–3.0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.1

–0.4

0.6
1.1

1.6
2.1

2.6

0.6

1.1

1.6

2.1

2.6

0.
00

4
0.

00
8

0.
01

2
0.

01
6

0.
02

0
0.

02
4

2.6

2.1

1.6

1.1

2.6
2.1

1.6
1.1

0.6
0.1

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0
0.

01
2

0.
01

4
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= −0.4.
even in the simplest non-trivial case of a two-element set (see, e.g.,
Tsitsiklis and Blondel (1997)).10 One possibility is to use the algo-
rithmpresented in Gripenberg (1996) to obtain an arbitrarily small
interval within which the joint spectral radius of A lies. An alter-
native approach, whichmay also provide useful information about
the model in cases where the condition of Proposition 1 is not ful-
filled, is to use simulation methods to investigate the properties of
the skeleton of the C-MSTAR model. We turn our attention to this
topic next.

3.3.2. Skeleton of the model
As shown by Chan and Tong (1985), the stability properties

of a nonlinear dynamic model may be analyzed by considering
the noiseless part, or skeleton, of the model alone (see also Tong
(1990)). The skeleton of the bivariate first-order C-MSTAR model

10 The problem of determining whether ρ(A) < 1 is, in fact, known to be NP-
hard, that is it cannot be solved in a number of steps which is a polynomial function
of the size of A. It should also be remembered that the condition that each of the
matrices in A has a spectral radius less than unity is necessary but not sufficient for
ρ(A) < 1. A useful summary of some of the methods available for computing or
approximating the joint spectral radius of a set of matrices can be found in Jungers
(2009).
is the dynamic system

yt = f(yt−1, θ), (8)

where

f(yt−1, θ) =

4−
i=1

Gi(yt−1)(µi + A(i)1 yt−1) (9)

and θ denotes the vector of all the parameters of themodel. A fixed
point of the skeleton is any two-dimensional vector ye satisfying
the equation

f(ye, θ) = ye, (10)

and ye is said to be an equilibrium point of the C-MSTAR model.
Since the model is nonlinear, there may, of course, exist one,
several or no equilibrium points satisfying (10).

By a first-order Taylor expansion of f(yt−1, θ) about the point
ye, we have

yt − ye = f(yt−1, θ)− f(ye, θ) ≈ D(ye)
′(yt−1 − ye), (11)

where

D(ye) =
∂f(yt−1, θ)

∂yt−1


yt−1=ye

. (12)
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Fig. 3. Generated data using DGP1. Simulated skeleton, data and mixing functions using the C-MSTR model.
Thus, the local stability of each equilibrium point ye may be
assessed by considering the spectrum ofD(ye). More specifically, if
the spectral radius of D(ye) is less than unity, then the equilibrium
is locally stable and yt is a contraction in a neighborhood of ye.

It can be readily verified that

∂f(yt−1, θ)

∂yt−1
=

4−
i=1


∂Gi(yt−1)

∂yt−1
(µi + A(i)1 yt−1)

′

+Gi(yt−1)(A
(i)
1 )

′


(13)

and

∂Gi(yt−1)

∂yt−1
=

1
δ2t


−δt(6

−1/2
i A(i)1 )

′
∇Φ2(vi)

+Φ2(vi)
4−

i=1

(6
−1/2
i A(i)1 )

′
∇Φ2(vi)


, (14)

where vi = 6
−1/2
i (y∗

i − µi − A(i)1 yt−1) and ∇Φ2(vi) is the gradient
vector ofΦ2(·) at vi.11

3.3.3. Numerical examples
A wide variety of empirical distributions and time series can

be generated by an C-MSTAR model. In Fig. 3 we show, using

11 Notice that, since Φ2(vi) = Φ (v1i)Φ (v2i) for any vi = (v1i, v2i)
′

∈

R2,∇Φ2(vi) may be computed as ∇Φ2 (vi) = (φ (v1i)Φ (v2i) ,Φ (v1i) φ (v2i))
′ ,

where φ(·) is the standard normal density function.
DGP-1 presented in Table 1, typical data generated according to
a first-order C-MSTAR model, the corresponding mixing functions
Gi(yt−1), and the skeleton yt . The corresponding plots for DGP-2
and DGP-3 (computed using the same realizations of ut as for DGP-
1) are omitted in order to conserve space.

When the covariance matrix of the noise is diagonal (DGP-1),
the data appear to take values which correspond to all the regimes.
When, on the other hand, there is a positive contemporaneous
correlation (DGP-2), the generated data assume values which are
mostly associated with regimes 1 and 4 (corresponding to G1(·)
and G4(·)), while regimes 2 and 3 (associated with G2(·) and G3(·))
appear to dominate in the presence of negative contemporaneous
correlation (DGP-3).

In all three cases, the skeleton converges to its fixed point very
quickly. Using numerical simulations, we found the fixed point
ye to be unique for each DGP, taking the value (0.0251, 0.2309)

′

,

(0.0539, 0.3828)
′

and (−0.1052,−0.0451)
′

for DGP-1, DGP-2 and
DGP-3, respectively. To assess the stability of these fixed points,
we compute the spectral radius of the matrix of partial derivatives
given in (12) using the expansion in (13)–(14). The spectral radius
of D(ye) is 0.8357, 0.8320 and 0.8296 under DGP-1, DGP-2 and
DGP-3, respectively, suggesting that the equilibrium points are
locally stable. Furthermore, the Q -geometric ergodicity condition
of Proposition 1 is also satisfied for these DGPs: an application of
the algorithm in Gripenberg (1996) yields 0.9366025 < ρ(A) <
0.9366125.12

12 The algorithm is implemented using Gustaf Gripenberg’s MATLAB code, which
is available at http://math.tkk.fi/~ggripenb/ggsoftwa.htm.

http://math.tkk.fi/~ggripenb/ggsoftwa.htm
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4. Estimation and testing

4.1. ML parameter estimation

As in the univariate case, once the distribution of the noise ut is
specified, the parameters of the C-MSTAR model can be estimated
by theMLmethod. LettingΨ (·) denote the distribution function of
ut , we assume thatΨ (·) admits a positive Lebesgue densityψ(·) on
R2. Then, for a sample (y0, y1, . . . , yT ) of consecutive observations
from the bivariate first-order C-MSTARmodel characterized by the
parameter vector θ = (θ′

1, θ
′

2, θ
′

3, θ
′

4, x
∗, w∗)′ ∈ 2 ⊂ Rdim(θ), we

define the log-likelihood function (conditional on y0) as

LT (θ) =

T−
t=1

ln ℓt(θ),

where

ℓt(θ) =

4−
i=1

Gi(yt−1) det(6
−1/2
i )ψ(6

−1/2
i {yt − µi − A(i)1 yt−1}),

and the mixing weights Gi(yt−1) are given by (5)–(6) with Ψ (·)
used in the place ofΦ2(·).

If ℓt(θ) is sufficiently smooth with respect to θ and satisfies
suitable heterogeneity, dependence and moment conditions, then
standard asymptotic results hold for the ML estimatorθ of θ, ob-
tained as the maximizer of (1/T )LT (θ) over 2. More specifically,θ is strongly consistent for the (unknown) true value θ0 of the pa-
rameter θ and {−∇

2LT (θ)}1/2(θ − θ0) is asymptotically normal
with mean vector 0 and covariance matrix I2, where ∇

2LT (θ) is
the Hessian matrix of LT (θ) evaluated at θ = θ. Sufficient con-
ditions which ensure the validity of these asymptotic results are
given in the Appendix, together with a proof.

4.2. Finite-sample properties of ML

To throw some light on the finite-sample properties of the ML
estimator of the parameters of a C-MSTARmodel, we now conduct
an extensive simulation study. The DGP used in the experiments
is the bivariate first-order C-MSTAR model with Gaussian noise
and several parameter configurations. To conserve space, we only
report results for the three parameter configurations listed in
Table 1 and sample sizes T = 200 and T = 800.13

Experiments proceed by first generating 50 + T data points
for yt with initial values set to zero; the first 50 data points are
then discarded in order to eliminate start-up effects, while the
remaining T points are used to estimate the parameters of the
model. The ML estimateθ is obtained by means of a quasi-Newton
algorithm that approximates the Hessian according to the Broy-
den–Fletcher–Goldfarb–Shanno update computed from numeri-
cal derivatives. Approximate standard errors for the elements ofθ are obtained from the inverted negative Hessian matrix of the
log-likelihood function evaluated at the ML estimates. Since the
computation of ML estimates is time-consuming (given the large
number of parameters), the number of Monte Carlo replications
per experiment is 2000.

In Tables 2–4, we report some of the characteristics of the
finite-sample distributions of each of the elements of θ. These
include the bias of the ML estimator, a measure of the accuracy
of estimated standard errors as approximations to the sampling
standard deviation of theML estimator, and a test for the normality
of the sampling distribution of the ML estimator.

13 The full set of results is available upon request.
Formost parameters the bias is significantly different from zero
only when T = 200. The size of the bias depends somewhat on
the DGP. For example, while relatively large samples are needed
to reduce the bias of µ3 (DGP-1 and DGP-2) and µ4 (DGP-3), we
find that the bias of the elements ofA(1)1 (DGP-1) andA(2)1 (DGP-2
and DGP-3) approaches zero even for relatively small sample sizes.
Overall the results show that the ML estimator is slightly biased
only for the smallest sample size under consideration, and the bias
clearly decreases as the sample increases, becoming negligible in
most cases when T = 800.

As a measure of the accuracy of estimated asymptotic standard
errors, the ratio of the exact standard deviation of theML estimates
to the estimated standard errors averaged across replications for
each design point is shown (in parentheses) in Tables 2–4. For
most parameters, the estimated asymptotic standard errors are
downward biased. These biases are not, however, substantial (even
when T = 200) and should not have significant adverse effects on
inference.

Finally, the Gaussianity of the finite-sample distributions of
the ML estimates is assessed by means of a Kolmogorov–Smirnov
goodness-of-fit test based on the difference between the empirical
distribution function of the ML estimates (relocated and scaled
so that the linearly transformed estimates have zero mean and
unit variance) and the standard normal distribution function (see
Lilliefors (1967)). As can be seen in Tables 2–4, the normality
hypothesis for estimators other than µ3 and µ4 (DGP-1and DGP-
3) andx∗ (DGP-2) cannot be rejected (at the 5% level) for sample
sizes larger than 200. Furthermore, we find that the values of the
Kolmogorov–Smirnov statistic decrease as T increases, suggesting
that the quality of the normal approximation is likely to improve
with increasing sample sizes. In fact, while normality is rejected a
few times when T = 200, it is never rejected when T = 800.

4.3. Testing for nonlinearity

Although a linear specification is nested within the C-MSTAR
model, testing the former against the latter by means of conven-
tional Wald, likelihood ratio or score tests is not straightforward
because the threshold parameters (x∗ andw∗ in the bivariate case)
are not identified under linearity. It is well known that in prob-
lems of this type the asymptotic distributions of conventional test
statistics typically depend on unknown parameters and are non-
standard. As in Dueker et al. (2007), one may, in principle, adapt
Hansen’s (1992) procedure to obtain asymptotic P-values for a
suitably modified likelihood ratio statistic. However, the compu-
tational demands of this procedure are rather prohibitive in our
multivariate setting because ML parameter estimation for each
point of a grid involving a large number of parameters is required
(dim(θ) = 38 when n = 2).

As an alternative, we will investigate here an approach based
on a general portmanteau-type test that is designed to detect
the nonlinearity of an unspecified type in a multivariate time
series. The test in question was proposed by Harvill and Ray
(1999) and is amultivariate extension of Tsay’s (1986) nonlinearity
test. To describe the test procedure, let {et} be the least-squares
residuals of a pth-order vector autoregressive (VAR) model for {yt}
and {e∗

t } be the least-squares residuals of the regression of the
{np(np + 1)/2}-dimensional vector q∗

t = vech(qt ⊗ q′
t) on the

(np)-dimensional vector qt = (y′

t−1, . . . , y
′
t−p)

′, where ⊗ is the
Kronecker product operator. Further, let S1 and S2 be the n × n
matrices of residual sum of squares and regression sum of squares,
respectively, in the least-squares regression of et on e∗

t . Then, for a
sample of size T , the Harvill–Ray test statistic is given by

ℜ =


bd − nc + 1

nc


1 − ω1/2

ω1/2


,
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Table 2
Finite-sample performance of ML: DGP-1.

T = 200

µ1 :


0.085
(1.054)
0.071
(1.032)

 , A(1)1 :


0.006
(1.019)
0.005
(0.995)

0.008
(1.013)
0.009
(1.015)

 , 61 :


−0.057
(1.055)

0.024
(0.989)
−0.066
(1.042)



µ2 :


0.077
(1.061)
0.053
(1.026)

 , A(2)1 :


−0.004
(1.022)
0.013
(0.996)

−0.023
(0.994)
−0.006
(1.028)

 , 62 :


−0.046
(1.049)

0.033
(0.992)
−0.041
(1.076)



µ3 :


0.180
(1.130)Ď

0.156
(1.106)Ď

 , A(3)1 :


0.030
(1.043)
0.084
(0.982)

0.093
(1.075)
0.012
(1.068)

 , 63 :


−0.072
(0.969)

0.083
(0.955)
−0.093
(1.022)



µ4 :


0.171
(1.149)Ď

0.109
(1.165)Ď

 , A(4)1 :


0.052
(1.029)
0.084
(0.982)

0.078
(0.948)
0.075
(0.930)

 , 64 :


−0.066
(0.950)

0.065
(1.033)
−0.069
(1.041)


x∗

:
−0.042
(1.061), w∗

:
−0.054
(1.093)

T = 800

µ1 :


−0.007
(1.003)
0.010
(1.009)

 , A(1)1 :


−0.001
(1.011)
0.006
(0.998)

−0.005
(0.992)
0.002
(0.996)

 , 61 :


−0.021
(1.019)

0.011
(0.997)
−0.020
(1.010)



µ2 :


0.011
(1.005)
0.004
(1.006)

 , A(2)1 :


−0.002
(1.003)
0.009
(0.999)

0.016
(1.005)
−0.002
(1.007)

 , 62 :


0.003
(1.008)

0.010
(1.002)
−0.005
(1.015)



µ3 :


0.077
(1.053)
0.111
(1.041)

 , A(3)1 :


0.009
(1.018)
0.022
(1.012)

0.044
(0.951)
0.010
(1.040)

 , 63 :


−0.020
(1.006)

0.060
(0.994)
−0.052
(1.011)



µ4 :


−0.088
(1.058)
0.061
(1.044)

 , A(4)1 :


0.019
(1.006)
0.058
(0.992)

−0.038
(1.056)
−0.049
(1.031)

 , 64 :


−0.006
(1.008)

0.008
(0.992)
0.029
(0.910)


x∗

:
−0.012
(1.009), w∗

:
0.026
(0.988)

For eachML estimator, entries are the finite-sample bias of the estimator and the ratio
of the sampling standard deviation to the estimated standard error (in parentheses).
Ď indicates that the Kolmogorov–Smirnov statistic for normality is significant at the 5%
level.
where c = np(np+1)/2, b = T − p− c −np− (n− c +1)/2, d =

{(n2c2−4)/(n2
+c2−5)}1/2, andω = det(S1)/ det(S1+S2). Under

the null hypothesis that {yt} follows a (zero-mean) pth-order VAR
model, ℜ has asymptotically a central F-distribution with nc and
bd − (nc/2)+ 1 degrees of freedom.

To assess whether a test based on ℜ has power to detect
nonlinearity of the C-MSTAR type, we carry out some Monte Carlo
experiments. Table 5 shows the empirical rejection frequencies of
the test for C-MSTAR time series generated according to the three
DGPs in Table 1. It is clear that, even for time series of a relatively
short length, the test based on ℜ has significant power to reject
a first-order, linear VAR specification when the data come from a
C-MSTAR model.

It should be emphasized, however, that the results of a test
based on ℜ should be interpreted with caution in an empirical
setting since the test is not designed to be optimal against a C-
MSTAR, or any other specific nonlinear alternative model, and can
be expected to have non-trivial power against a wide range of
nonlinearmechanisms. That being said, since the test appears to be
powerful enough to detect the nonlinearity of the C-MSTAR type,
it should be useful as part of a modelling strategy which seeks to
establish the usefulness of a C-MSTAR model by first checking a
simpler linear VAR model for signs of misspecification. Of course,
once the linear and C-MSTAR models are estimated, they can be
compared by using a complexity-penalized likelihood criterion
such as the well-known Akaike information criterion (AIC) or one
of its many variants. Psaradakis et al. (2009) found such criteria to
be useful when selecting among competing (univariate) nonlinear
autoregressive models.

5. Empirical application

As an illustration, we analyze the low-frequency relationship
between stock prices and interest rates. The interactions between
asset prices and monetary policy is a topic which has attracted
considerable interest in the literature (see, e.g., Bernanke and
Gertler (1999, 2001) and Cecchetti et al. (2000)). Using a C-MSTAR
model, we examine the possibly different effects that monetary
policy may have on stock prices in different states of the economy.
An interest rate shockmay, for example, have very different effects
on stockmarkets depending onwhether the price-earnings ratio is
(perceived to be) high or low. Our approach explicitly allows for
four different regimes, which are associated with: (i) low price-
earning ratio, low interest rates; (ii) low price-earning ratio, high
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Table 3
Finite-sample performance of ML: DGP-2.

T = 200

µ1 :


−0.072
(1.047)
0.099
(1.018)

 , A(1)1 :


−0.005
(1.020)
0.022
(1.007)

0.050
(1.008)
0.010
(1.033)

 , 61 :


−0.038
(1.053)

−0.010
(1.012)
−0.033
(1.040)



µ2 :


−0.051
(1.062)
0.072
(1.009)

 , A(2)1 :


0.010
(0.990)
0.004
(1.000)

−0.009
(0.998)
−0.002
(1.004)

 , 62 :


−0.031
(1.022)

0.005
(0.999)
−0.032
(1.040)



µ3 :


0.201
(1.301)Ď

0.210
(1.227)Ď

 , A(3)1 :


0.041
(1.078)
0.079
(1.012)

0.106
(0.929)
0.062
(1.078)

 , 63 :


−0.090
(0.920)

0.079
(0.943)
−0.101
(1.061)



µ4 :


0.032
(1.031)
0.080
(1.029)

 , A(4)1 :


0.002
(0.991)
0.008
(0.998)

0.016
(0.997)
0.002
(1.007)

 , 64 :


0.011
(1.022)

0.010
(1.000)
−0.015
(1.051)


x∗

:
−0.055
(1.091)Ď, w∗

:
−0.061
(1.072)

T = 800

µ1 :


0.020
(1.008)
0.007
(1.001)

 , A(1)1 :


−0.001
(1.000)
0.007
(1.002)

0.007
(1.002)
−0.005
(1.014)

 , 61 :

−0.022
(1.010)

0.005
(1.006)
−0.011
(1.004)



µ2 :

 0.029
(0.996)
0.030
(1.002)

 , A(2)1 :


−0.003
(0.996)
0.002
(0.999)

0.005
(0.999)
0.002
(1.002)

 , 62 :


−0.009
(1.005)

−0.002
(0.998)
−0.005
(1.009)



µ3 :


0.098
(1.033)
0.056
(1.058)

 , A(3)1 :


0.026
(1.009)
0.044
(1.006)

0.031
(1.082)
0.049
(1.051)

 , 63 :

−0.007
(1.012)

0.044
(1.013)
−0.008
(1.010)



µ4 :


0.007
(1.009)
0.023
(1.007)

 , A(4)1 :


−0.001
(1.003)
−0.003
(1.001)

0.008
(1.002)
−0.002
(0.997)

 , 64 :


−0.001
(1.004)

−0.004
(0.999)
−0.004
(0.989)


x∗

:
0.012
(0.993), w∗

:
−0.010
(1.004)

For eachML estimator, entries are the finite-sample bias of the estimator and the ratio
of the sampling standard deviation to the estimated standard error (in parentheses).
Ď indicates that the Kolmogorov–Smirnov statistic for normality is significant at the 5%
level.
interest rates; (iii) high price-earning ratio, low interest rates; and
(iv) high price-earning ratio, high interest rates.

5.1. A C-MSTAR model for stock prices and interest rates

Our analysis is based on Robert Shiller’s well-known data set
of annual observations, from 1900 to 2000, on the Standard and
Poor’s 500 composite stock price index to earnings per share (St)
and the three-month Treasury Bill rate (Rt).14 We let st = St − µs
and rt = Rt − µr denote the deviation of the two variables
from their respective means. It is evident from Fig. 4 that, for long
periods of time, both St and Rt take values well above their sample
means (which are µs = 13.731 and µr = 4.809, respectively).
It is also clear that both time series tend to remain above or
below the respective sample mean for relatively long periods.15
It is reasonable to expect that the economy behaved differently

14 The date is available at http://www.econ.yale.edu/~shiller/data/chapt26.xls.
15 The hypothesis that St and Rt are random walks (with drift) is rejected in favor
of a stationary STAR alternative using Eklund’s (2003) test statistic, which takes the
value 6.38 and 2.68 for St and Rt , respectively.
in the 1970’s and 1980’s, when interest rates were relatively high
and the price-earnings ratiowas relatively low, and in periods such
as the 1930’s and late 1990’s, when the price-earnings ratio was
relatively high. When considering linear VAR models for (st , rt),
the AIC selects a first-ordermodel. However, such amodel is firmly
rejected by the nonlinearity test discussed in Section 4.3: the value
of ℜ is 7.44689, which has a zero asymptotic P-value.

Since we use annual data, we expect the nonlinear dynamics
of stock prices and interest rate to be adequately captured by a
first-ordermodel. Our analysis is based, therefore, on the C-MSTAR
model defined by (3)–(6), with yt = (st , rt)′, yit = (sit , rit)′, x∗

=

s∗, w∗
= r∗,m = 4, p = 1, and ut ∼ N (0, I2). ML estimates of

the parameters of this model and their asymptotic standard errors
are reported in Table 6.16 The standardized residuals of the model
exhibit no signs of serial correlation on the basis of conventional
Ljung–Box portmanteau tests.

The estimated threshold parameters reported in the last row of
Table 6 ares∗ = 3.40317 andr∗

= −0.07214. Adding to these

16 The GAUSS code used to obtain these results is available from the authors upon
request.

http://www.econ.yale.edu/~shiller/data/chapt26.xls
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Table 4
Finite-sample performance of ML: DGP-3.

T = 200

µ1 :


0.071
(1.033)
0.060
(1.011)

 , A(1)1 :


0.004
(0.972)
0.002
(0.998)

0.007
(1.015)
0.001
(1.007)

 , 61 :


0.013
(0.967)

0.020
(1.005)
−0.004
(1.006)



µ2 :


0.031
(1.015)
0.032
(1.008)

 , A(2)1 :


0.002
(1.005)
0.003
(0.999)

0.003
(1.001)
0.002
(0.999)

 , 62 :


−0.048
(1.048)

0.037
(0.990)
−0.047
(1.033)



µ3 :


0.099
(1.152)Ď

0.163
(1.076)

 , A(3)1 :


0.043
(1.019)
0.073
(1.012)

0.074
(1.050)
0.046
(1.069)

 , 63 :


−0.081
(1.042)

0.045
(1.029)
−0.054
(1.033)



µ4 :


0.165
(1.262)Ď

0.111
(1.186)Ď

 , A(4)1 :


0.056
(1.082)
0.085
(1.076)

0.081
(1.079)
0.050
(1.062)

 , 64 :


−0.088
(1.076)

0.067
(1.029)
−0.078
(1.050)


x∗

:
0.022
(1.031), w∗

:
−0.040
(0.955)

T = 800

µ1 :


0.030
(1.002)
0.043
(1.007)

 , A(1)1 :


0.001
(1.002)
0.000
(1.001)

0.004
(1.009)
−0.006
(1.019)

 , 61 :


−0.010
(1.002)

0.002
(1.002)
−0.005
(1.006)



µ2 :


0.019
(1.002)
0.001
(1.003)

 , A(2)1 :


0.001
(1.000)
0.000
(1.001)

0.001
(0.999)
0.001
(0.999)

 , 62 :


−0.009
(1.001)

0.001
(1.000)
−0.004
(0.997)



µ3 :


0.067
(1.047)
0.101
(1.032)

 , A(3)1 :


0.015
(1.006)
0.022
(0.998)

0.021
(1.036)
0.017
(0.989)

 , 63 :


−0.031
(1.004)

0.010
(1.007)
−0.018
(1.009)



µ4 :


0.087
(1.052)
0.020
(1.019)

 , A(4)1 :


0.012
(1.020)
−0.009
(0.967)

0.030
(1.022)
0.020
(1.012)

 , 64 :


0.035
(1.009)

0.045
(0.995)
−0.021
(0.988)


x∗

:
0.006
(1.009), w∗

:
−0.011
(1.004)

For eachML estimator, entries are the finite-sample bias of the estimator and the ratio
of the sampling standard deviation to the estimated standard error (in parentheses).
Ď indicates that the Kolmogorov–Smirnov statistic for normality is significant at the 5%
level.
Table 5
Power of nonlinearity test.

T Nominal level
1% 5% 10%

DGP-1
100 82.20 88.84 91.28
200 86.36 91.68 93.48
400 93.80 96.20 97.60
800 99.04 99.48 99.60

DGP-2
100 78.08 86.76 90.20
200 85.16 92.36 95.04
400 95.16 97.84 98.68
800 99.64 99.88 99.96

DGP-3
100 93.28 96.08 97.24
200 98.96 99.56 99.68
400 99.96 100.0 100.0
800 100.0 100.0 100.0

Entries are percentage rejection frequencies of the Harvill–Ray test.
values the corresponding samplemeansµs andµr , we see that the
estimated thresholds for the price-earnings ratio and the interest
rate are 17.1343 and 4.73695, respectively.

The bottom four panels of Fig. 4 plot the estimatedmixing func-
tions, for each point in sample, which specify the weight of regime
1 (associated with G1(·)), regime 2 (associated with G2(·)), regime
3 (associated with G3(·)), and regime 4 (associated with G4(·)). It is
seen that the most prominent regime is the one characterized by
a low price-earnings ratio and low interest rates (regime 1). This
regime lasts from the mid 1930’s to the end of the 1960’s. Much
of the 1970’s and 1980’s appears to be associated with a regime
with low price-earnings ratio and high interest rates (regime 2), a
regime which also seems to characterize a few years in the begin-
ning of the 1900’s through 1930. The regime associated with high
price-earnings ratio and low interest rates (regime 3) never lasts
more than six years and is prevalent in only a few years during
the 1930’s, 1960’s and 1990’s. Finally, the regime associated with
high price-earnings ratio and high interest rates (regime 4) seems
to dominate for only short periods of time towards the end of the
1960’s and the early 1990’s.

Regarding the stability properties of the empirical model, we
note that the ML estimates reported in Table 6 do not satisfy
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Fig. 4. Data mixing functions using the C-MSTR (1) model.
Table 6
ML estimates for a C-MSTAR model.

Regime 1: low price-earnings ratio, low interest rate

µ1 =


−0.54000
(0.72558)
0.52756
(0.07339)

 , A(1)1 =


1.03181
(0.11118)
0.00836
(0.01090)

−0.32729
(0.25067)
1.11187
(0.02438)

 , 61 =


2.72805
(0.78069)
0.07130
(0.00967)

0.07130
(0.00967)
0.02642
(0.04115)


Regime 2: low price-earnings ratio, high interest rate

µ2 =


0.52803
(0.34762)
0.59252
(0.27681)

 , A(2)1 =


0.90321
(0.08047)
−0.15747
(0.07017)

−0.03038
(0.10508)
0.79461
(0.08365)

 , 62 =


3.61557
(0.78726)
−0.29982
(0.74264)

−0.29982
(0.74264)
3.00545
(0.33928)


Regime 3: high price-earnings ratio, low interest rate

µ3 =


0.19662
(1.3002)
−1.08184
(0.34393)

 , A(3)1 =


0.95186
(0.20444)
0.10149
(0.04864)

1.04940
(0.44486)
0.90033
(0.09666)

 , 63 =


15.2194
(4.90575)
−0.43588
(0.00489)

−0.43588
(0.00489)
0.63892
(0.55733)


Regime 4: high price-earnings ratio, high interest rate

µ4 =


−3.73793
(1.82851)
−0.82893
(0.24954)

 , A(4)1 =


−0.46101
(0.25623)
−0.13939
(0.03497)

0.18350
(0.29623)
0.53549
(0.04044)

 , 64 =


22.9615
(10.4492)
3.13327
(0.00489)

3.13327
(0.00489)
0.42766
(0.71372)


s∗ =

3.40317
(0.71359), r∗

=
−0.07214
(0.10159),

maxL = −351.160, AIC = 778.320, BIC = 877.317, HQ = 818.386

Figures in parentheses are asymptotic standard errors and max L is the maximized log-likelihood.
the condition of Proposition 1; specifically, we have 1.25346 <

ρ(A) < 1.27997, where A = {A(1)1 ,
A(2)1 ,

A(3)1 ,
A(4)1 }. It should be

remembered, however, that a joint spectral radius less than unity
is not necessary for Q -geometric ergodicity and is clearly a rather
stringent condition.
To investigate further the stability characteristics of the em-
pirical model, we examine the properties of its skeleton. Using
numerical simulation and a grid of starting values, it is found
that the skeleton of the empirical model in Table 6 has a unique
fixed point ye = (0.478,−0.059)′ and that the matrix of partial
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Table 7
ML estimates for a VAR model.

yt = µ + Ayt−1 + 61/2ut

µ =


0.1301
(0.3200)
0.0111
(0.1503)

 , A =


0.7938
(0.0706)
0.0988
(0.1047)

−0.0590
(0.0332)
0.8661
(0.0492)

 , 6 =

10.2291
0.0577

0.0577

2.2561


maxL = −437.679,AIC = 893.358, BIC = 916.805,HQ = 902.847

Figures in parentheses are asymptotic standard errors andmaxL is themaximized log-
likelihood.
derivatives D(ye) in (12) has spectral radius 0.801. This suggests
that the model is locally stable. Furthermore, plots of the skeleton
(not shown here) reveal that, for both the price-earning ratio and
the interest rate, the skeleton converges very quickly to the respec-
tive long-run value, which provides further evidence of stability.

5.2. Regime-specific Granger causality

In the majority of applications, Granger causality has been
analyzed in the context of linear VAR models for a set of variables
of interest. A standard auxiliary assumption typically made is that
the parameters of the VAR are constant over the sample period
under consideration. This corresponds to an assumption that the
causal links are stable over time, an assumption which is far from
innocuous and may not hold in practice (see, e.g., Psaradakis et al.,
2005).

To illustrate this point, we begin our analysis using a first-order
VAR model, the estimated parameters of which are reported in
Table 7. Clearly, none of the two variables appears to be Granger
causal for the other. This result is very surprising since, not only
do the two variables reflect alternative investing opportunities,
but the interest rate is usually thought of as a policy variable that
might be used to correct misalignments in stock prices. The lack of
Granger causality in our system may well be a consequence of the
issues mentioned above.

Another potential difficulty is that causality tests based on VAR
models may have low power in the presence of nonlinearities in
the data. For this reason, we also carry out the nonparametric test
for Granger non-causality proposed byDiks and Panchenko (2006).
The test is implemented with one lag and bandwidth set equal
to max{8.62/T 2/7, 1.5} = 2.3059.17 The test statistic for the null
hypothesis that the price-earning ratio is Granger non-causal for
the interest rate takes the value 0.195, which has an asymptotic
P-value of 0.4226; the statistic for testing the null hypothesis that
the interest rate is Granger non-causal for the price-earning ratio
takes the value 1.1095, which has an asymptotic P-value of 0.0866.

Of course, neither the causality test based on the VAR nor the
nonparametric test can provide information about the potential
regime-specific nature of Granger causality in our bivariate system.
To investigate this issue we adopt a slightly different approach
to that of Psaradakis et al. (2005) and, instead of inquiring how
causality patterns change over time, we examine whether the
two variables are useful for predicting each other in different
economic regimes. Using the C-MSTAR model in Table 6, it can be
seen that the off-diagonal elements ofA(i)1 vary significantly across
regimes. Specifically, the interest rate Granger causes the price-
earning ratio in regime 3. One may speculate that in regime 3 the
stock price boom of the 1960’s is associated with a long period
of relatively low interest rates; the causality in regime 1 reflects
the fact that stocks and bonds are substitute assets and that low
interest rates may help to forecast high future stock prices. The

17 For details on the definition of the test statistic and the choice of bandwidth the
reader is referred to Diks and Panchenko (2006).
price-earnings ratio Granger causes the interest rates in regimes
2–4. This result may reflect the fact that the central bank reacts
to the price-earning ratio by changing the interest rate when it is
thought that a misalignment correction is needed. In regime 2, a
low price-earnings ratio leads to a reduction in interest rates (from
a high interest rate regime). In regime 3, a high price-earnings
ratio leads to an increase in interest rates (from a low interest rate
regime). Finally, in regime 4 a high price-earnings ratio leads to a
reduction of the interest rate (from a high interest rate regime).
Notice that regime 4 is followed by regime 2; for example, the
period of high price-earnings ratio and interest rates of the 1920’s
is followed by a crash in the stock markets.18

5.3. Forecast accuracy

In this sub-section, we evaluate the accuracy of out-of-sample
forecasts from the C-MSTAR model and the linear VAR model.
Comparisons are based on a series of recursive forecasts computed
in the following way. Each of the models is fitted to the bivariate
time series {yt = (st , rt)′}T−N

t=1 , where T = 101 is the number
of observations in the full sample and N = 25 is the number
of forecasts (the forecast period is 1976–2000). Using T − N
as the forecast origin, a sequence of one-step-ahead forecasts is
generated from each of the fitted models. The forecast origin is
then rolled forward one period to T − N + 1, the parameters
of the forecast models are re-estimated, and another sequence of
one-step-ahead forecasts is generated. The procedure is repeated
until N forecasts are obtained, which are then used to compute
measures of forecast accuracy. Note that one-step-ahead forecasts
from the C-MSTAR are relatively straightforward to compute as the
model involves a weighted average of the two linear relationships.

Forecast performance is evaluated using traditional accuracy
measures such as mean square percentage error (MSPE), mean ab-
solute percentage error (MAPE), and root mean square percentage
error (RMSPE). In addition, the ability of the models to correctly
identify turning points (i.e., the direction of change in the variable
of interest regardless of the accuracy with which the magnitude of
the change is predicted) is evaluated using the so-called confusion
rate (CR), which is computed as the percentage of times the direc-
tion of change is wrongly predicted.

From the results reported in Table 8, it is clear that the C-
MSTAR model yields the smallest MSPE, MAPE and RMSPE for the
price-earnings ratio, while the VAR is more successful than the C-
MSTAR in forecasting the interest rate. Turning to the outcomes
for the bivariate system (sum of the individual results), the C-
MSTAR outperforms the VAR, with a gain of 2% in terms of both
MSPE and MAPE, and 1% in terms of the RMSPE. A comparison
between the two models on the basis of confusion rates shows
that the C-MSTAR produces better results for both series. The
C-MSTAR wrongly predicts the direction of the change in the

18 Even though there is no reason, in general, for regime 4 to be short-lived (as this
is not an intrinsic property of the model), we expect this to be the case for our data
set because a high enough interest rate tends to cool down the stock market.
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Table 8
Out-of-sample performance.

MSPE MAPE RMSPE CR

VAR (PE) 0.0562 0.1946 0.4412 0.2917
VAR (IR) 0.0658 0.2132 0.4617 0.4167
Overall 0.1220 0.4078 0.9029 –
C-MSTAR (PE) 0.0487 0.1734 0.4164 0.2500
C-MSTAR (IR) 0.0710 0.2266 0.4760 0.3333
Overall 0.1197 0.4000 0.8924 –

PE refers to the price-earnings ratio and IR to the interest rate. MSPE is the mean
square percentage error, MAPE is themean absolute percentage error, and RMSPE is
the root mean square percentage error of the difference between the forecast data
and the actual data. CR are confusion rates.

price-earnings ratio 25% of time, with the corresponding figure
for the linear model is 29%. In the case of the interest rate, the
confusion rates are 34% and 42% for the C-MSTAR and the VAR,
respectively.

To assess which model is more successful over time (that is,
which model outperforms the alternative most of the time as
opposed to being more successful on average), we compute the
number of times each model achieves the smallest MAPE over the
25 forecast points. On the basis of the individual series, we find that
C-MSTAR outperforms the VAR 76% of the time when forecasting
the price-earnings ratio and 60% of the time when forecasting the
interest rates.

To summarize, the empirical results illustrate the importance
of capturing the regime-specific properties of the data in order
to understand the complex interrelationships between economic
variables. Models which do not account for such regime-specific
characteristics may yield results which, like those obtained from a
linear VAR,may appear to be counterintuitive. The C-MSTARmodel
characterizes adequately the dynamics of interest rates and stock
prices, yields economically meaningful results, and has good out-
of-sample forecast performance.19,20

6. Summary

In this paper, we have introduced a new class of contempora-
neous-threshold multivariate STAR models in which the mixing
weights are determined by the probability that contemporane-
ous latent variables exceed certain threshold values. We have dis-
cussed issues related to the stability of the model, estimation and
testing. We have also illustrated the practical use of the proposed
model by analyzing the bivariate relationship between US stock
prices and interest rates. Our findings indicate that the proposed
model performswell in terms of in-sample goodness of fit and out-
of-sample forecast accuracy, and that the regime-specific Granger
causality patterns between the two variables that are implied by
the model typically differ from those obtained from a linear model
in a way which is economically meaningful.

Appendix. Asymptotic properties of the ML estimator

Sufficient conditions which ensure the strong consistency and
asymptotic normality of the ML estimator of θ mentioned in

19 The forecast results are particularly noteworthy because one of the major
weaknesses of many nonlinear models is their relatively poor out-of-sample
performance (see also Dueker et al., 2007).
20 In an earlier version of the paper, we discussed the relationship between
the C-MSTAR and the autoregressive conditional root model of Bec et al. (2008),
and reported the empirical results obtained by fitting a logistic multivariate STAR
model to our data. The latter model was found to be outperformed by the C-
MSTAR both in terms of in-sample goodness of fit and out-of-sample forecast
accuracy. For reasons of space conservation, we do not include these findings here;
instead, we refer the interested reader to the working paper version available at
http://pareto.uab.es/wp/2010/81710.pdf.
Section 4.1 are given below. Definitions and notation used here
are as in the main text. For any real-valued function θ → f (θ),
we write ∇f (θ∗) and ∇

2f (θ∗) for the gradient vector and Hessian
matrix, respectively, of f (·) at θ∗, and use ‖·‖2 to denote the
Frobenius matrix norm (i.e., ‖C‖2 = {tr(C′C)}1/2).
(C.1) For each θ ∈ 2, {yt} is strictly stationary and ergodic.
(C.2) Ψ (·) and ψ(·) are twice continuously differentiable.
(C.3) θ0 is an interior point of the compact and convex parameter

space 2.
(C.4) P[ℓt(θ)− ℓt(θ0) ≠ 0] > 0 for all θ ∈ 2 \ {θ0}.
(C.5) E


supθ∈2 |ln ℓt(θ)|


< ∞.

(C.6) E

supθ∈B(θ0)

∇2 ln ℓt(θ)

2


< ∞ for some open neighbor-

hood B(θ0) of θ0.
(C.7) E


supθ∈B(θ0)

∇2ℓt(θ)

2


< ∞.

(C.8) E

‖∇ ln ℓt(θ0)‖

2 < ∞.
(C.9) �(θ0) = −E[∇

2 ln ℓt(θ0)] is nonsingular.

These are fairly standard regularity conditions for ML estima-
tion. We note that for (C.1) to hold it is sufficient that the condi-
tions of Proposition 1 are satisfied and {yt} is initialized from its
invariant distribution.

We have the following result for the ML estimator θ =

argmaxθ∈2(1/T )LT (θ).

Proposition 2. If conditions (C.1)–(C.5) are satisfied, then θ is
strongly consistent for θ0. If, in addition, conditions (C.6)–(C.9) are
satisfied, then

√
T (θ−θ0) is asymptotically normal with mean vector

0 and covariance matrix �(θ0)
−1.

Proof. It is easy to see that LT (θ) is a measurable function of
the data for each fixed θ ∈ 2 and almost surely continuous
in θ. Moreover, since the sequence {ln ℓt(θ)} is strictly stationary
and ergodic under (C.1)–(C.2) (e.g., Straumann andMikosch (2006,
Proposition 2.5)), it follows from (C.5) and the uniform strong law
of large numbers in Theorem2.7 of Straumann andMikosch (2006)
that

lim
T→∞

sup
θ∈2

 1T
T−

t=1

ln ℓt(θ)− E[ln ℓt(θ)]

 = 0 almost surely.

Thus, using the compactness of 2, together with the fact that
E[ln ℓt(θ)] attains a unique maximum at θ = θ0 under (C.3)–(C.5),
we conclude by a standard argument (cf. Amemiya (1973, Lemma
3)) that limT→∞

θ = θ0 almost surely.
Turning to the root-T asymptotic normality ofθ, we note that

LT (θ) is almost surely twice continuously differentiable in θ and∑T
t=1 ∇ ln ℓt(θ) = 0 for all T sufficiently large becauseθ is strongly

consistent for θ0 and θ0 is interior to 2. Thus, by a mean-value
expansion of

∑T
t=1 ∇ ln ℓt(θ) about θ0, we have

0 =
1

√
T

T−
t=1

∇ ln ℓt(θ0)

+


1
T

T−
t=1

∇
2 ln ℓt(θ̄)

√
T (θ − θ0)


, (15)

for some θ̄ ∈ 2 satisfying
θ̄ − θ0

 ≤

θ − θ0

 and all T

sufficiently large. Since {∇
2 ln ℓt(θ)} is a strictly stationary and

ergodic sequence, and limT→∞ θ̄ = θ0 almost surely by virtue of
the strong consistency ofθ for θ0, it follows from (C.6), Theorem
2.7 of Straumann and Mikosch (2006), and Lemma 4 of Amemiya
(1973) that

lim
T→∞

1
T

T−
t=1

∇
2 ln ℓt(θ̄) = −�(θ0) almost surely. (16)

http://pareto.uab.es/wp/2010/81710.pdf
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Furthermore, since the model is correctly specified, {∇ ln ℓt(θ0)}
forms a strictly stationary and ergodic vector-valued martingale-
difference sequence relative to the σ -field generated by {yt , yt−1,
. . . , y0}, and E[{∇ ln ℓt(θ0)}{∇ ln ℓt(θ0)}

′
] exists and is equal

to �(θ0) under (C.4)–(C.8). Thus, we may use the Billingsley
–Ibragimov martingale central limit theorem (Taniguchi and
Kakizawa (2000, TheoremA.2.14)) and the Cramér–Wold device to
conclude that (1/

√
T )
∑T

t=1 ∇ ln ℓt(θ0) is asymptotically normal
with mean vector 0 and covariance matrix �(θ0). This result,
together with (15), (16) and (C.9), delivers the claimed asymptotic
distribution of

√
T (θ − θ0) by an application of Slutsky’s

lemma. �

The asymptotic normality of {−∇
2LT (θ)}1/2(θ−θ0)mentioned

in Section 4.1 is an immediate consequence of Proposition 2 and
of the fact that limT→∞(1/T )

∑T
t=1 ∇

2 ln ℓt(θ) = −�(θ0) almost
surely (the latter result also guarantees the existence of a large
enough T such that ∇

2LT (θ) is negative definite almost surely).
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