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Abstract. We study the short-time dynamics of a mean-field model with non-
conserved order parameter (Curie–Weiss with Glauber dynamics) by solving the
associated Fokker–Planck equation. We obtain closed-form expressions for the
first moments of the order parameter, near to both the critical and spinodal
points, starting from different initial conditions. This allows us to confirm the
validity of the short-time dynamical scaling hypothesis in both cases. Although
the procedure is illustrated for a particular mean-field model, our results can be
straightforwardly extended to generic models with a single order parameter.
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1. Introduction

Universal scaling behavior appears to be an ubiquitous property of critical dynamic
systems. While it was initially believed to hold only in the long-time limit, it was realized
during the last decade that the dynamical scaling hypothesis can be extended to the
short-time limit [1]. This is accomplished by assuming that, close to the critical point,
the nth moment of the order parameter obeys the homogeneity relation

m(n)(t, τ, L, m0) = b−nβ/νm(n)(b−zt, b1/ντ, L/b, bμm0), (1)

where t is time, τ is the reduced temperature τ = (Tc −T )/Tc, L is the linear system size,
m0 is the initial value of the order parameter and b is a spatial rescaling parameter. μ
is a universal exponent that describes the short-time behavior, while β, ν, and z are the
usual critical exponents. When m0 � 1 we recover the usual dynamic scaling relation,
from which a power law relaxation at the critical point (for instance, in the magnetization,
n = 1) m(t) ∼ t−β/νz when L � 1 and t � 1 follows. This is the critical slowing down.

On the other hand, the short-time dynamics (STD) scaling properties of the system
depend on the initial preparation, i.e., on the scaling field m0. Setting b = t1/z , from
equation (1) one obtains for small (but non-null) values of tμ/zm0 in the large L limit

m(t, τ, m0) ∼ m0 tθF (t1/νzτ), θ =
μ − β/ν

z
. (2)

Hence, at the critical point τ = 0 an initial increase of the magnetization m ∼ m0t
θ is

observed. For the second moment n = 2 the dependence on m0 can be neglected when

doi:10.1088/1742-5468/2010/07/P07026 2

http://dx.doi.org/10.1088/1742-5468/2010/07/P07026


J.S
tat.M

ech.
(2010)

P
07026

Short-time dynamics of finite-size mean-field systems

m0 � 1. Since m(2) ∼ N−1 = L−d in the large L limit (d is the spatial dimension), one
obtains at the critical point

m(2)(t) ∼ N−1 td/z−2β/zν . (3)

The short-time universal scaling behavior has been verified in a large variety of critical
systems both by renormalization group (RG) calculations [1, 2] and Monte Carlo (MC)
numerical simulations [3]–[5]. The hypothesis also applies when the system starts in the
completely ordered state, i.e., m0 = 1. In this case it is assumed that the homogeneity
relation

m(n)(t, τ, L) = b−nβ/νm(n)(b−zt, b1/ντ, L/b) (4)

holds even for short (macroscopic) timescales. Hence, in the large L limit we have

m(t) = t−β/νzG(t1/νzτ), (5)

and taking the derivative of log m,

∂ log m(t, τ)

∂τ

∣
∣
∣
∣
τ=0

∼ t1/νz . (6)

While the scaling hypothesis starting from the disordered state is supported both by
numerical simulations and RG, its validity for an initial ordered state has relied up to now
only on numerical simulations.

Recently, numerical simulations have shown that the short-time scaling hypothesis (1)
holds not only close to a critical point, but also close to spinodal points in systems
exhibiting a first-order phase transition, both for mean-field and for short-range interaction
models [6]. This is particularly interesting, because it suggests the existence of some kind
of diverging correlation length associated with a spinodal point. Since the proper concept
of the spinodal in short-range interaction systems is still a matter of debate (see [6] and
references therein), a deeper understanding of the microscopic mechanisms behind the
observed short-time scaling could shed some light on this problem. One way of achieving
this goal is to look for exact solutions of particular models. A first step in that direction
is to analyze mean-field (i.e., infinite-range interaction) models, for which the concept of
the spinodal is well defined [6]. That is the objective of the present work: we analyze the
exact STD behavior of far from equilibrium mean-field systems with non-conserved order
parameter.

Non-equilibrium phenomena in physics and other fields are commonly studied through
Fokker–Planck equations (FPEs). In particular, non-equilibrium dynamical aspects of
phase transitions can be analyzed by means of the FPE associated with the master
equation describing the microscopic dynamics [7]–[9]. In fact, this tool has proved to
be useful in the description of the relaxation of metastable states [7], finite-size effects [10]
and the impact of fluctuations in control parameters [11], and has been considered for
mean-field spin models [7, 12] and coupled oscillators [10], amongst many others.

As soon as the degrees of freedom of the system can be reduced to a few relevant
ones, a low-dimensional FPE can be found. Although this description is suitable for
properties that do not depend on the details of the dynamics, or for mean-field kinetics,
many conclusions are expected to hold in more general instances.
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For a single order parameter m, the FPE for its probability P = P (m, t|m0, 0) is

∂tP = [−∂mD1(m) + ∂mmD2(m)] P ≡ LFP(m)P , (7)

where the drift and diffusion coefficients are determined by the Hamiltonian and the
particular dynamics (e.g., Glauber or Metropolis).

Following this stochastic approach, here we study the scaling of the short-time
relaxational dynamics in the vicinity of critical and spinodal points. In a first
approximation, the drift D1(m) (= −dV/dm) is generically linear in the vicinity of a
critical point and quadratic in the spinodal, following the quadratic and cubic behaviors
of the drift potential V , respectively. Meanwhile, typically in various models, the noise
intensity D2(m) scales as ε ∼ 1/N [7, 10]. Therefore, although we will present the STD
for a particular spin model, our results can be straightforwardly extended to more general
mean-field ones.

2. The formal FPE solution and moment expansions

The formal solution of the FPE (7), for the initial condition P (m, 0|m0, 0) = δ(m − m0),
is [13]

P (m, t|m0, 0) = et LFP(m)δ(m − m0).

The average of an arbitrary quantity Q(m) can be derived directly from the FPE, by

means of the adjoint Fokker–Planck operator L†
FP(m) ≡ D1∂m + D2∂mm, as follows:

〈Q〉(m0, t) =

∫

Q(m) P (m, t|m0, 0) dm =

∫

Q(m)et LFP(m)δ(m − m0) dm

=

∫

δ(m − m0)e
t L†

FP(m)Q(m) dm = et L†
FP(m0)Q(m0)

=
∑

k≥0

[L†
FP(m0)]

kQ(m0) tk/k!. (8)

Therefore, the first two moments of the order parameter are

〈m〉 = m0 + D1t + 1
2
[D1D

′
1 + D2D

′′
1 ]t

2 + · · · ,
〈m2〉 = 〈m〉2 + 2D2t + [2D2D

′
1 + D1D

′
2 + D2D

′′
2 ]t

2 + · · · , (9)

where D1, D2 and their derivatives are evaluated in m0. Notice that if D1 and D2 are not
state dependent, the expansion up to first order is exact.

Alternatively, evolution equations for moments can be obtained by integration of
equation (7), after multiplying each member of the equation by the quantity to be
averaged, that is

d〈mn〉
dt

= n 〈mn−1D1(m)〉 + n(n − 1) 〈mn−2D2(m)〉. (10)

For n = 1 we have
d〈m〉
dt

= 〈D1(m)〉. (11)

Equation (10) leads in general to a hierarchy of coupled equations for the moments.
Only for a few special cases (D1 and D2 polynomials in m of degree smaller than or
equal 1 and 2 respectively) do these equations decouple. Otherwise, one has to rely on
approximated methods to solve their dynamics.
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3. The paradigmatic mean-field model

Let us exhibit our STD analysis for the paradigmatic system of N fully connected Ising
spins (the Curie–Weiss model), subject to a magnetic field H , ruled by the mean-field
Hamiltonian

H = − J

2N
M2 − HM. (12)

Since the Hamiltonian depends only on the total magnetization M , the master
equation for this model can be written in closed form for M [7, 12]. In the large N limit,
when the magnetization per spin m = M/N can be taken as a continuous variable, an
expansion of the master equation up to first order in the perturbative parameter ε = 1/N
leads for the Glauber dynamics to a FP equation (7) with [12]

D1(m) = −m + tanh[m′] − εβJm sech2[m′],
D2(m) = ε(1 − m tanh[m′]),

(13)

where we have defined m′ = β(Jm + H), with β = 1/(kBT ).
In the following sections we derive asymptotic solutions of the FPE with these

coefficients, close to both the critical point (H = 0 and T ≈ Tc = J/kB) and to spinodal
points for T < Tc. Analytical results are compared against Monte Carlo simulation ones
using the Glauber algorithm. Time was adimensionalized with the characteristic time t0 of
the transition rate w = t−1

0 (1 + exp(βΔH))−1. The unit of time in theoretical expressions
corresponds to one MC step in simulations. We also performed several checks using the
Metropolis algorithm. The outcomes were indistinguishable from the Glauber ones, except
for a trivial time rescaling factor of 2 close to the critical point, as expected [7].

4. The STD near the critical point

In the vicinity of the critical point (at T 	 Tc = J/kB ≡ 1 and H = 0), the coefficients (13)
can be approximated for small m (i.e., βJ |m| � 1) respectively by

D1(m) = −ω(λ, ε) m − κ(λ, ε)m3 + O(m5),

D2(m) = ε
(

[1 − (1 − λ)m2] + O(m4)
)

,
(14)

where ω(λ, ε) ≡ λ + ε(1 − λ) and κ(λ, ε) ≡ (1
3
− ε)(1 − λ)3, with λ ≡ 1 − Tc/T .

Within the domain of validity of these approximations (1 − λ)m2 � 1 and therefore
D2 	 ε. As regards D1, its linear term dominates, that is,

D1(m) 	 −ω(λ, ε) m, (15)

if

|ω| � κ m2. (16)

This implies a parabolic approximation of the drift potential V (m) = − ∫

D1(m) dm,
whose shape is plotted in figure 1 for different values of T 	 Tc, found from the integration
of D1 in equation (13) and of the linearized expression (15), for comparison. For ω > 0,
one has a confining quadratic potential, while for ω < 0 the parabolic potential is inverted,
with an unstable point at m = 0.
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Figure 1. Potential V (m), for different values of T in the vicinity of Tc, indicated
in the figure. It was obtained (apart from an arbitrary additive constant) from
the integration of D1 in equations (13) (black full lines), (14) (red dashed lines)
and (15) (gray dashed lines). Inset: zoom of the region close to m = 1.

4.1. The Ornstein–Uhlenbeck approximation

Now, for linear D1 and constant D2, the exact solution of equation (7) reads [13]

P (m, t|m0, 0) =
1

√

2πσ2(t)
exp

(

− [m − m0 exp(−ω t)]2

2σ2(t)

)

, (17)

where σ2(t) = ε[1 − exp(−2ω t)]/ω. This solution applies for ω > 0 (the Ornstein–
Uhlenbeck (OU) process) as well as for ω < 0, and is valid as long as the probability
distribution remains strongly peaked so that the inequality (16) holds for any value of m
with non-negligible probability.

Taking the average with equation (17) gives

〈m〉 = m0 exp(−ω t). (18)

Therefore, for ω > (<)0, that is T/Tc > (<)1 − 1/N , the average magnetization decays
(grows) exponentially, with characteristic time |ω|−1. Then, for timescales t � |ω|−1, it
remains the case that 〈m〉 ∼ m0. Since in the large N limit ω ∼ λ, then the magnetization
scales as 〈m〉 = m0 F (λ t). This is consistent with equation (2), provided that θ = 0
and νz = 1, in agreement with the mean-field exponents ν = 1/2 and z = 2. The
same exponents are displayed by the Gaussian model [1]. For higher-order moments
m(n) ≡ 〈(m − 〈m〉)n〉 with even n ≥ 2, one has

m(n) =
Γ((n + 1)/2)√

π
[2ε ω−1(1 − exp[−2ω t])]n/2. (19)

Then, for short times t � 1/|ω|,
m(n) ∼ [ε t]n/2. (20)

Hence, m(2) ∼ t/N , consistently with equation (3) (β = 1/2), provided that we choose
d = 4, the upper critical dimension.

doi:10.1088/1742-5468/2010/07/P07026 6

http://dx.doi.org/10.1088/1742-5468/2010/07/P07026


J.S
tat.M

ech.
(2010)

P
07026

Short-time dynamics of finite-size mean-field systems

Figure 2. First and second moments of the order parameter as a function of
time t, for m0 = 0.01 and different values of T 	 Tc = 1. (a) Magnetization:
black dot–dashed lines correspond to equation (18) and black dashed ones to
equation (22). (b) Second moment: black dot–dashed lines correspond to
equation (19). Numerical simulations using Glauber dynamics were performed
for N = 8 × 105 (colored symbols).

The characteristic timescale for STD behavior is then t � τSTD with

τSTD ≈ 1

|λ + ε| =
N

|1 + N λ| . (21)

If |λ N | � 1 we have τSTD ∼ 1/|λ| � N , while for |λ N | � 1 we have τSTD ∼ N .
Figure 2 displays the comparison between numerical simulations and the approximate

OU solutions, equations (18), (19), for N = 8 × 105, m0 = 0.01 and different values of
T 	 Tc, such that |λ N | � 1. The OU approximation gives an excellent agreement for
timescales up to t ∼ τSTD (τSTD ∼ 100 for the present parameter values). Averages were
taken over 1000 independent MC runs. The main differences between the theoretical
and numerical results appear for T < Tc and t > τSTD, where finite-size effects shift the
equilibrium value of both the average magnetization and its variance.

Figure 2 also shows the performance of equation (22), which reproduces the simulation
results for longer times than equation (18), predicting the transient steady state. The
lower saturation level observed in simulation outcomes for T < Tc is due to the
presence of fluctuations that drive some trajectories to the equilibrium state with negative
magnetization, while the deterministic equation rules the stabilization at the level of the
local minimum. Also notice that this discrepancy decreases as T departs from the critical
value because of the consequent increase of the potential barrier height, which makes

doi:10.1088/1742-5468/2010/07/P07026 7
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such events less probable. For T > Tc, the system evolves quickly towards the vicinity of
the equilibrium state and the saturation level of the second moment is very close to the
value given by the (bimodal) steady state distribution P (m) ∝ exp(−V (m)/ε). In any
case, finite-size higher-order corrections can be neglected as far as the STD behavior is
concerned.

4.2. The quartic approximation of the drift potential

When (16) does not apply, one cannot discard the cubic contribution to D1. For such cases
we show in appendix A that the inclusion of the cubic correction in the drift coefficient
equation (14) leads for ε � 1 to

〈m〉 =
m0e

−ωt

√

1 + m2
0κ(1 − e−2ωt)/ω

. (22)

This solution is exact in the thermodynamic limit ε → 0, as can be verified by direct
integration of the deterministic version of equation (11) [7], i.e.,

d〈m〉
dt

= D1 (〈m〉) . (23)

Notice that the expansion of equation (22) up to first order in m0 reproduces equation (18).
The case ω = 0 (T = Tc) can also be drawn from equation (22) by taking the limit ω → 0,
yielding

〈m〉 =
m0

√

1 + 2m2
0κt

. (24)

In appendix A we additionally show that finite-size corrections do not change the
STD scaling of 〈m〉. For the second moment we obtain

m(2) ≡ 〈m2〉 − 〈m〉2 = 2εt
(1 + z)(1 + 2z + 2z2)

(1 + 2z)3
+ O(ε2, εω), (25)

where z ≡ κm2
0t. Notice that up to a typical timescale 1/(2κm2

0), the approximation
m(2) 	 2εt holds. For κm2

0t � 1, a crossover to a second linear (and hence normal
diffusive) regime but with a different diffusion constant is predicted, namely m(2) 	 εt/2,
although it typically falls beyond the STD region.

4.3. Other initial conditions

To investigate the scaling behavior for other initial conditions, we analyzed the STD
behavior when m0 = 1. As can be seen in the inset of figure 1, the cubic approximation
still holds close to m = 1. Hence, the thermodynamic limit expression (22) is expected
to apply too, as verified in figure 3(a). In comparison with the initial condition of
figure 2, here trajectories get more trapped around the positive minimum, and hence the
agreement with deterministic equation (22) is still better. For finite systems, the intensity
of the fluctuations is state dependent following equation (13). Therefore, the finite-size
corrections derived by assuming D2 	 ε do not hold. However, for very short times one
still expects m(2) ∼ 2D2(m0)t, according to equation (9), as is in fact verified in numerical
simulations illustrated in figure 3. From equation (22) we have that m(t) ∼ t−1/2(1 − λt)

doi:10.1088/1742-5468/2010/07/P07026 8

http://dx.doi.org/10.1088/1742-5468/2010/07/P07026


J.S
tat.M

ech.
(2010)

P
07026

Short-time dynamics of finite-size mean-field systems

Figure 3. First and second moments as a function of time t for m0 = 1 and
different values of T 	 Tc = 1. (a) Magnetization: dashed lines correspond to
theoretical results given by equation (22). (b) Second moment: the full black line
represents 2D2(m0 = 1)t. Numerical simulations using Glauber dynamics were
performed for N = 8 × 105 (colored symbols).

for t � 1/|λ|, in agreement with equation (5). The excellent accord between equation (22)
and the numerical simulation outcomes displayed in figure 3 when |λ N | � 1 confirms our
previous assumptions. Numerical simulations for other values of N also verify the above
scaling. For T > Tc the equilibrium (final steady state) values of both the mean and
the variance are quickly approached as in figure 2. However, when T < Tc, we see from
figure 3(b) that all the curves lie below the critical curve, at variance with the behavior
observed when m0 � 1 (compare with figure 2(b)). This is because when m0 = 1 almost
all the trajectories get trapped in the positive minimum. Thus, the variance stabilizes at
a value corresponding to the fluctuations in a single potential minimum. At long enough
times, the two minima in a finite-size system get equally populated and therefore the
equilibrium value of m(2) will be higher. However, the timescales needed for observing this
effect fall outside the STD regime. In contrast, when m0 � 1, a relatively large number of
trajectories cross the barrier between minima and m(2) approaches the equilibrium value
(which is larger than the steady one), even at very short times, as can be verified by
comparing the numerical plateaux in figure 2(b) with the equilibrium value

m(2)
eq =

∫ 1

−1
m2 e−V (m)/ε dm

∫ 1

−1
e−V (m)/ε dm

. (26)
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5. The STD near the spinodal

When T < Tc the model has a line of first-order transitions at H = 0 and metastable
stationary solutions for a range of values of H . Without loss of generality we will restrict
hereafter to the metastable solutions with positive magnetization, that is, those analytic
continuations of the equilibrium magnetization from positive to negative values of H .
Defining h ≡ βH , the metastable state exists as long as h > hSP, where the spinodal field
is given by

hSP = −βJmSP +
1

2
ln

1 + mSP

1 − mSP

mSP =

√

1 − 1

βJ

where mSP is the magnetization at the spinodal point [6].
Suppose now that we start the system evolution from the completely ordered state

m0 = 1 with T < Tc and h > hSP and let us define Δm ≡ m − mSP and Δh ≡
h− hSP. Considering Δm as an order parameter, numerical simulations using Metropolis
dynamics [6] showed that close enough to the spinodal point (|Δh| � 1) its moments obey
the scaling form (4) with τ = Δh/hSP. For temperatures far enough from Tc the spinodal
magnetization mSP is close to 1 and we can expand D1 and D2 in powers of Δh and Δm.
Moreover, close to the spinodal we can neglect [12] the finite-size correction of D1. Then,
from equations (13) one has at first order in Δh and second order in Δm

D1(m) 	 Δh

βJ
− 2mSPΔmΔh − βJmSP(Δm)2,

D2(m) 	 ε

(
1

βJ
− 2mSPΔm + (βJ − 2)(Δm)2 − mSP

βJ
Δh +

(

2 − 3

βJ

)

ΔmΔh

)

.

(27)

In figure 4 we plot the shape of V (m) for different values of h in the vicinity of hSP,
obtained from integration of both D1 in equation (13) and the approximate quadratic
polynomial (27), for comparison.

The moments of Δm can be calculated by means of equation (8), namely

〈(Δm)n〉 =
∑

k≥0

[D1∂x + D2∂xx]
kxn tk/k!, (28)

where we have defined x ≡ m0 − mSP.
For n = 1 we can neglect in a first approximation the diffusion term, that is, at

least for short times we can disregard finite-size effects. Then, from equation (28) using
D1 = −A(x2+2Aαx−α), with α = Δh/(βJ A) and A ≡ βJmSP, one has (see appendix B)

〈Δm〉 =
√

γ
u + tanh(

√
γAt)

1 + u tanh(
√

γAt)
− Aα, (29)

where u = (x + Aα)/
√

γ and γ = α + A2α2. For α < 0 (and hence γ < 0), equation (29)
becomes

〈Δm〉 =
√

|γ| u − tan(
√|γ|At)

1 + u tan(
√|γ|At)

− Aα. (30)

doi:10.1088/1742-5468/2010/07/P07026 10
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Figure 4. Potential V (m), for different values of h in the vicinity of hSP, indicated
in the figure for T = 4/9. It was computed (up to an arbitrary additive constant)
from the integration of D1 in equation (13) (red full lines) and (27) (black dashed
lines).

Figure 5. Mean magnetization as a function of time t, for m0 = 1, T = 4/9 and
different values of h. Black dashed lines correspond to the prediction given by
equations (29)–(31). The full black line corresponds to equation (B.4). The inset
is the same plot on linear–log scales. Numerical simulations were performed for
N = 8 × 105 (colored symbols).

Alternatively, equations (29) and (30) can be obtained by integrating equation (23),
and are in good agreement with numerical simulations, as illustrated in figure 5. One
observes the following asymptotic behaviors:

(i) For |h| < |hSP| (α > 0), a constant level is reached. In fact, since the potential presents
a local minimum, the plateau occurs at a level associated with that minimum. This
is in accord with numerical simulations (figure 5); notice that the local minimum of
the potential is at m 	 0.768, and then Δm = m − mSP 	 0.023, in agreement with
the observed level.

(ii) For |h| > |hSP| (α < 0), equation (30) yields a rapid decay towards zero attained at
finite t. This is because the potential is tilted towards the absolute minimum (without
a local minimum).
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In the limit α → 0, from equation (29) it follows that

〈Δm〉 =
x

1 + Axt
. (31)

Hence, at the spinodal point one has 〈Δm(t)〉 ∼ t−1 for t � 1/Ax, consistently with
equation (5) with β = 1/2 and νz = 1/2, in agreement with previous numerical results [6].
This behavior corresponds to the relaxation towards the saddle point m = mSP. While in
an infinite system such a point is an stationary state, finite-size fluctuations destabilize it,
with the subsequent exponential relaxation towards the equilibrium value Δm � −1−hSP

at longer times, as depicted in figure 5. Finite-size corrections to equation (31), that we
compute for Δh = 0, can be obtained by including the diffusion term in equation (28).
When Δh = 0, following equation (27), we have D2(x) 	 ε(ax2 +bx+c), with a = βJ −2,
b = −2mSP, c = 1/βJ and D1 = −Ax2. In appendix B we obtain equation (B.4),
furnishing 〈Δm〉 corrected at first order in ε, that for t � 1/Ax leads to

〈Δm〉 ∼ 1

At

[

1 − ε c A2

10
t3 + O(εt2, ε2)

]

. (32)

Hence, finite-size effects will become relevant only when t ∼ t∗, with

t∗ =

(
10βJ

εA2

)1/3

=

(
10 N

−λ

)1/3

, (33)

in agreement with the scaling proposed in [6]: t∗ ∝ N z/dc , with z = 2 and dc = 6.
Finally, let us consider the second moment. In appendix B we obtain equation (B.6),

which gives the ε-correction to 〈(Δm)2〉. It allows us to compute Δm(2) = 〈(Δm)2〉 −
(〈Δm〉)2, equation (B.7), that at short times t � 1/Ax leads to

Δm(2) ∼ 2ε(ax2 + bx + c) t 	 2D(x) t, (34)

in accord with equation (9).
Meanwhile, for t � 1/Ax, equation (B.6) behaves as

〈(Δm)2〉 ∼ 1

(At)2

[

1 +
ε c A2

5
t3 + O(εt2, ε2)

]

. (35)

Hence from equations (32) and (35) one gets

Δm(2) ∼ 2εct

5
. (36)

Notice that in this regime, the prefactor of t given by equation (36) is generically
different from that obtained in the very short-time regime following equation (34).
Figure 6 illustrates this crossover for different values of m0 and fixed temperature. The
prefactor at small times, 2D2(m0), varies with m0 (panel (a)), while at intermediate times
1/Ax � t < t∗, the prefactor becomes 2

5
εc = 2ε/(5βJ) independently of m0, which is

evident on the linear scale (panel (b)).
In any case the behavior Δm(2) ∼ εt up to t ∼ t∗ is consistent with the STD scaling

hypothesis for the set of mean-field exponents zν = 2, β = 1/2, dc = 6, and in agreement
with numerical outcomes [6].
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Figure 6. Second moment of the order parameter as a function of time t, for
T = 4/9, h = hSP and different values of m0 (with mSP < m0 < 1). Panels
(a) and (b) display the same data on logarithmic and linear scales, respectively.
Black full lines correspond to the prediction given by equation (B.6). Symbols
correspond to MC numerical simulations for N = 8× 105. The dash–dotted lines
correspond to 2D2(msp) t (upper line) and 2/5 c ε t (lower line).

6. Final comments

We studied the short-time dynamical behavior of finite-size mean-field models (infinite-
range interactions) with non-conserved order parameter dynamics. By solving the
associated Fokker–Planck equation we obtained closed expressions for the first moments of
the order parameter, in the vicinity of both the critical and spinodal points. This allowed
us to confirm the STD scaling hypothesis in both situations, as well as to determine the
dynamical ranges of its validity. In particular, we confirmed its validity analytically for
when the system starts from an ordered state. Moreover, we found that a diffusion-like
scaling behavior of the second moment appears for any initial value of the order parameter,
but the associated diffusion coefficient presents a crossover between two different values,
for short and intermediate times within the STD regime.

We found in general that the scaling behavior of the first moment is mainly determined
by the shape of the potential V (m) = − ∫

D1(m) dm and therefore by the equilibrium
generalized free energy f(m, T, H), which has the same extrema structure as [7] V (m).
The scaling behavior of higher moments, on the other hand, has its origin in the
Gaussian nature of finite-size fluctuations close to the singular points. Although our
results were obtained for a particular model, it is worth stressing that the above facts are
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characteristic of mean-field systems, since they depend only on the shape of V (m) and on
the proportionality D2 ∝ 1/N . This makes the analysis quite general and independent of
the particular mean-field model.
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Appendix A. The quartic potential approximation near the critical point

To investigate the effect of including the cubic correction in the drift coefficient
equation (14), we evaluate the particular setting of equation (8):

〈mn〉 =
∑

k≥0

[(−ωm0 − κm3
0)∂m0 + ε∂m0m0 ]

k mn
0 tk

k!
. (A.1)

In the limit |λ N | � 1, we can neglect in a first approximation the diffusion term and
compute

〈m〉 ≈
∑

k≥0

[(−ωm0 − κm3
0)∂m0 ]

k m0 tk

k!
. (A.2)

By iterating the operator k times and identifying the general form of the coefficients of
tk, with the aid of symbolic manipulation programs, we obtain

〈m〉 ≈ m0

∑

k,j≥0

(−ωt)k

k!

(

2j
j

) (

−m2
0κ

4ω

)j j
∑

i=0

(

j
i

)

(−1)i(2i + 1)k

= m0e
−ωt

∑

j≥0

(

2j
j

) (

−m2
0κ

4ω
(1 − e−2ωt)

)j

=
m0e

−ωt

√

1 + m2
0κ(1 − e−2ωt)/ω

, (A.3)

which coincides with the exact deterministic solution (22).
Fluctuations can be neglected as long as κ, ω ∼ O(ε0). However, while 3κ remains of

order 1 (except for extreme temperatures), typically ω ∼ λ + ε � 1. Then, a finite-size
correction can be included, by keeping only the terms of order ε and ω in each coefficient
of tk in equation (A.1). This procedure yields the correction term

C1(ε) = −εκm0t
2
∑

k≥0

(

2k
k

)

(2k2 + 6k + 3)(−z/2)k

= −εκm0t
23 + 4z + 2z2

(1 + 2z)5/2
,
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where z ≡ κm2
0t. Then, it results that

〈m〉 =
m0(1 − ωt)

(1 + 2z)1/2
+

m0ωt z

(1 + 2z)3/2
− εκm0t

23 + 4z + 2z2

(1 + 2z)5/2
+ O(ε2, εω, ω2). (A.4)

Notice that the first two terms in the right-hand side come from the expansion of the
deterministic equation (A.3) up to first order in ω.

In particular, exactly at the critical point we have κ = 1/3 and λ = 0 (and hence
ω = ε). Therefore, as in the case of the OU approximation, one concludes that the
magnetization remains m 	 m0 up to a characteristic time τ0 ∼ 1/ε = N .

Similarly, for 〈m2〉, one obtains the correction

C2(ε) = εt
∑

k≥0

(k + 1)(k + 2)(−2z)k =
2εt

(1 + 2z)3
,

leading to

〈m2〉 =
m2

0

(1 + 2z)
− 2ωz(1 + z)

κ(1 + 2z)2
+

2εt

(1 + 2z)3
+ O(ε2, εω, ω2) . (A.5)

Since in the deterministic limit 〈mn〉 = 〈m〉n, the first two terms in the right-hand side
come from the expansion of the squared equation (A.3) up to first order in ω.

In the computation of the centered second moment, using equations (A.4) and (A.5),
the purely deterministic terms cancel out to yield equation (25).

Appendix B. The moment calculation near the spinodal

If ε = 0, from equation (8) using D1 = −A(x2 + 2Aαx − α), α = Δh/(βJ A) and
A ≡ βJmSP, the average magnetization is given by

〈Δm〉 =
∑

k≥0

[−(x2 + 2Aαx − α) ∂x]
kx (At)k/k! , (B.1)

where x ≡ m0 − mSP. Completing squares and making the change of variables u =
(x + Aα)/

√
γ with γ = α + A2α2 we obtain

〈Δm〉 =
√

γ
∑

k≥0

[(1 − u2) ∂u]
ku (

√
γAt)k/k! − Aα. (B.2)

Considering the generating function for the tangent, with the change of variable
u = tanh z, one has [14]

∑

n≥0

[(1 − u2)∂u]
n u τn/n! =

∑

n≥0

[∂z ]
n tanh z τn/n!

= (u + tanh τ)/(1 + u tanh τ),

from which equations (29) and (30) follow.
To include finite-size effects we have to consider the complete expression:

〈Δm〉 =
∑

k≥0

[D1∂x + D2∂xx]
k x tk

k!
. (B.3)
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When Δh = 0, from equation (27), we have D2(x) 	 ε(ax2 +bx+c), with a = βJ −2,
b = −2mSP, c = 1/βJ and D1 = −Ax2. The contributions of order ε associated with each
coefficient of the quadratic approximation of D2(x) are

C1a = − εa

3A

∑

k≥2

(k2 − 1)(−y)k = −εay2(3 + y)

3A(1 + y)3
,

C1b =
εbt

12

∑

k≥2

(k + 1)(3k − 2)(−y)k−1 = −εbty(6 + 4y + y2)

6(1 + y)3
,

C1c = −εcAt2
(

1 +
1

10

∑

k≥2

(k + 2)(2k + 1)(−y)k−1
)

= −εcAt2(10 + 10y + 5y2 + y3)

10(1 + y)3
,

where y ≡ Axt. Summing the ε-corrections C1a+C1b+C1c together with the deterministic
one, given by equation (31), yields

〈Δm〉 =
x

1 + y
−

(
c

10Ax2
(10 + 10y + 5y2 + y3)

+
b

6Ax
(6 + 4y + y2) +

a

3A
(3 + y)

)
ε y2

(1 + y)3
. (B.4)

Likewise, we calculate

〈(Δm)2〉 =
∑

k≥0

[D1∂x + D2∂xx]
k x2 tk

k!
. (B.5)

In this case, the contributions of order ε are

C2a = −2ax

A

∑

k≥1

(

k + 2
3

)

(−y)k =
2axy

A(1 + y)4
,

C2b = − b

12A

∑

k≥1

(k + 1)(k + 2)(3k + 1)(−y)k =
by(12 + 6y + 4y2 + y3)

6A(1 + y)4
,

C2c = ct
(

2 +
1

10

∑

k≥2

(k + 1)(k + 2)(2k + 1)(−y)k−1
)

=
ct(10 + 10y + 10y2 + 5y3 + y4)

5(1 + y)4
.

Summing up the corrections C2a + C2b + C2c, together with the deterministic term
(given by the squared equation (31)), yields

〈(Δm)2〉 =
x2

(1 + y)2
+

(
c

5x
(10 + 10y + 10y2 + 5y3 + y4)

+
b

6
(12 + 6y + 4y2 + y3) + 2ax

)
ε y

A(1 + y)4
. (B.6)

Finally, the second moment is obtained through Δm(2) = 〈(Δm)2〉 − (〈Δm〉)2. The
purely deterministic terms cancel out and at first order in ε what remains is

Δm(2) =
ε y

30Ax(1 + y)4

(

20ax2(3 + 3y + y2) + 15bx(2 + y)(2 + 2y + y2)

+ 12c(5 + 10y + 10y2 + 5y3 + y4)
)

+ O(ε2). (B.7)
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