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a b s t r a c t

Background: The low (LF) vs. high (HF) frequency energy ratio, computed from the spectral

decomposition of heart beat intervals, has become a major tool in cardiac autonomic sys-

tem control and sympatho–vagal balance studies. The (statistical) distributions of response

variables designed from ratios of two quantities, such as the LF/HF ratio, are likely to non-

normal, hence preventing e.g., from a relevant use of the t-test. Even using a non-parametric

formulation, the solution may be not appropriate as the test statistics do not account for cor-

relation and heteroskedasticity, such as those that can be observed when several measures

are taken from the same patient.

Objectives: The analyses for such type of data require the application of statistical models

which do not assume a priori independence. In this spirit, the present contribution proposes

the use of the Generalized Linear Mixed Models (GLMMs) framework to assess differences

between groups of measures performed over classes of patients.

Methods: Statistical linear mixed models allow the inclusion of at least one random effect,

besides the error term, which induces correlation between observations from the same

subject. Moreover, by using GLMM, practitioners could assume any probability distribution,

within the exponential family, for the data, and naturally model heteroskedasticity. Here, the

sympatho–vagal balance expressed as LF/HF ratio of patients suffering neurogenic erectile

dysfunction under three different body positions was analyzed in a case–control protocol

by means of a GLMM under gamma and Gaussian distributed responses assumptions.
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Results: The gamma GLMM model was compared with the normal linear mixed model (LMM)

approach conducted using raw and log transformed data. Both raw GLMM gamma and log

transformed LMM allow better inference for factor effects, including correlations between

observations from the same patient under different body position compared to the raw

LMM. The gamma GLMM provides a more natural distribution assumption of a response

expressed as a ratio.

Conclusions: A gamma distribution assumption intrinsically models quadratic relationships

between the expected value and the variance of the data avoiding prior data transformation.

SAS and R source code are available on request.

© 2009 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Heart rate variability (HRV) consists of the fluctuation between
the intervals of consecutive normal heartbeats (RR intervals).
It has become increasingly important in physiological stud-
ies. A signal derived from the RR intervals could provide
meaningful information regarding the neural regulation of the
cardiovascular system [1]. The RR signals can be studied either
in the time or frequency domains [2]. For the latter case, the
RR spectra are usually split in (at least) three frequency bands:
the Very Low Frequency (VLF), low frequency (LF) and high fre-
quency (HF) bands. A number of studies (cf. e.g. [2–4]) suggest
that the LF band reflects sympathetic and vagal modulations
while the HF band consists of a marker for vagal modulation.
Consequently, the LF/HF ratio is considered a mirror of the
sympatho/vagal balance, hence characterizing their relation-
ships and commonly used as a non-invasive way of studying
the health state of the cardiovascular system [2–5].

Erectile dysfunction is defined as the inability to achieve
and maintain an erection sufficient to permit satisfactory sex-
ual intercourse [1,6,7]. Neurogenic erectile dysfunctions are
an important group of organic etiologies probably because a
deficiency of neurotransmitters is the final common pathway
in many diseases and conditions [1,6,8]. A research area of
increasing interest consists of studying the benefits of using
spectral analysis to screen neurogenic erectile dysfunction by
means of the heart rate variability [9–11].

Dynamical state modifications such as those provoked by
body position changes (i.e., supine, seated and standing) are
usually used as tools to analyze the sympatho–vagal balance
by means of the LF/HF index under different treatments or
health conditions [12]. In these experiments the LF/HF ratio
and the Normalized LF and HF values are calculated at each
of the body position states for the same patient. Usually, the
data are analyzed by means of a t-test (hence assuming inde-
pendence amongst data) or of its non-parametric counterpart,
the Mann–Whitney test [13]. In any case, prior to analyze the
statistical significance of treatment group differences, some
distributional properties must be assessed, such as indepen-
dently distributed normal data (i.i.d.) for the classical t-test.
If the normal distribution assumption cannot be considered
valid, non-parametric methods are usually employed. Yet,
i.i.d. and variance homogeneity assumptions are still required
[14]. Several experimental situations can lead to unfulfilling
these required assumptions. For example, when several mea-
sures are taken on the same patient under different conditions
and/or at different time intervals, correlated data structures

are expected over the response data. Also, different variances
between subjects belonging to different groups or sampling
times could be expected. The use of classical statistical tests
is not longer appropriate in these cases [15,16].

Nowadays, the statistical theory as well as commercial sta-
tistical software has been significantly enhanced, allowing
researchers to better fit experimental data even under more
complex situations. One of these new approaches is known
as Generalized Linear Mixed Models [14]. This kind of models
allows the exploration of different effects that could impact
the data as well as the consideration of more appropriate dis-
tributional assumptions for the observed data and, at the same
time, considering different types of variation and correlations
by using random effects.

In the present work we show that for the assessment of the
neurogenic erectile dysfunction using the LF/HF ratio, a model
assuming the classical independent and normal distributed
observations does not properly explain the underlying data
structure, leading to a poor inference and thus yielding inad-
equate conclusions. To overcome this limitation two new
approaches using random effects are suggested. The first one
is based on a log transformation of the responses, which
deals with the non-normal distribution and the observed het-
eroskedasticity. The second approach is based on directly
assuming a gamma (non-normal) distribution for the LF/HF
ratio data.

2. Subjects and data

The study was approved by the local Ethics Commit-
tee (Hospices Civil de Lyon, France). After explanation of
the experimental procedure, written informed consent was
obtained from each subject. The diagnosis and recruited
patients with an erectile dysfunction, defined as insufficient
rigidity of the penis for penetration, was made by a single
urologist. Staffs of Hospices Civils de Lyon, Université Claude
Bernard and École Normale Supérieure de Lyon were recruited
as a control group. All subjects underwent neurological, phys-
ical, urologic and psychiatric examinations. Subjects were
allocated into two groups: control, no erectile dysfunction
(n = 17), and patients with erectile dysfunction (n = 15). The
mean duration of erectile dysfunction in this group was 4
years. Erectile dysfunction was determined with the Inter-
national Index of Erectile Function (IIEF) questionnaire; 53%
(n = 8) of the patients had a mild erectile dysfunction (IIEF
score between 17 and 25), 34% (n = 5) had a moderate erec-
tile dysfunction (IIEF score between 11 and 16), and 13% (n = 2)
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had severe erectile dysfunction (IIEF score between 10 and
1). All patients of the control group had an IIEF score above
26.

Each participant was asked to refrain from drinking
coffee and tea in the 24 h proceeding the experimental ses-
sion. Recording sessions took place between 9:00 a.m. and
12:00 a.m. in a quiet room. Data acquisition was done on a
beat-by-beat basis. Collected data consist of: (1) the RR interval
(RRI) time in ms between two R-peaks on the electrocardio-
gram (ECG), obtained from a standard bipolar ECG lead and
an R-peak detection circuit with precision of 1 ms, (2) sys-
tolic blood pressure (SBP) and diastolic blood pressure (DBP)
obtained by finger photoplethysmography (FinapresTM TNO,
Biomedical Instrumentation Research Unit, Amsterdam, The
Netherlands).

During test, heart rate and blood pressure were moni-
tored with an ECG monitor and an automated oscillometer
(DynamapTM Criticon Inc.TM, Tampa, FL, USA).

Breathing was quantified by a device constructed in the
Laboratoire de Physiologie de l’Environnement (Faculté de
Médecine Lyon Grange-Blanche). This device uses comfort-
able elastic bands, which do not restrict breathing movements,
wrapped around the rib cage and abdomen to measure tho-
racic and abdominal displacements during breathing.

Continuous data acquisition (ECG, blood pressure and
respiration) at a sampling rate of 1000 Hz (ECG, blood pres-
sure) and 500 Hz (respiration), were done on a PC PentiumTM

133 MHz with a 12-bit analogue-to-digital converter (AT-MIO-
16E-10; National InstrumentsTM, Austin, TX, USA) equipped
with a software developed with LabVIEW 4.0.1 softwareTM

(National InstrumentsTM, Austin, TX, USA). RRI, blood pres-
sure and respiratory frequency records were performed over
three body positions: supine position (15 min), followed by
seated position (15 min), and finally standing position (15 min).
These postural changes provoke instantaneous changes in
heart rate and blood pressure mainly resulting of autonomic
modifications [10,17]. The body position sequence was fixed
and was the same for all subjects. The test was interrupted
before the end of the 15 min if presyncopal or syncopal symp-
toms occurred (a feeling of faintness), rapid drop in systolic
blood pressure (more than 25 mmHg) or tachycardia (more
than 160 beat/min).

3. Data pre-processing

A sliding-window median filter was applied to the recorded
RRI and SBP data to replace outliers and/or abnormal values
with a local average.

RRI and SBP data were independently re-sampled on a
regular grid, at sampling frequency: fe = 10 Hz, and hence
transformed into time series to which spectral analysis can
be applied. A standard linear detrending procedure was sys-
tematically applied to each time series. To finish with, the
data were high pass filtered. The cut-off frequency was:
fc = 0.025 Hz. The spectral powers were split into 3 frequency
bands: very low frequency (VLF, 0.025–0.040 Hz), low frequency
(LF, 0.040–0.150 Hz), and high frequency (HF, 0.150–0. 400 Hz).

The frequency raw ratio for subject “s” under condition “c”
(control, disease) and body position “p” (supine, seated, stand-

ing) was expressed as

Yscp = FRscp = LFscp

HFscp
. (1)

One sample for each subject and per body position was cal-
culated from the frequency bands. In Table 1, the summary
statistics of the LF/HF ratio for each health and body position
are shown. In 3 cases, ratios could not be computed due to too
poor data quality.

4. Statistical modeling

The main objective was to evaluate differences between the
groups of patients under all body position changes. The first
attempt to model this type of experimental data was the
application of a general linear model, which incorporates all
the factors that could produce a change in the LF/HF ratio,
such as Health condition, body position and their interaction.
In the General Linear Model the error term, which accounts
for extraneous variability, is assumed to be independent and
homoskedastic with Gaussian distribution, i.e. εscp i.i.d. N(0,
�2). For example, the observed value for a healthy subject “s”
in supine position can be expressed as follows:

FRs=s,c=healthy,p=sup ine

= ˇ0 + 1 × ˇc=healthy + 0 × ˇc=disease + 1 × ˇp=sup ine + 0

× ˇp=seated + 0 × ˇp=s tan ding + 1 × ˇc=healthy,p=sup ine + 0

× ˇc=healthy,p=seated + 0 × ˇc=healthy,p=s tan ding

+ εs=s,c=healthy,p=sup ine (2)

Then the complete dataset can be modeled as Y = X� + �, where
Y is a N × 1 vector of observed LF/HF ratios, X is an N × p matrix
indicating the design effects in each subject, and � is a p × 1
vector of unknown constants to be estimated.

Since each patient is observed more than once (under
three different body positions), data from the same patient
are expected to be correlated. The lack of independence in the
observed values can be modeled by the inclusion of an extra
observed random term representing a subject effect. This is
the linear mixed model formulation:

Y = Xˇ + Z� + ε (3)

where the new term includes ZN×q, an N × q design matrix
of 0 s or 1 s indexing the observations coming from the same
patient and � ∼ N(0, G) is a q × 1 vector of normal random terms
with a covariance matrix G. In this context, for a subject “s” we
have the conditional mean (subject specific) E[Ys|�s] = x′

sˇ +
z′

s� and the marginal mean (or population average) E[Ys] = x′
sˇ.

The estimation of the covariance parameters can be done by
the Restricted Maximum Likelihood (REML) [18].

Under the assumption of normal distribution of the data,
two linear mixed models were fitted (Eq. (3)). The first one
(model M1) used the raw data, Yscp = FRscp = (LFscp/HFscp). The
corresponding boxplots are shown in Fig. 1 (top raw pan-
els) and show that distributions are skewed and also that
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Table 1 – Summary statistics for each health x body position combination for LF/HF ratio.

Min 1Q Median Mean 3Q Max N Missing values

Control
Supine 1.12 1.47 1.62 2.27 2.37 7.48 17
Seated 0.99 1.67 2.69 3.45 3.85 11.99 16 1
Standing 2.26 5.12 6.27 7.56 9.00 16.51 17

Disease
Supine 0.96 1.78 3.23 3.88 4.17 11.42 14 1
Seated 0.63 2.82 4.32 5.34 6.84 14.62 15
Standing 1.04 4.87 7.74 7.85 11.06 15.05 14 1

variances (as measured by the width of the central box)
are heterogeneous. The second model (model M2) is sim-
ilar to model M1, yet applied to log transformed data:
LYscp = log(LFscp/HFscp) = log(LFscp) − log(HFscp). The log transfor-
mation has the property of changing a ratio into a difference
and can produce variance stabilization. It also permits to inter-
pret a ratio as a difference. In Fig. 1 (bottom raw panels), the
boxplots of the transformed data are displayed. They are more
symmetric but still display variance heterogeneity.

The observed skewed distribution of the raw data (Fig. 1,
left panel) suggests a non-normal behavior. Thus, we pro-
pose a third model (M3) in which the observed LF/HF ratios
are assumed to follow a gamma distribution [19], which is a
skewed distribution not having homogeneous variances: the
variance–mean dependence is quadratic. Under non-normal
distribution in the exponential family we can use the Gener-
alized Linear Mixed Model (GLMM) [12] approach. In the GLMM
the mean is linked to the linear predictor by an invertible “link”
function “g” in such a way that [19]:

E(Y|�) = g−1(Xˇ + Z�) (4)

When the chosen link is the log function, then log
(E(Y|�)) = X� + Z� or E(Y|�)) = eXˇ+Z� (It should be stressed that
we are not transforming the observed data as in model M2,

but the conditional expected value, i.e. the mean). To fit such
a GLMM a pseudo-likelihood approach based on linearization
[20] can be applied.

To evaluate the appropriateness of the different
approaches we use the residual vs. predicted plots (resid-
uals vs. fitted) and the quantile–quantile plot (qq plot) for
residuals from each model. In all cases Pearson residuals
rp = yi − �̂i/

√
V̂ar(yi) were used (here the hat d̂enotes an

estimate). These residuals tend to be approximately normally
distributed with zero mean and unit variance in the link scale
[19].

In order to evaluate the goodness of fit (GOF) for specific
models the Generalized Chi-Square (GCS) value normalized
by the number of degree of freedom (GSCn) was used in all the
tested models. A value close to one implies that the variability
in the data has been properly accounted for by the model [14].

The models under Gaussian assumptions were fitted in
R (http://www.r-project.org) and SAS (http://www.sas.com).
Models under the gamma assumption were fitted with pro-
cedure GLIMMIX in SAS.

5. Results

In order to show the asymmetric nature of the LF/HF ratio and
show the effect of the log transformation on the data distribu-

Fig. 1 – Box plots for each combination health by body position. Left panels: raw LF/HF ratio. Right panels log transformed
ratios.
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Fig. 2 – Raw LF/HF ratios for all patients under each health
condition and body position.

tion, the boxplots of raw and transformed data for each health
condition and body position are shown in Fig. 1. The asymmet-
ric distribution of the raw ratios suggests that the response
variable does not follow a normal distribution (left panels). It
is also possible to see that the variance seems not to be equal in
all health-body position combinations. One may notice on the
right panels of Fig. 1 that transforming the observed variable
by means of the log transformation produces a more symmet-
ric distribution, but still the variance heterogeneity remains.
Fig. 2 shows the raw LF/HF ratios for all subjects (control and
disease patients) under each health condition and body posi-
tion.

In Fig. 3 the residual vs. fitted and QQ plots are shown
for the model assuming observed i.i.d. Gaussian raw data, i.e.
fixed effects model (Eq. (2)). From Fig. 3 it is possible to see that
the residuals do not follow a normal distribution and the vari-
ance increases as the predicted values increase. The QQ plot
shows that the residuals do not follow a normal distribution
since they tend to depart from the expected identity line.

The residuals and QQ plots for all fitted mixed models are
shown in Fig. 4. In model M1 (top left panels in Fig. 3) the vari-
ance of the residuals is not homogeneous, it increases as the
predicted values increase. In the corresponding QQ plot (top
right panel) it is possible to see that residuals have a skewed
distribution. Model 2 residuals are shown in the middle panel,
they display a random pattern around zero. In the QQ plot
the residuals match the straight line as expected under nor-
mal assumption. Modeling the log transformed data instead of
the raw data approximately satisfies the required assumptions
of the linear mixed model approach. In the bottom panels,
the model under gamma distribution assumption with a log
link function relating the expected value (model M3) is shown.
The left panel shows Pearson residuals against predicted val-
ues in the linear predictor scale. This model also attains good
results. The residuals in the linear scale were also evenly
spread around zero,. The QQ plot of the residuals also matches
approximately the straight line.

The normalized Generalized Chi-Square value for model
M1 (GSCn = 7.54) was greater than one, suggesting that the
raw data do not meet the normal and variance homogene-
ity. The log transformed data were better modeled in this

Fig. 3 – Residuals vs. predicted values and residuals QQ plots for model in Eq. (2) under the assumption of ε ∼ N(0, �2).
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Fig. 4 – In the left panels the residuals vs. estimated values are shown. The QQ plots for residuals are shown in the right
panels.

Table 2 – Estimated differences between least squared means of health condition and body position combinations under
models M2 and M3. SE: Standard error, t: t-value, Pr > |t|: p-value.

Condition by Body position combination comparison Model M2 Model M3

Estimate SE t Pr > |t| Estimate SE t Pr > |t|
Healthy-Seated vs. Healthy-Standing −0.866 0.159 −5.440 <.001 −0.871 0.159 −5.450 <.001
Healthy-Seated vs. Healthy-Supine 0.342 0.159 2.150 0.036 0.359 0.159 2.250 0.028
Healthy-Standing vs. Healthy-Supine 1.208 0.156 7.740 <.001 1.231 0.157 7.850 <.001
Disease-Seated vs. Disease-Standing −0.417 0.183 −2.280 0.027 −0.411 0.184 −2.230 0.030
Disease-Seated vs. Disease-Supine 0.551 0.181 3.040 0.004 0.531 0.182 2.920 0.005
Disease-Standing vs. Disease-Supine 0.968 0.186 5.200 <.001 0.941 0.187 5.030 <.001
Healthy-Seated vs. Disease-Seated −0.621 0.225 −2.750 0.008 −0.628 0.230 −2.720 0.009
Healthy-Standing vs. Disease-Standing −0.172 0.227 −0.750 0.455 −0.167 0.232 −0.720 0.474
Healthy-Supine vs. Disease-Supine −0.410 0.223 −1.840 0.071 −0.457 0.228 −2.00 0.050



Author's personal copy

c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 9 ( 2 0 1 0 ) 49–56 55

context (GCSn = 0.21) and the model under gamma distribu-
tion assumptions for the raw data shows the same goodness
of fit (GCSn = 0.21).

Based on the previous results, the appropriate models for
statistical inference were M2 and M3. The least squares mean
differences of the combination of “health condition” and “body
position” (C × P) for models fitted with all data are shown in
Table 2.

Results suggest that the inference was equivalent for mod-
els M2 and M3. For the healthy subjects (first three rows of
Table 2) an increase in the LF/HF ratio from seating to stand-
ing position was found. The same happened for the diseased
patients. When the control against disease patients were com-
pared at a given body position (last three rows in Table 2), the
only position for which the LF/HF ratio appears to be statisti-
cally different (p-value < 0.05) was the seated position. Models
M2 and M3 shows similar t statistics for the important param-
eters and comparisons.

6. Discussion

Under the Generalized Linear Mixed Model framework, it is
possible to fit models with different distributional assump-
tions. In this work, a model built assuming a gamma
distribution over the raw data allowed us to analyze and
infer the effects of neurogenic erectile dysfunction disease.
The GLMM framework allows us to fit correlated data under
non-normal distribution assumptions, yielding a more flexi-
ble modeling strategy for these data. An alternative approach
based on a linear mixed model (Gaussian context) of log trans-
formed data yielded similar results.

Common approaches to the statistical analysis of such data
are the application of t-test and/or non-parametric tests like
Wilcoxon. The approach proposed here is superior to both,
since it provides more information, for instance the effects
of interest can be explicitly modeled and inferences are done
in a more general context. Furthermore, the verification of
the underlying assumptions can be done in a straightforward
way. The decomposition of the expected mean into a linear
combination (or an invertible function of them) of experi-
mental effects gives us the chance of incorporating several
factors and covariates believed to affect the responses as well
as incorporating meaningful correlations and heterogeneous
variances. After the fitting process the effects of these factors
can be statistically assessed under an appropriate theoretical
background. This process is not feasible for the classical or
non-parametric approach.

The use of appropriate models, such as models M2 and M3,
provided more powerful inferences than model M1. In partic-
ular, the difference between supine and seated body positions
was not found to be statistically significant neither for healthy
nor diseased subjects under model M1.

In the current work, both alternatives, the log trans-
formation under normal distribution and raw data under
gamma distribution, satisfied model assumptions, yielding
valid inference of the expected effects and thus providing valid
conclusions. Model M3 is appealing and realistic since we do
not need to apply any explicit transformation to the observed
data in order to force them to fulfill the assumptions. We just

need to define the expected relationship between the mean
and the linear predictor and let the data speak for themselves.
In addition the interpretation is straightforward since we are
analyzing the sympatho–vagal balance as it is and not as a
difference between frequency bands.

When comparing the sympatho–vagal balance ratio LF/HF
between the healthy and diseased subjects we found sig-
nificant differences only in the seated position with an
increase in the LF/HF ratio for the disease subject. When
the health condition is held constant, in both cases the
LF/HF ratio increases from supine to standing (this con-
clusion is missed with model M1). The increase in the
ratio from supine to seated body position was close to
50% higher for subjects with erectile dysfunction compared
to healthy ones. These results are similar to the findings,
reported by Lavie et al., stating that patients complaining
of daytime sexual dysfunction have altered cardiac auto-
nomic balance [21]. Lavie et al. showed that in patients with
organic erectile dysfunction there is a relative decrease in
the activity of the parasympathetic division combined with
a dramatic increase in the activity of the sympathetic divi-
sion during sleep [21]. Our results show appropriate statistical
approach for the analysis of spectral cardiac sympatho–vagal
parameters may be a valuable non-invasive and relatively
simple method to study neurogenic erectile dysfunction in
patients.
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