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ux-induced injury promotes esophageal adenocarcinoma, one of the most rapidly increasing, highly le-
ncers in Western countries. Here, we investigate the efficacy of a combinatorial chemoprevention strat-
r esophageal adenocarcinoma and characterize the underlying molecular mechanisms. Specifically, our
ach involves the use of ursodeoxycholic acid (Urso) due to its ability to decrease injury-inducing bile
n combination with Aspirin to mitigate the consequences of injury. We find that Urso-Aspirin combi-
reduces the risk of adenocarcinoma in vivo in animals with reflux, decreases the proliferation of esophageal
carcinoma cells, and downregulates a key cell cycle regulator, CDK2. Mechanistically, using cell growth,
ase reporter, expression, and chromatin immunoprecipitation assays, we identify GLI1, a Hedgehog-
ted transcription factor, as a novel target of Urso-Aspirin combination. We show that GLI1 is upregulated
esophageal carcinogenesis, and GLI1 can bind to the CDK2 promoter and activate its expression. Although
so-Aspirin combination downregulates GLI1, the GLI1 overexpression not only abrogates the effect of this
nation on proliferation but it also restores CDK-2 expression. These findings support that the chemopre-
effect of the Urso-Aspirin combination occurs, at least in part, through a novel GLI1-CDK2–dependent
nism. To further understand the regulation of CDK2 by GLI1, both pharmacologic and RNAi-mediated
aches show that GLI1 is a transcriptional activator of CDK2, and this regulation occurs independent of
hened, the central transducer of the Hedgehog canonical pathway. Collectively, these results identify a
Smoot

novelGLI1-to-CDK2 pathway in esophageal carcinogenesis, which is a bona fide target for effective combinatorial
chemoprevention with Urso and Aspirin. Cancer Res; 70(17); 6787–96. ©2010 AACR.
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onic injury and inflammation play a central role in sev-
astrointestinal cancers including Barrett's-associated
ageal adenocarcinoma, a highly lethal and rapidly
sing cancer (1–4). It is well recognized that chronic in-
duces an inflammatory response and activates procar-
nic pathways in injured tissue (1–3, 5, 6). Although
natorial approaches have been successfully used in
nd tuberculosis, and are proposed in carcinogenesis
the usual approach in cancer prevention involves tar-
either the cause of injury or its consequences (2, 10,
sized that during carcinogenesis in Barrett's
eting both the cause (bile composition) and
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nsequence of injury (inflammation-associated path-
will be an optimal chemoprevention strategy.
address combinatorial chemoprevention in esophageal
carcinoma, we evaluated the effect of low-dose Aspirin
rsodeoxycholic acid (Urso) on the development of this
r. Interestingly, patients who use Urso for cholestatic
isease are at lower risk of colon cancer (12). Although
fect of Urso in injury-induced carcinogenesis remains
wn, it does lower the levels of bile salts that are strongly
cated as the cause of injury and carcinogenesis in
t's esophagus (13). The rationale to combine Urso with
was that patients who chronically use anti-inflammatory
including Aspirin are less likely to be diagnosed with
ageal adenocarcinoma (14). Although there is no in vivo
mental evidence that Aspirin by targeting the effect of
could prevent esophageal adenocarcinoma, anti-
matory agents such as cyclooxygenase-2 inhibitors have
hown to reduce the risk of this cancer in animals with
(15).We elected to use Aspirin over these anti-inflammatory
s because unlike cyclooxygenase-2 inhibitors, Aspirin
ot increase the risk of cardiovascular mortality (16).
his study, using a battery of in vitro and in vivo experi-

, we show that combinatorial chemoprevention using
ose Urso-Aspirin reduced the risk of reflux-induced
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ageal adenocarcinoma, whereas these agents were not
ve in preventing cancer when used individually. The
llular mechanism involved in this chemopreventive ef-
the inhibition of cell proliferation, and that the molec-
arget of this combination is the downregulation of
an important cell cycle regulator. Interestingly, further
to resolve the molecular mechanisms revealed that
is regulated at transcriptional level through a previous-
nown GLI1-mediated mechanism. Typically, GLI1, a
effector molecule of the oncogenic Hedgehog path-

xerts transcriptional regulation upon its activation by
hened receptor; however, here, we show that CDK2 up-
tion by GLI1 is Smoothened independent. The impor-
of GLI1 in context of combinatorial chemoprevention
her supported by our findings that GLI1 is overex-
d during injury-induced carcinogenesis in Barrett's
a, and the Urso-Aspirin combination downregulates
Finally, we show that GLI1 overexpression not only re-
the CDK2 repression caused by the Urso-Aspirin com-
on but also abrogates the effect of this combination on
oliferation. Therefore, these novel findings expand our
edge of mechanisms involved in chemoprevention, a
ely underappreciated field of research.

rials and Methods

nts and cell cultures
ess specified, all reagents were from Sigma. BAR-T
rry Shay, UT Southwestern, Dallas, TX), CPC-A, and
(Dr. P. Rabinovitch, University of Washington, Seattle,
ells were maintained in Barrett's Plus media (17–19).
n Barrett's–associated adenocarcinoma cell lines
and FLO-1 (Dr. David Schrump, National Cancer In-

, Bethesda, MD and Dr. David Beer, UMich, Ann Arbor,
ere maintained in DMEM (Life Technologies) with 1%-
tal bovine serum. Cell lines were authenticated with
tandem repeat and DNA fingerprinting within the last
ths.

odel of Barrett's esophagus, interventions,
onitoring
phagojejunostomy was performed on 100 rats to cause
injury, Barrett's esophagus, and adenocarcinoma (15).
ayo Clinic Institutional Animal Care and Use Commit-
proved this animal study. Eight week postoperatively,
viving rats were kept in individual cages and random-
:2:2:3) to a diet containing 1% Urso (n = 19), 0.3% As-
n = 19), 1% Urso+0.15% Aspirin (n = 19), or control (n =
e dose selection was based on the available literature
l as Barrett's mucosal tissue from 40 patients who re-
80 to 325 mg of Aspirin daily for 3 months. The pub-
range for Aspirin dose was 0.03% to 1.2%. We elected
0.15% Aspirin as we found that a dietary supplement
to 0.2% Aspirin could achieve similar effect on bio-

cal and molecular markers of injury and inflammation
achieved by 80 to 325 mg of Aspirin in patients with
t's esophagus. The published doses of Urso range from
o 1%, and we found that 1% Urso supplementation re-

consid
were m

r Res; 70(17) September 1, 2010
in similar bile salt profile as we have noted in Barrett's
agus patients who received 250 mg Urso thrice daily for
ths (20–23). Animals were euthanized 8 months after
mization for evaluation of end points as outlined below.
sy was performed as we have previously described (15).

roliferation and apoptosis
liferation was assessed by bromodeoxyuridine (BrdUrd),
optosis was detected using Annexin-5–positive cell on
nostaining using fluorescence microscope (19). MTS as-
r metabolically active, viable cells and morphologic fea-
of apoptosis through Hoechst staining were also
ned. All experiments were repeated thrice in triplicates.

xtraction and reverse transcription-PCR
al RNA isolated from patient samples, rat tissue, and
es (using Trizol reagent, Invitrogen) were purified with
y columns (Qiagen). Using OneStep reverse transcrip-
CR (RT-PCR) kit (Qiagen), with primers specific for
nd CDK2, PCR was performed (primers and conditions
ble upon request). The amplified products were ana-
on a 2% agarose gel.

rase reporter assays
roximately 60% confluent cells in six-well plates were
ted with 1 mL serum-free Opti-MEM (Invitrogen) con-
g 12 μL of Lipofectamine (Invitrogen) and 1.2 μg of
After 6 hours, the medium was replaced with DMEM
ning 10% fetal bovine serum. Luciferase activities were
red using the Dual-Luciferase Reporter assay (Promega)
rmalized by protein quantification. Each data point re-
ts an average of three independent transfections (24).

atin immunoprecipitation assay
s were transfected with GLI1 or parental vector. Sam-
ere immunoprecipitated using a GLI antibody (R&D
s; ref. 25). Immunoprecipitated DNA was amplified

R using primer sets for the four areas containing GLI
sites in CDK2 promoter sequence (please see supple-
l file for primers).

ids constructs
CDK2 promoter-Luciferase reporter (8xGLI) was kindly
ed by Dr. van Wijnen (University of Massachusetts,
ster, MA). The GLI reporter expression constructs were
provided by Dr. Chi-chung Hui (Research Institute,
to, Ontario, Canada). The cDNA for GLI1 was cloned
V-Tag2B vector (Stratagene), and short hairpin RNA

A) were designed and cloned into pFRT vector (Invitro-
sing standard recombinant DNA methods as previously
bed (the targeted sequences are in the supplemental
f. 24).

tical methods
statistical analyses were performed using the SAS soft-
All tests were two sided, and a P value of <0.05 was

ered statistically significance (Bonferroni adjustments
ade when indicated). The Student's t tests (or when

Cancer Research
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priate, the Wilcoxan rank-sum tests) were used to com-
he groups. All experiments performed in triplicate were
ed at least thrice.

lts

Aspirin combination decreases the rate of
ageal adenocarcinoma in vivo and inhibits
tt's epithelial cell proliferation
test the hypothesis that targeting both the cause and
uence of chronic reflux injury will be an optimal che-
vention strategy during carcinogenesis in Barrett's
agus, we used Urso and Aspirin in an established ani-

odel. We found that the incidence of esophageal pirin.

of apoptosis (Annexin-5 and Hoechst staining) was not different in CPC-A (5
cells (5 ± 1.2% versus 6 ± 2%).

acrjournals.org
Urso-Aspirin compared with controls (P < 0.05;
). In the combination group, 26% animals (5 of 19) de-
d esophageal cancer, whereas 62% (18 of 29) developed
r in the control group (an absolute risk reduction of
ith 95% confidence interval, 45–69%). There was no
cant difference in the risk of esophageal adenocarci-
between the Urso alone–treated group (8 of 19,

28) or Aspirin alone–treated group (9 of 19, P = 0.48),
red with the control group.
examine the cellular processes by which Urso-Aspirin
nation exerts this tumor-inhibitory effect, premalignant
cells were treated for 48 hours with either 150 μmol/L
.5 mmol/L Aspirin, or 150 μmol/L Urso+1.5 mmol/L As-

Urso-Aspirin combination resulted in a robust reduction
carcinoma was significantly lower in animals treated in proliferation (91 ± 6.7% reduction compared with control,

1. Combination treatment with Urso and Aspirin reduces tumor incidence in vivo and inhibits cell proliferation in vitro. A, the esophageal cancer
uction was noted only when Urso and Aspirin were combined (P < 0.05, compared with control). B, at 48 h, compared with control, BAR-T cell
ation was reduced by 91 ± 6.7% with Urso-Aspirin (150 μmol/L Urso and 1.5 mmol/L Aspirin), 42 ± 3.3% with Urso-alone (150 μmol/L) and 44 ± 4.2%
pirin-alone (1.5 mmol/L). The Urso-Aspirin combination treatment had more robust inhibition of proliferation compared with either Urso or Aspirin
< 0.05). C and D, a 48-h treatment with Urso-Aspirin (150 μmol/L Urso and 1.5 mmol/L Aspirin) significantly decreased (P < 0.01, compared

ntrol) the BrdUrd-positive cells in CPC-A by 77 ± 19.9%, BAR-T by 97 ± 55%, and FLO-1 cells by 51 ± 3.02%; however, compared with control,

± 3% versus 8 ± 2.1%), BAR-T (7 ± 2% versus 6 ± 1%), or

Cancer Res; 70(17) September 1, 2010 6789
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1), which was significantly enhanced over Urso alone
3.3% reduction) or Aspirin alone (44 ± 4.2% reduction;
01). To further confirm this finding, premalignant
A, BAR-T) and malignant (FLO-1) esophageal epithelial
nes were treated with either 150 μmol/L Urso + 1.5
/L Aspirin or vehicle. At 48 hours, the Urso-Aspirin com-
on decreased BrdUrd-positive cells in CPC-A by 77 ±
BAR-T by 97 ± 55%, and FLO-1 cells by 51 ± 3.02% com-
with control (P < 0.05; Fig. 1B and C). However, the pro-
n of cells undergoing apoptosis with Urso-Aspirin were
ferent compared with vehicle-treated cells (Fig. 1D). To-
, these findings show that Urso-Aspirin is effective in
ting Barrett's-associated neoplasia, and the cellular
ss that it targets is proliferation (not apoptosis). Al-
h both Aspirin and Urso can target distinct regulatory
ns that are involved in the cell cycle (26, 27), the mech-
underlying the downregulation of proliferation by their
nation remains unknown.

Aspirin combination downregulates CDK2, an
tant cell cycle regulator, both in vitro and
o in Barrett's esophagus
ing determined the efficacy of Urso-Aspirin in prevent-
ophageal adenocarcinoma, we conducted a pathway-
c gene expression profile to identify molecular targets
combination. As Urso-Aspirin downregulated prolifer-
in Barrett's epithelium, it was interesting to find cell
regulator, CDK2, as a promising target from this pro-
28). We therefore examined CDK2 expression in esoph-
cell lines treated with the Urso-Aspirin and found
his combination downregulated CDK2 expression
A). These results were further confirmed in vivo in
animals treated with Urso-Aspirin showed a reduction
k2 expression in Barrett's mucosa compared with

ols (Fig. 2B). To determine whether the effect of sion c

cts were treated 24 h posttransfection with either vehicle, Urso, Aspirin, or a comb
mpared with control, the Urso-Aspirin combination markedly reduced CDK2 prom

r Res; 70(17) September 1, 2010
el, FLO-1 cells were initially transfected with CDK2
ter-luciferase reporter constructs; twenty-four hours
ansfection, cells were further treated with Urso-Aspirin
hours. The protein normalized luciferase activity
d that Urso-Aspirin caused a 4-fold reduction in
promoter activity compared with control (100 ± 20
22.2 ± 6, P < 0.01; Fig. 2C). These results provide evi-
, for the first time, that CDK2, a cell cycle regulator
to play an important role in proliferation, is a target
o-Aspirin and can be regulated at the transcriptional
y this combination. These novel findings led us to
r examine CDK2 regulation in context of combinatorial
prevention in Barrett's esophagus.

Aspirin combination downregulates CDK2 by
onizing a GLI1-mediated, Smoothened-
endent mechanism in Barrett's epithelial cells
ause Urso-Aspirin downregulated CDK2 expression and
sed its promoter activity, we next conducted bioinfor-
s sequence analysis of the CDK2 promoter using the
SFAC Public database along with the functional screen-
e found GLI proteins, particularly GLI1, as promising
ate regulators of CDK2 promoter (Fig. 3A). To confirm
rediction, we first examined whether GLI1 binds to en-
ous CDK2 promoter. We transfected Barrett's epithelial
ith either control vector or a GLI1 construct. Chro-
immunoprecipitation using a GLI1 antibody showed
DK2 promoter sequence was enriched in cells trans-
with GLI1 (Fig. 3B), suggesting that GLI1 binds to the
enous CDK2 promoter, which is therefore a direct
of GLI1. To further solidify these findings and to
ine functional relevance, we co-transfected Barrett's
lial cell lines with a CDK2 promoter-luciferase report-
struct along with either control vector or GLI1 expres-

onstructs. At 48 hours, GLI1-transfected cells had up
spirin on CDK2 expression occurs at the transcription- to 5-fold increase in CDK2 promoter activity compared with

2. Urso-Aspirin combination decreases CDK2 expression and promoter activity both in vitro and in vivo in Barrett's esophagus. A, RT-PCR showed
O-1 cells treated with Urso-Aspirin combination (150 μmol/L + 1.5 mmol/L) for 24 h had a marked reduction in CDK2 expression compared with
cells as well as cells treated with either Urso or Aspirin alone. B, a similar reduction in Cdk2 expression is seen in esophageal tissue derived from rats
g the combination therapy but not when these agents were used individually. C, FLO-1 cells transfected with CDK2 promoter-luciferase reporter
ination of Urso-Aspirin (150 μmol/L + 1.5 mmol). Twenty-four hours
oter activity (100 ± 20 versus 22.2 ± 6, P < 0.01).

Cancer Research
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l (Fig. 3C), suggesting that not only did GLI1 bind the
promoter but also acted as a transcriptional activator
K2. To further substantiate these findings, esophageal
ere co-transfected with a CDK2 promoter-luciferase
er construct along with either shRNA against GLI1
I1) or scrambled shRNA control. Congruent with the
data, the shGLI1-transfected cells had up to a 5-fold
tion in CDK2 promoter activity when compared
ontrol.
determine if the decrease in the CDK2 promoter activ-
shGLI1 could be relieved by GLI1 overexpression, we
nsfected esophageal cells with a CDK2 promoter re-
construct along with shGLI1 or scrambled shRNA to-
with a shRNA-resistant GLI1 expression construct. We
that under these experimental conditions, GLI1 re-
CDK2 promoter activity (Fig. 3C).
1 is a downstream effector of the Hedgehog pathway
o determine the involvement of this cascade in the
lation CDK2 expression and promoter activity, esopha-
ncer cell lines FLO-1 and SKGT4 were transfected with
promoter-luciferase reporter constructs. At 24 hours,
cells were treated with either vehicle or cyclopamine
ol/L), which blocks Hedgehog pathway at the level of

-resistant GLI1 construct, which does not contain the 3′end of GLI1 mR
thened, a central transducer of canonical Hedgehog
ay (30). Protein normalized luciferase activity showed

binati
Urso-

acrjournals.org
yclopamine failed to decrease the CDK2 promoter
y compared with control (Fig. 4A). Moreover, there
o change in CDK2 expression with cyclopamine treat-
(Fig. 4B). The failure of cyclopamine to decrease CDK2
y suggests that the GLI1-dependent increase in CDK2
y occurs in a Smoothened-independent manner (non-
ical), or suppression of GLI1 by cyclopamine is in-
ient to block CDK2 expression. To confirm these
acologic experiments, FLO-1 cells were cotransfected
DK2 promoter-reporter with either empty vector or a
tutively active Smoothened (Ca-SMO) construct. At 48
, Smoothened-transfected cells had no significant
e in CDK2 promoter activity compared with empty vec-
0 ± 14 versus 78.5 ± 8.9, P > 0.05; Fig. 4C). These findings
r support the observation that GLI1-dependent activa-
f CDK2 promoter is Smoothened independent. Finally,
cells were co-transfected with CDK2 promoter reporter
with empty vector or Ca-SMO. The next day, cells were
d with either vehicle or Urso-Aspirin. Twenty-four hours
as anticipated, compared with control, Urso-Aspirin
nation reduced CDK2 promoter activity by 78% (100 ±
ersus 21.74 ± 4, P < 0.05), and Ca-SMO failed to rescue
K2 promoter inhibition by the chemoprevention com-

t is the target of shRNA.
3. GLI1 binds to endogenous CDK2 promoter and activates CDK2 promoter. A, outline of CDK2 promoter with putative GLI binding site (G).
matin immunoprecipitation (IP) assay shows that GLI1 could directly binds to endogenous CDK2 promoter in the core promoter region. C, SKGT4
O-1 cells were cotransfected with GLI1 and CDK2. In both cell lines, there was an increase in CDK2 activity in the GLI1-transfected cells when
on (Fig. 4C, right). Together, these findings show that
Aspirin combinatorial therapy downregulated CDK2

Cancer Res; 70(17) September 1, 2010 6791
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gh a GLI1-mediated, Smoothened-independent
nism.

is overexpressed during carcinogenesis in
tt's esophagus and can be downregulated
so-Aspirin
determine translational relevance of GLI1 to carcino-
s in Barrett's esophagus, its expression was examined
o in cell lines, biopsy samples from Barrett's esophagus
ts, and animal tissue. The esophageal adenocarcinoma
and SKGT4) cell lines had a higher GLI1 mRNA ex-

on by RT-PCR compared with the normal squamous
arrett's cell lines (BAR-T and CPC-A). We also noted

sed GLI1 expression in patients with adenocarcinoma
ared with squamous and Barrett's tissue (Fig. 5A).

depen
transc

21.7 versus 21.74 ± 4, P < 0.05). A similar repression of CDK2 promoter acti
O (100 ± 21.7 versus 10.5 ± 8, P < 0.050), suggesting that Ca-SMO failed to releas

r Res; 70(17) September 1, 2010
borating these findings, we examined Gli1 expression
esophageal tissue and found that there was increased
xpression in esophageal adenocarcinoma compared
arrett's and normal squamous samples (Fig. 5B). To
our understanding of the role of GLI1 in the context
chemopreventive effect of Urso-Aspirin, FLO-1 cells
reated with either control or Urso-Aspirin for 48 hours.
ared with control, Urso-Aspirin significantly reduced
expression (Fig. 5C). In agreement with these data,
Gli1 expression was examined in vivo, there was
d reduction in Gli1 expression in animals that received
rso-Aspirin compared with animals that received the
l diet (Fig. 5C). Finally, to investigate if Urso-Aspirin–

dent decrease in GLI1 expression has an effect on its
riptional activity, FLO-1 cells were transfected with
4. GLI1 regulates CDK2 promoter in Barrett's epithelial cells, and this GLI activity is independent of upstream canonical Hedgehog pathway.
1– and SKGT4-transfected with CDK2 promoter-reporter constructs were treated with either vehicle or cyclopamine (5 μmol/L to inhibit smoothened
anonical Hedgehog pathway). Compared with control, cyclopamine-treated cells did not show any change in CDK2 promoter activity. B, FLO-1
GT4 were treated with either vehicle or cyclopamine (5 μmol/L), and up to 24 h, compared with control, no changes in CDK2 expression were
ith Cyclopamine treatment. C, FLO-1 cells were cotransfected with CDK2 promoter reporter along with either empty vector or Ca-SMO
ct for 48 h. Compared with empty vector, Ca-SMO–transfected cells had no significant change in CDK2 promoter activity (100 ± 14 versus
8.9, P > 0.05). D, FLO-1 cells cotransfected with CDK2 promoter reporter along with empty vector or Ca-SMO construct. Twenty-four
ater, cells were treated either with vehicle or Urso-Aspirin. Compared with control, Urso-Aspirin reduced CDK2 promoter activity by 78%
vity was also noted in the cells that were cotransfected with
e the CDK2 promoter inhibition by Urso-Aspirin combination.

Cancer Research
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ciferase reporter construct that had eight consecutive
inding sites (8xGLI), and 24 hours later, they were
r treated with either control or Urso-Aspirin for
urs. Luciferase activity showed that Urso-Aspirin
a 59 ± 8% reduction in the GLI-luciferase reporter ac-
compared with control (P < 0.01; Fig. 5D). These
gs indicate that GLI1 is relevant to chronic injury–
ated carcinogenesis in Barrett's esophagus and can
nregulated by Urso-Aspirin.

overexpression antagonizes the chemopreventive
of Urso-Aspirin combination on cell proliferation
estores CDK2 expression
ing established that GLI1 expression increases during
ageal carcinogenesis and Urso-Aspirin decreases GLI1
sion, we next examined whether the effect of Urso-
n on cell proliferation and CDK2 is GLI1 dependent.

in FLO-1 cells compared with control treatment (P < 0.01).
dress this, FLO-1 cells were treated for 48 hours with
Urso-Aspirin or control. As expected, the combination

dent. F
vector

acrjournals.org
sed the proliferation of FLO-1 cells by 39% (P < 0.05).
ver, in FLO-1 cells that were transfected with GLI1
treatment with Urso-Aspirin, there was no significant
ion in proliferation compared with control (11%, P =
ig. 6A). After confirming that the effect of Urso-Aspirin
ll proliferation can be abrogated by GLI1 overexpres-
e investigated whether GLI1 overexpression could also
e the Urso-Aspirin–dependent downregulation of CDK2
ter activity. FLO-1 cells were co-transfected with CDK2
ter-luciferase reporter constructs along with either
onstructs or control vector for 24 hours. These cells
treated with either Urso-Aspirin or control for
rs. A 70% reduction in CDK2 promoter-Luciferase ac-
was noted in Urso-Aspirin only–treated cells (P < 0.05),
was abrogated in GLI1-transfected cells (Fig. 6B). To
ement this finding, we investigated whether the effect
o-Aspirin on CDK2 expression was also GLI1 depen-
5. GLI1 Expression increases during carcinogenesis in Barrett's esophagus and can be targeted by the Urso-Aspirin combination. A, GLI1
ion increased progressively from esophageal squamous to adenocarcinoma cell lines (left). RT-PCR revealed a progressive increase in GLI1
ion from squamous to cancer in patient samples (right). B, RNA was extracted from squamous, Barrett's, and adenocarcinoma rat samples from
diet group, and RT-PCR revealed that Gli1 expression was increased from Barrett's to cancer in rat. C, esophageal cell line (FLO-1) treated with
or Urso, Aspirin, or Urso+Aspirin (150 μmol/L+1.5 mmol/L) for 24 h. RT-PCR revealed a decrease in GLI 1 expression in the cells treated with
o-Aspirin. RT-PCR performed on RNA extracted from rat esophageal tissue showed a similar decrease in Gli1 expression in the combination-treated
ompared with control or when these agents were used individually. D, FLO-1 cells transfected with GLI reporter to measure GLI activity were
LO-1 cells were transfected with either GLI1 or control
, and 24 hours, later they were treated with either
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spirin or control. Whereas the combination caused a
egulation of CDK2 expression in the control vector–
ected cells, it failed to do so in the GLI1-transfected
Fig. 6C). Together, these findings show that the effect
o-Aspirin on cell proliferation and CDK2 expression oc-
t least in part through GLI1 inhibition. These findings,
with prevention of esophageal cancer, inhibition of
t's epithelial cell proliferation, as well as downregula-
f CDK2 by Urso-Aspirin, support the observation that
hibition is mechanistically linked to the prevention
plastic transformation by the Urso-Aspirin.

ssion

ealth of experimental and epidemiologic evidence has
shed the importance of chronic injury inflammation in
ogenesis (1–3, 15). Given the epidemiologic evidence that

combination treatment showed a decrease in CDK2 expression. When t
combination treatment, the effect of Urso-Aspirin on CDK2 expression w
ts who use anti-inflammatory agents are at lower risk of
ping several cancers (14, 31–34), anti-inflammatory

in Bar
salt, U

r Res; 70(17) September 1, 2010
have been widely investigated and found to have tumor
essive effect both in vivo and in vitro (1, 35). This ap-
to target the effect of injury, although important, is

y not sufficient in preventing carcinogenesis, possibly be-
it does not take into account the cause of injury. This
, along with the evolving concept of combinatorial che-
vention (36, 37), led us to hypothesize that targeting
the cause and effect of chronic injury will lead to
control of carcinogenesis. We examined the injury-
d carcinogenesis in Barrett's esophagus to address the
veness of the combinatorial chemoprevention approach
examine the underlying mechanisms. A long premalig-
hase and the association of Barrett's esophagus with a
lethal adenocarcinoma makes it an important disease to
ne chemoprevention strategy (2, 10). Moreover, the con-
of reflux, particularly primary and secondary bile salts,
are implicated in chronic injury during carcinogenesis

ells were transfected with GLI1 and then subsequently treated
ogated.
6. GLI1 overexpression antagonizes the effect of Urso-Aspirin combination on cell proliferation and CDK2 expression. A, FLO-1 cells treated with
o-Aspirin combination had a significant reduction (P < 0.05) in proliferation compared with control. This effect of Urso-Aspirin combination on
ation of FLO-1 cells was reversed when the cells were transfected with GLI1 before treatment with the combination (P = 0.54). B, FLO-1 cells treated

hese c
rett's esophagus (2), can be modified by the tertiary bile
rso (13). Therefore, carcinogenesis in Barrett's esophagus
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www.a
es a distinct opportunity to test a combinatorial che-
vention strategy that involves the modification of bile
long with the use of anti-inflammatory agents, which
ize the consequence of injury.
g low-dose Urso to reduce the concentration of injury-
ng bile salts along with a low-dose Aspirin in Barrett's
agus, we found that this combination significantly re-
the rate of esophageal adenocarcinoma in animals with
injury. In contrast, when used individually, both Urso
spirin were not effective in reducing the rate of esopha-
denocarcinoma. Our in vitro results show that Urso-
n decreases Barrett's epithelial cell proliferation, a key
r process that is associated with neoplastic progression
rett's epithelial cells (38, 39). Although there is epidemi-
data supporting the chemopreventive potential of aspi-
Barrett's esophagus and there is indirect evidence that
by modifying the concentration of injury-inducing bile
may help prevent esophageal adenocarcinoma (13, 14,
33, 40), this is the first in vitro and in vivo experimental
ce to support that these agents, when used together,
t esophageal adenocarcinoma.
our knowledge, this study, for the first time, provides
ce that GLI1 is involved in reflux injury–induced carci-
esis and that it is a keymolecular target of combinatorial
prevention by Urso-Aspirin. GLI proteins are highly
rved (41, 42) proteins that are emerging as important
riptional regulators of oncogenic pathways by regulat-
optosis and epithelium to mesenchyme transformation
–47). In this study, we uncovered an additional mecha-
hat GLI proteins could use to promote carcinogenesis by
ng that GLI1 binds to CDK2 promoter, upregulates CDK2
ription, increases CDK2 expression, and induces cell
ration. Furthermore, the translational relevance of this
ular mechanism, in the context of chemoprevention, is
rted by several novel findings in this study. First, GLI1 is
lated both in patients as well as in animals during injury
mation–induced carcinogenesis. Second, Urso-Aspirin
nation downregulates GLI1, represses CDK2, decreases
ration, and prevents cancer development. Finally, GLI1
pression can reverse the effect of Urso-Aspirin combi-
not only on CDK2 expression but also on proliferation.
er, these findings provide alternative mechanisms that
ould use during oncogenesis and reveal the role of GLI1
moprevention.
s study also provides an additional pharmacologic op-
o inhibit emerging pro-oncogenic protein GLI1. It is
cepted that the GLI1 activity can be upregulated either

h canonical Hedgehog-Smoothened–dependent sig-

oncanonical pathway upon
Rece

OnlineF

ttar NS, Wang KK. Mechanisms of disease: carcinogenesis in
rrett's esophagus. Nature Clinical Practice Gastroenterology &
patology 2004;1:106–12.
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several signaling pathways, including transforming
h factor-β (TGF-β) or Ras, could converge (29). At pres-
yclopamine is the only available Food and Drug
istration–approved drug that inhibits GLI1 by targeting
thened in the canonical pathway (47–49). Our data,
show that Urso-Aspirin combination targets GLI1 in
othened-independent manner (likely through TGF-β
rostaglandin E2–mediated mechanisms; data not
) provides an additional novel pharmacologic ap-
to downregulate GLI1. Therefore, under the circum-

s, in which both canonical and noncanonical signaling
ulate GLI1 during carcinogenesis, one can envision a
natorial strategy involving cyclopamine to target the
ical pathway and Urso-Aspirin to inhibit the non-
ical pathway.
ause this was a proof of principal study, it was beyond
ope of this article to test the efficacy of these agents at
west possible doses; however, it remains an important
eration for future animal or clinical study. As outlined
method section, the doses selected in this study were
the published range and were further refined based on
armacokinetic and/or molecular data available from
ts who received Urso or Aspirin, and will therefore
hievable in vivo in patients. At this fixed, low-dose
spirin combination, we did not encounter any side ef-
n animals. Although both the safety and efficacy of this
ach need to be investigated in patients with Barrett's
agus, we do not anticipate any serious side effects. Urso
tolerated by patients who take it up to 15 mg/kg/d on
erm basis, and low-dose Aspirin is clinically safe given
he majority of Barrett's patients take proton pump
tors, which can prevent gastrointestinal bleeding.
onclusion, our study contributes several novel observa-
in the field of chemoprevention that, although discov-
hile studying carcinogenesis in Barrett's esophagus,

ind wider implications to other cancers.
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