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Abstract—Low noise, high resolution, fast and accurate �

maps from MRI images of the brain can be performed using a
dual flip angle method. However, � field inhomogeneity, which
is particularly problematic at high field strengths (e.g., 3T), limits
the ability of the scanner to deliver the prescribed flip angle,
introducing errors into the � maps that limit the accuracy of
quantitative analyses based on those maps. A dual repetition
time method was used for acquiring a � map to correct that
inhomogeneity. Additional inaccuracies due to misregistration
of the acquired �-weighted images were corrected by rigid
registration, and the effects of misalignment on the � maps were
compared to those of � inhomogeneity in 19 normal subjects.
However, since � map acquisition takes up precious scanning
time and most retrospective studies do not have � map, we
designed a template-based correction strategy. � maps from
different subjects were aligned using a twelve-parameter affine
registration. Recomputed � maps showed an important improve-
ment with respect to the noncorrected maps: histograms of all
corrected maps exhibited two peaks corresponding to white and
gray matter tissues, while unimodal histograms were observed in
all uncorrected maps because of the inhomogeneity. A method to
detect the best nonsubject-specific � correction based on a set of
features was designed. The optimum set of weighting factors for
those features was computed. The best available � correction
was detected in almost all subjects while corrections comparable
to the � map corrected using the � map from the same subject
were detected in the others.

Index Terms— � inhomogeneity, brain, image registration,
magnetic resonance images (MRI), � mapping.
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I. INTRODUCTION

A CCURATE estimation of relaxation time from mag-
netic resonance images (MRI) is essential for some

clinical applications, such as dynamic contrast-enhanced MRI
studies of cancer, which require low noise and high resolution
over a large volume [1]–[3]. The variable flip angle method,
which has been widely accepted to achieve those requirements
in a reasonable time frame, is based on acquiring spoiled
gradient recalled-echo (SPGR) images with various different
flip angles with the repetition time held constant. Despite
longer acquisition times, multiple flip angles (from three up to
ten) are preferred when imaging over a large range [4], [5].
However, according to Wang et al. for any given ratio,
there exist two optimal flip angles that minimize the uncertainty
in the estimated values [6].

Intensity inhomogeneity is often seen in MR images and
is caused by many factors. However, the electromagnetic
interaction with the object is the primary cause of that inho-
mogeneity [7]. Proper estimation requires minimizing the
effects of spatial variations of the transmitted flip angle
at every voxel, which is related to the prescribed flip angle
as , where denotes the spatial variation
of the radiofrequency (RF) or field [4]. In MRI systems
with low static magnetic field , the Larmor
frequency (i.e., the precession frequency of the hydrogen nuclei
around the direction of the applied magnetic field), and hence
the frequency of the field, is very low. In that case, since
the dimension of the human body is a small fraction of that
wavelength, its interaction with the field can be neglected.
However, the main limitation of low field systems is their
low signal-to-noise ratio (SNR), which is proportional to the
field strength [8]. Therefore, higher fields (e.g., 3T) are
preferred to increase SNR. However, inhomogeneity also
increases because the influence of wavelength becomes much
more relevant at 3T [9]. The wavelength in tissue, which is
proportional to the inverse of the square root of the dielectric
constant, is reduced due to higher dielectric constant in biolog-
ical tissue (typically between 10 and 100). If the wavelength of
the RF field is of the same order as the imaged object then either
destructive or constructive interferences of the transmitted RF
field may be observed resulting in a regional signal loss or
regional brightening, respectively [10].

A discussion about different techniques used to address this
problem has been presented in detail in at least three major
reviews [11]–[13]. According to those reviews, correction
methods can be classified in two main groups: retrospective

0278-0062/$26.00 © 2010 IEEE



1928 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 29, NO. 11, NOVEMBER 2010

methods and prospective methods. The retrospective methods
solve the undetermined problem (1) using only the uncorrected
images under different assumptions about the acquisition
process. The original and corrected intensities are related by

(1)

where is the true intensity spatial distribution, is the mea-
sured voxel intensity, is the bias or inhomogeneity field and

is the additive noise distribution at a voxel location
. On the other hand, prospective methods rely on the

acquisition of additional data or prior knowledge resulting in a
subject-specific correction. The aim of both approaches is to im-
prove image quality to make quantitative analyses reliable.

A large number of retrospective methods to correct in-
homogeneity can be found in the literature [13]–[27] and can
be grouped in at least three major categories. There is a first
category known as surface fitting that relies on the assumption
that the inhomogeneity field is slowly varying. Therefore, it can
be approximated by a parametric smooth function whose pa-
rameters can be estimated either by segmenting a set of voxels
throughout different tissues [15], [17], [24], which provides in-
formation about the inhomogeneity map, or by entropy mini-
mization [18], [19], [22].

A second category includes methods that exploit the slowly
varying characteristic of the inhomogeneous field to separate it
from the true image by lowpass filtering. Due to their simplicity
and efficiency they have been widely used [13], [14], [21]. Re-
cently, lowpass filtering methods have been extended using the
wavelet transform and were shown to be effective in removing
inhomogeneity in images acquired with different kind of coils
[16], [20].

There is a third group of retrospective methods known as sta-
tistical methods that assume that the inhomogeneity field fol-
lows a given distribution, or model that inhomogeneity as a
random process [23], [27].

A particular approach proposed by Sled et al. is the N3
method [25], which derives a nonparametric model of the tissue
intensity directly from the data, avoiding in this way some
of the restrictive model assumptions found in other similar
methods. Particularly, the N3 method does not require a model
of the tissue intensities in terms of discrete tissue classes, nor
does it rely on a segmentation of the volume into homogeneous
regions. The optimization criterion is to find the smooth, slowly
varying multiplicative field that maximizes the frequency con-
tent of the distribution of tissue intensities. Like in most other
retrospective nonuniformity correction methods, if the object
is itself a smooth and slowly varying field then the correction
field that maximizes that frequency content will also remove
the natural variations of the object. Particularly, the underlying
cell structure of different regions of the brain induces a range
of intensities in structural -weighted MRI scans.
An example is that of subcortical tissues in regions of the
thalamus and lenticular nucleus, whose intensity in MRI
is between that of pure white matter (WM) and gray matter
(GM) and can exhibit a spatially varying range of intensities.
Studholme developed a correction of brain MRI image distor-
tion to address this limitation [26]. They performed a manual

segmentation-based bias estimation to provide an accurate
tissue intensity template for bias correction and a 3-D model
of the intensity variation across the brain is created by fitting a
B-spline model to this intensity profile. The aim of this method
is to capture the local intensity variation within a given kind
of tissue, which should not be removed when compensating
the global inhomogeneity due to the acquisition process, and
use it as a reference template. MRI data was registered to the
target reference template using a free form volume deformation
procedure to separate smoothly varying inhomogeneity effects
from underlying anatomical structure.

Different prospective methods to compensate field inho-
mogeneity by acquiring additional images have been presented
in the past. Ishimori et al. proposed a method to estimate and
correct inhomogeneity that uses multiple SPGR for 3T spin-
echo MRI, which relied on the acquisition of several images
with different echo times and flip angles for a fixed
[28]. To compute corrected maps, Mihara et al. used
multisliced spoiled gradient echo sequences on a 1.5T scanner
with different and flip angles, requiring 29 min to acquire
the three images for each brain [29]. Treier presented a com-
bined and mapping technique for estimation in ab-
dominal contrast-enhanced MRI [30] that computes maps
from two images acquired using two optimal flip angles [6]
and compensates the inhomogeneity using a subject-specific

map acquired by means of a dual method [31]. Deoni
presented a method that combines the usual multiangle SPGR
data with at least one inversion-prepared SPGR data in order
to obtain an unique solution for the map, the factor propor-
tional to the longitudinal magnetization and the spatial variation
of the radiofrequency field by least square minimization, which
requires 10 min for mm isotropic and maps acquisi-
tion [32] with less than 5% of error, and 6:40 min for a map
( matrix).

In the clinical setting, it is beneficial to minimize scanning
time and it would be desirable that corrections may be made
from a template, obviating the need for obtaining a map
each and every time a patient is scanned. Using template
maps would also allow more accurate quantitative analyses in
studies where maps were not previously acquired. However,
using a single template map for all corrections may intro-
duce additional inaccuracies. Alternatively, a set of template
maps might minimize those inaccuracies provided that an effi-
cient method to detect the most realistic map based on a set
of features is available.

Our template-based correction method is based on
Treier’s technique but with the incorporation of modules to
align acquired images and to transform maps from other
subjects. We validated the methodology using phantoms and
investigated the shift in the mean value of the corrected map
when compared to the noncorrected one also reported
by Treier [30]. images used to produce maps must
be aligned. We incorporated an image registration step and
compared the effects of misalignment between both acquired

images to those of inhomogeneity on the computed
maps. A sample of 19 normal volunteers who underwent brain
MRI scanning was considered for this study. White and gray
matter relaxation times were estimated from corrected maps
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and compared to previously reported data [32]. Preliminary re-
sults have already been presented [33]. inhomogeneity in
maps computed from registered images was also compensated
using maps acquired from other subjects. Those maps were
previously aligned using an affine registration algorithm. The
performance of those corrections was evaluated. An automatic
method to detect the map that performs the best correction
when compared to the map corrected with the proper map
(called reference map, ) was designed based on a set of
features and evaluated.

II. METHODS

A methodology to obtain maps from MRI images of the
brain with two optimal flip angles was used in nineteen normal
volunteers. In order to reduce the inhomogeneity produced by
the fluctuation around the prescribed flip angle, which is partic-
ularly problematic in high field MRI studies, maps were gen-
erated using a dual strategy [31] and incorporated into the
calculation. The implementation of the correction method-
ology was evaluated using a phantom and the results were com-
pared to those using an inversion recovery technique and the
retrospective N3 method. Effects of image misalignment on the
quality of maps were investigated by rigidly registering the
two 3-D images acquired with different flip angles and
compared to those due to inhomogeneity. A Brain Extrac-
tion Tool (BET), which is a 3-D method that uses a deformable
model that evolves to fit the brain surface by the application of a
set of locally adapted forces [34], was used to extract the brains
from the maps in order to compute intensity histograms. In
those histograms, each tissue type, e.g., WM, GM, and cere-
brospinal fluid (CSF), was modeled by Gaussian functions. In
order to estimate the peak value and its standard deviation
for WM and GM tissues, mixed classes were neglected and a
three-Gaussian fitting was used [35]. Ideal histograms of the
whole brain should exhibit two peaks corresponding to the WM
and GM tissues, while CSF does not contribute to a third peak
due to its small volume. In addition, each map from aligned
images was corrected using the maps from all the other sub-
jects. For that purpose, high flip angle images from dif-
ferent subjects were registered to each other using a twelve-pa-
rameter affine registration with mutual information metric and
linear interpolation, and the transformation obtained was ap-
plied to the maps. The influence of the object position on the

maps was studied. maps corrected using both the proper
map and the transformed maps from other subjects were

compared and the percentage of voxels whose relative differ-
ence was less than a given threshold was used to quantify the
quality of the correction. The whole sample was divided into
two sets. From the reference set several features were computed
and used to characterize the quality of the corrections in each
subject in the learning set, which was utilized to detect the best
possible correction. A training procedure was performed to find
the optimum set of weighting factors for each feature.

A. Subjects and Imaging

Nineteen normal volunteers (9 males and 10 females) with
ages between 23 and 62 mean stdev

without history of neurological diseases were considered in this
study. The imaging protocol was approved by the institutional
review board and informed consent was obtained from all
subjects. Imaging was performed using a 3T Philips system
(Philips, Best, The Netherlands) equipped with Explorer
gradients using a SENSE head coil. Two 3-D fast field
echo (FFE) images (48 slices, FOV mm mm,
slice thickness mm, matrix ) in an axial
orientation were acquired using a dual flip angle SPGR pro-
tocol ms ms , with
flip angles selected to achieve maximum accuracy in the
range of white and gray matter tissue [30]. Another two
images (24 slices, FOV mm mm, slice thick-
ness mm, matrix ) were simultaneously
collected to produce maps from a dual- SPGR protocol

ms ms ms . The reduced
resolution was chosen to avoid increased acquisition times.
Repetition times were chosen based on the optimum ratio in
the range of 4-6 in order for the ratio between signal intensities
from both images to be sensitive to flip angle variations, under
the condition [31]. The total acquisition time
for the four images and map generation is 7:30 min.

B. Misalignment Correction

A 3-D rigid registration algorithm based on the mutual
information metric presented by Mattes et al. [36] using
linear interpolation was incorporated into our code in order
to correct any possible misalignment between the two
images used for the map calculation. The other two
images used for the maps are not registered since they are
simultaneously acquired. The mutual information metric
is an image discrepancy measure based on the analysis of the
histograms of both the reference and test images (2). Cost
function minimization requires the computation of the joint
probability distributions as well as the marginal probability
distributions of both the reference and test images .
The six parameters of the transformation are obtained from
such minimization. The rigid transformation is suitable for the
expected movement of the head during the scanning and the
mutual information metric is a fast and accurate way to estimate
the image discrepancy given the small misalignments expected
in this kind of studies

(2)

C. Calculation With Correction of Inhomogeneity

The variable flip angle method for estimation is based on
the consecutive acquisition of SPGR ( -FFE) sequences
with different flip angles. Our implementation of the map
generation is based on the two optimal flip angles method [6],
which is described in the following paragraphs. Each acquired

image has a theoretical signal intensity that depends
on the prescribed flip angle , the longitudinal magnetization

, the echo time , the repetition time , and the relax-
ation times and (3). That theoretical signal intensity can
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also be expressed as a linear relation between and
(4)

(3)

(4)

The factor in (3) and (4) is approximately 1
since the echo time in our images ms is much
smaller than the expected value for white and gray matter at
3T, which ranges between 50 ms and 100 ms [30], [37]. Under
this assumption the two optimal prescribed flip angles can be
computed from (5), resulting in and in order
for the estimation to be accurate in the range for typical white
and gray matter values at 3T [32]. The precision in (5) is
maximized for when fitting a
polynomial for each ratio over a wide range [32], [37],
where , and are the signal intensities
of two given images and , and is the Ernst signal

(5)

For those signal intensities and corresponding to flip
angles and , the slope in the linear relation (4) can be
obtained (6) and used to compute (7) at every image voxel

(6)

(7)

inhomogeneity maps are generated from a dual tech-
nique where two images are acquired with different but the
same and prescribed flip angle. Equation (8) shows the ratio

of the image intensities after applying the first-order approxi-
mation to the exponential terms. Therefore, inhomogeneity
values are computed from the ratio between the transmitted and
prescribed flip angles (9) [31]

(8)

(9)

where is the ratio between the smaller and the larger repe-
tition times ( for our acquisitions, as it was discussed in
Section II-A). Maps are tri-linearly interpolated to obtain in-
homogeneity values at and image nodes. Since maps
provide a distribution of correction factors for the ideally uni-
form prescribed flip angle, the corrected slope (10) is used
to compute the corrected values at every voxel [30], which
is given by (11)

(10)

(11)

Fig. 1. � value computed for typical maximum intensities � and � in our
brain MRI acquisitions at flip angles of 5 and 15 , and � � �ms with: no�
correction (textured line), � correction (solid line), linearized � correction
(dotted line). � and � do not necessarily correspond to any real tissue.

In order to properly compute the maps from the im-
ages, both with and without correction, those images are
previously aligned using six-parameter rigid registration with
a mutual information metric and linear interpolation, using 64
histogram bins and the number of spatial samples equal to 1%
of the image pixels.

Fig. 1 shows the relation between the corrected values and
the correction factor for a typical set of signal intensities, flip
angles and repetition time computed using (7) and (11). It can be
observed that only if the inhomogeneity correction factors of
those voxels in the volume are symmetrically distributed around

and the relation between and the corrected
value is linear, then it is expected to have a corrected map that
preserves the mean value with respect to the uncorrected one.
But in real cases none of those assumptions can be observed.

inhomogeneity correction factors do not necessarily have
a mean value of 1.0, therefore, there is no physical reason to
expect a symmetrical distribution. In addition, their dispersion is
large enough to have a considerable amount of voxels away from
the region where the linear approximation is acceptable. If the
distribution of correction factors were symmetrically centered
at , corrected map will still have a higher mean
value than that of the uncorrected one because of the nonlinear
relation (Fig. 1).

It is assumed that the images for a particular subject
are aligned with the corresponding map. However, even if
small misalignments were present, their impact is expected to
be small due to the small displacements expected in this kind
of studies and the typical smoothness of maps. In order to
estimate the typical maximum error because of those possible
misalignments the signal intensities and at a voxel where
the map exhibits the maximum variation in a selected sub-
ject were used to compute the corrected value without mis-
alignment and with a displacement of 5 mm between the
images and the map. That maximum error in the estima-
tion was 4%, which was much smaller than the error between
the -corrected and uncorrected maps (14%). Most voxels
will exhibit much smaller errors given the smoother
variations in the map.
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D. N3 Method

The prospective inhomogeneity correction method
described in the previous section was compared to the ret-
rospective N3 method [25] to evaluate the effect of the lack
of information in retrospective methods when compared to
prospective methods. The MIPAV implementation was used for
comparison purposes. The N3 method is an automatic non-
parametric method for MRI inhomogeneity image correction
that assumes a model of image formation as described in (1).
Consider a noise-free case where the true intensities at each
voxel location are independent identically dis-
tributed variables. In that case, the logarithm of those variables
are related by

(12)

where , , and denotes , and , re-
spectively. The distribution of values that each of these vari-
ables take over the considered volume can be regarded as the
probability distribution of random variables, whose probability
densities will be called , and , respectively. Under the
assumption that and are independent random variables,
the distribution of their sum is found by convolution

(13)

Therefore, the nonuniformity distribution can be viewed
as blurring the intensity distribution , which reduces its high
frequency components. The aim of this method is to find the
smooth, slowly varying, multiplicative field that maximizes
the frequency content of . A distribution is proposed
by sharpening the distribution , and then a smooth field
that produces a distribution close to the one proposed is
estimated. The distribution is typically well approximated
by a unimodal distribution. The noise-free assumption makes

approximately Gaussian. Since any Gaussian distribution
can be decomposed into a convolution of narrower Gaussian
distributions the space of all distributions corresponding
to Gaussian distributed can be searched incrementally by
deconvolving narrow Gaussian distributions from subsequent
estimates of iteratively.

The maps using correction , N3 correction
and no correction in a set brain MRI images of

normal volunteers were compared. The percentage of voxels in
and whose relative difference is less than 10% when

compared to is computed for that purpose.

E. Template Based Correction

In order to reduce the scan time and also to correct studies
with no previous map, we designed a template based correc-
tion strategy. This strategy corrects inhomogeneity in a given
subject by using a map from another subject after proper
registration.

In this method, we first build a library of maps from
training studies acquired by the dual - method. Then, given

1http://mipav.cit.nih.gov

a new study , we examine it against every study in the library
(we call it a template). The examination is conducted as follows.
First, the images from study and template are aligned
by means of a twelve-parameter affine registration method with
mutual information metric and linear interpolation, using 64 his-
togram bins and the number of spatial samples equal to 1% of
the image pixels.

Afterwards, the map of template is aligned according to
that transformation in order to match the geometry of the subject
under study . The correction of study is performed in the
same way as described in the Section II-C. Small inaccuracies
in the registration due to the use of the affine registration are
expected to have a small effect on the corrected maps because
of the typical smoothness of the maps (see Section II-C). To
clarify the method, we define the following.

map of study before correction.

map of template before correction.

map of study (dual method), if
exists.

map of template (dual method).

Corrected map of study using ,
if exists.

Corrected map of study using .

For each template correction of a study a total of six fea-
tures are extracted from , , and and compared
to their reference values. A metric function comparing the
features computed for a given correction and the refer-
ence values , is designed to select the most suitable map
for study from the library. Each feature contributes with a
given weighting factor . The meaning of each feature and
the training process to determine the optimum set of weighting
factors is described in Section II-F. The template selection pro-
cessing for study can be written as described in (14), where
is the selected template for study . For clarity, we define
as the map corrected by our template based method. We also
define , , , to represent , , ,

, for a known study . Fig. 2 exemplifies the methodology

(14)

F. Training and Metric Function Optimization

In the training procedure, both images and the map
are available, and and are computed for all studies.
Ten studies were randomly selected and assigned to a learning
set (LS) in order to determine the optimum set of weighting fac-
tors . The remaining studies were assigned to a ref-
erence set and used to determine the reference value for each
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Fig. 2. Methodology to generate a � -corrected � map of subject � using the
� map from subject � . (1) High-flip-angle � � images of subjects � and �

are aligned. (2) The transformation is applied to the � map of Subject � . (3)
� � images of Subject � along with the transformed � map from Subject �
are used to generated � . If the � map of Subject � is available, � can
be computed. If no � map is used, the uncorrected � map is generated.

feature needed to perform that optimization .
For each template correction of every map in LS , the
percentage of voxels having a difference less than 10% with re-
spect to is computed and compared to the same percentage
for . The ratio between those two percentages [for
and ] is computed and normalized between 0 (worst cor-
rection) and 1 (best correction), and a ranking list of all those
ratios is created. The correction with the highest value

is considered the best correction available for the

subject under study , producing a map called . Note that
this characterization was used instead of the means square dif-
ference because it is less affected by large differences in regions
where the methodology is not designed to work well. No differ-
ence in the ranking list was observed when using other thresh-
olds different from 10%.

A set of six features with different weighting factors are con-
sidered to detect and a training process is performed to

estimate the optimum set of factors so that equals .

Every feature computed for every in LS is
compared to the corresponding reference value . The ab-
solute value of the difference between them

is computed, expecting lower values for better correc-
tions (i.e., corrections that result in maps comparable to ).

For a given feature from subject , values are normal-
ized between 0 and 1

(15)

TABLE I
LIST OF FEATURES COMPUTED OVER THE LEARNING SET. � DENOTES THE

BRAIN VOLUME IN � MAP �, AND � DENOTES THE DISPERSION OF THE

NORMALIZED INTENSITY HISTOGRAM OF A GIVEN � MAP

Following, a brief description of the meaning of those fea-
tures is included (see Table I). compares the mean values
of the map to be corrected and that of the uncorrected

map whose map will be used for the correction . It
is expected that a map from a subject with an uncorrected

map whose mean value significantly differs from that of
the map to be corrected, will not perform an acceptable
correction. Given that the BET algorithm [34] may fail when
extracting the brain from inhomogeneous images, the corrected

map is used as a mask. compares the dispersion of
the histogram of a given template correction with the average
dispersion computed over the reference set. compares
the value of the white matter (WM) peak in the histogram
of a given template correction with the average value of
the white matter peak computed over the reference set.

performs the same comparison as , but for the gray matter

(GM) peak. is used to find the template correction whose
map has a histogram with the minimum ratio between the

maximum values of the white matter and gray matter peaks in
the three-Gaussian curve fitted from the normalized histogram
( and ). is used to find the
correction whose map has a histogram with the minimum
ratio between and the value at

valley between peaks in the three-Gaussian curve
fitted from the normalized histogram. It was observed that
lower values of these last two features ( and ) are usually
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associated to better corrections. Given the lack of information
about what the reference values and should be,
they were set to 0 in order to represent that the minimum will
be searched. For feature the reference value is clearly 0,
while for features , , and , those reference values are
computed as the averaged dispersion, WM and GM peaks of
the histograms of reference maps (15). No correlation was
found between the age, head size, and sex of a subject and the
best available template. Therefore, they were not included as
features.

For each subject in LS and each correction , a ranking
list of the metric function is created. The best correc-
tion detected by the method produces a corrected
map , as it was defined in Section II-E. Afterwards, the
correction is searched in the ranking list , and the number

is retrieved. If the method detects the best correction avail-

able, then and . In order to find the op-
timum set of weighting factors an optimization process
is performed

(16)

III. RESULTS

A. Phantom Evaluation of the Correction Methodology

The performance of the correction methodology was eval-
uated by means of a spherical phantom filled with doped water.
Fig. 3 shows the intensity distributions at a middle slice for both
the noncorrected (a) and corrected (b) maps. Inhomo-
geneities observed near the phantom wall are due to effects
in the images acquired to compute the map. The effect
is propagated to the map and consequently to the corrected

map, as shown in Fig. 3(b). These susceptibility artifacts ap-
pear at interfaces of substances with different susceptibilities,
especially at higher field strengths since the magnetic suscepti-
bility is proportional to the field strength .

histograms for the whole phantom were generated for
the non-corrected and corrected maps, as well as for
the map computed from images whose inhomogeneity
was previously corrected using the retrospective N3 method
[see Fig. 3(c)]. The N3 method preserves the mean value
(269 ms compared to 279 ms of the noncorrected map of the
whole phantom), which strongly differ from the reference
value obtained using an inversion recovery technique (365 ms).
On the other hand, corrected map has a mean value
of 327 ms, which is closer to that value. The length of the
interval of relaxation times in the normalized histogram of the
uncorrected map whose frequency is greater than 1% is 151
ms around its mean value, and 88% of the voxels fall in that
interval. For the corrected map, that length drops to 137 ms
and 92% of the voxels fall in that interval.

Fig. 3. Intensity distributions at a middle slice for both the noncorrected (a)
and � corrected (b) � maps. Intensity histograms for the noncorrected, �
corrected and N3 corrected � maps of the whole spherical phantom compared
to the � value measured with an inversion recovery technique (c).

B. Phantom Evaluation of the Effects of Object Positioning

maps depend on the location of the object within the
scanner. Therefore, it is expected that maps of the same
subject acquired at different locations and properly registered
will perform different corrections. The proposed methodology
might be affected if the template map was acquired at a dif-
ferent position from where the subject whose maps will be
corrected was scanned. However, the displacements expected
in routine brain scans of different subjects are small compared
to the typical size of the heads. In order to estimate those dis-
placements, the bounding box containing the brain at the middle
slice was identified and the percentage of the pixels not covered
by the bounding box at each side was recorded and averaged
for the 19 subjects. Their values (mean stdev) were: a) right:

; b) left: ; c) anterior: ;
d) posterior: ; e) inferior: ; f) supe-
rior: . These observations show a consistency in the
position of the heads in the scanner among subjects. The max-
imum displacement in the left–right direction at the middle slice
was 0.58 cm, which was much smaller than the maximum dis-
tance in that direction (22 cm).

In order to estimate the error introduced by a typical displace-
ment of an object within the scanner, a cylindrical phantom with
doped water was imaged in two different positions: at the center
of the scanner and 1.7 cm apart in a direction perpendicular to
the axis. This distance is about three times the maximum dis-
placement observed in routine brain scans. images for the

map and map were acquired and the map was com-
puted without correction , corrected using the map
acquired at the same position and corrected using the

map acquired at a position 1.7 cm apart along the direc-
tion of the displacement perpendicular to the axis , after
registration.
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Fig. 4. � maps of the phantom at the middle slice without� correction (left),
corrected using the � map acquired at the same position (middle), and cor-
rected using the � map acquired at a position 1.7 cm apart.

Fig. 5. Profile of the � map along a diametral line at the middle slice without
� correction, corrected using the � map acquired at the same position and
corrected using the � map acquired at a position 1.7 cm apart.

In order to estimate the variation along the direction of the
displacement (left–right direction in Fig. 4) due to the asym-
metry of the displaced map, an intensity profile was con-
structed at the middle slice for , , and .

Both and exhibited small changes along the di-
rection of the displacement. Their respective mean values were
353 ms and 367 ms (4% difference) with standard deviations of
5.2 ms and 6.1 ms. (variability of 1.5% and 1.7%, respectively).
On the other hand, the uncorrected map had a mean value
of 400 ms with a standard deviation of 53 ms. (variability of
13.3%), exhibiting a profile according to the inhomogeneity
(see Fig. 5).

C. Evaluation of the Affine Registration in Images

In order to evaluate the performance of the affine registration
algorithm, the two subjects with the smallest (Subject I) and
largest (Subject II) head volumes were selected and aligned.

Fig. 6 shows the images of those heads at a middle slice
for subject I (a), subject II (b), subject II after registration (c),
difference before (d) and after (e) registration. The quality of
the alignment is evaluated computing the number of pixels not
overlapped before and after registration. Fig. 7 shows the frac-
tion of pixels in the head compared to the FOV of each slice
throughout the central part of the head. The fraction of pixels
of Subject I not overlapped with those of Subject I is noticeably
reduced at each slice after affine registration.

Fig. 6. � � images at a middle slice for: (a) Subject I (smallest head volume);
(b) Subject II (largest head volume); (c) Subject II aligned to Subject I; (d) dif-
ference before affine registration; (e) difference after affine registration.

Fig. 7. Fraction of pixels in the head at each slice throughout the central part
of the head.

D. In Vivo Mapping

Nineteen healthy volunteers were considered for this study
and scanned in a 3T Philips MRI scanner in order to investigate
the improvement of the maps after misalignment correction
and correction.

Brains were extracted from those maps and intensity his-
tograms were computed for fully corrected, partially corrected
and noncorrected maps. None of the maps without correc-
tion exhibited the typical two-peak histogram corresponding to
WM and GM tissues. Instead, two-peak histograms were ob-
served in seventeen maps with correction and in every map
with both corrections. Most subjects had their two images
almost aligned. Therefore, no significant change could be ob-
served in the histograms when the misalignment correction was
included [Fig. 8(a)–(d)]. However, images of Subjects 8
and 15 were slightly misaligned resulting in distorted maps
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Fig. 8. Examples of� corrected � map histograms. Upper panel: Volunteer
#14. Lower panel: Volunteer #15. For each panel: no� correction (a), (e),�
correction (b), (f), motion correction (c), (g) and� correction after motion cor-
rection (d), (h). Images were originally aligned. In each plot, points correspond
to measured values, dotted lines to each fitted Gaussian curve and solid line to
3-Gaussian curve.

whose histograms did not exhibit two peaks when only cor-
rection is preformed [Fig. 8(f)]. In those cases, effects of mis-
alignment and inhomogeneity were comparable. Distorted

maps due to misalignment in Subject #15 can be seen in
Fig. 8(e) and (f). It can also be observed that corrected maps

Fig. 9. � maps (in ms) for Sub. #15 with the same window/level settings with
(a) no correction, (b) � correction, (c) misalignment correction, (d) both �
and misalignment correction.

[Fig. 8(f) and (h)] exhibit better discriminations of tissues than
their noncorrected counterparts [Fig. 8(e) and (g)].

Fig. 9 shows maps at a middle slice for Subject #15 with
and without and misalignment corrections. maps with
correction [Fig. 9(b) and (d)] exhibit WM and GM regions with
higher intensities ( values) when compared to those without

correction [Fig. 9(a) and (c)]. That is in agreement with the
predicted shift discussed in Section II-C.

White and gray matter peaks along with their dispersion for
all volunteers with and without misalignment and correc-
tion were computed from the three Gaussian fitting. The good-
ness of fit for the histograms was characterized by a Chi-square
parameter that ranged between 0.0001 and 0.0005 among all
curves. White matter and gray matter peaks were ms
and ms, respectively, averaged over the 19 subjects.
These results are in agreement with reported findings at 3.0T:
WM from 1000 to 1100 ms and different GM tissues between
1200 and 1700 ms [32] using their Driven Equilibrium Single
Pulse Observation of with High-Speed Incorporation of RF
Field Inhomogeneities method (DESPOT1-HIFI).

Reduced spatial inhomogeneity of values within regions of
the same kind of tissue after correction results in narrower
WM and GM and separation of both peaks. In every subject
the dispersion of WM peaks computed from the three Gaussian
fitting exhibits and important reduction when correction is
used, resulting in an average reduction of about 50%. Addition-
ally, relaxation times of WM and GM peaks exhibit a notice-
able shift towards higher values. In order to explain that shift
maps were studied. It was observed that the mean value ranged
between 0.85 and 0.96 average stdev with a
dispersion ranging between 0.36 and 0.427 average stdev

. According to what it was previously discussed in
Section II-C, it is expected that is shifted towards high re-
laxation times if .
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TABLE II
PERCENTAGE OF VOXELS IN A GIVEN CORRECTED � MAP WHOSE RELATIVE

DIFFERENCE WITH RESPECT TO � WAS LESS THAN 10% COMPUTED FOR

ALL 10 SUBJECTS IN THE LEARNING SET FOR � , � AND � , �

E. Template-Based Correction

In order to investigate whether or not maps can be accu-
rately corrected using a map from another subject, maps
were computed from rigidly registered images including
inhomogeneity correction using transformed maps from the
other subjects, and compared to . The percentage of voxels
in a given corrected map whose relative difference with re-
spect to was less than 10% was used as a quality factor for
the correction. Table II shows that factor computed for all sub-
jects in the learning set (Subjects #1, #2, #3, #4, #5, #6, #8, #15,
#16, and #19) for , . In average, that percentage in-
creased from 29.1% for up to 75.1% for , while
showed similar performance as the noncorrected map (35.2%).

The best correction could not be predicted using only one
feature. Instead, a total of six features were computed in the
learning set and compared to their counterparts in the refer-
ence set. Corrected maps with unimodal histograms were
excluded from this analysis. In order to determine the best way
in which those feature have to be combined to maximize the
performance of the method, the optimum set of weighting fac-
tors was computed over the learning set. It was found that those
weighting factors were ; ; ;

; and , for feature to ,
respectively. The weight scheme depicted correctly the best cor-
rection (i.e., ) in seven out of ten subjects (70%).
The other subjects are discussed below.

For Subject #3 it is worth to mention that this subject’s
map has the highest mean value (0.962) when compared to the
other 18 cases average . The three maps with
closest mean values were those corresponding to subjects #1
(0.951), #18 (0.934), and #8 (0.926). The percentage of voxels in
those corrected maps that had a difference less than 10% with
respect to were 51.3%, 43.2%, and 35.4% for those three
corrections. Note that the percentage for was 36.2%. All the
other corrections had percentages below that threshold, which
means that almost no correction performed better than . An
explanation for that comes from the relation between and

shown in Fig. 1. If the average value of the map used
for the correction is very different from the real map, higher
shifts in the maps are expected with respect to . There-
fore, even though almost all histograms were bimodal and con-
sequently more homogeneous, WM and GM peaks were shifted

Fig. 10. � histograms of the whole brain of Subject #15 corrected using dif-
ferent method: (a)� map from the same subject �� �,� map from Sub-
ject #18, which is the best map detected by the method �� �, � map
from Subject #10, which is the best available map �� �, and no � cor-
rection �� �; (b) � map computed from � � images corrected using the
N3 method �� �, � , � , and � .

towards higher relaxation times. That drastically increased the
percentage used to characterize the quality of the correction.
However, the method detected for Subject #3 the third best cor-
rection (using the map from Subject #8), which was ranked
as 61% in the ranking list (see Section II-F).

For Subject #15 the method also detected the third best cor-
rection (from Subject #18). However, the percentage of voxels
with a difference less than 10% with respect to was high:
76.2% compared to 24.8% for the uncorrected map. For the
best (from Subject #10) and worst (from Subject #7) corrections
available, those percentages were 83.4% and 43.8%, respec-
tively. Therefore, the method detected a correction that ranked
as 82% in the ranking list . Fig. 10(a) and (b) shows the his-
tograms for , , , and . Small differences can be
seen between histograms of , , , which are shifted
with respect to those of and .

Fig. 11 shows three maps used to perform the inhomo-
geneity correction in this subject: a) acquired in the same Sub-
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Fig. 11. � maps used to correct � maps of Subject #15 displayed with the
same window/level settings, showing the position of the profile line: (a) �
map of Subject #15; (b) � map of Subject #18 (best correction detected by
our method) after proper affine registration; (c) � map of Subject #10 (best
non-subject-specific correction available) after proper affine registration.

Fig. 12. Percentage of pixels in those template� maps having a given relative
difference with respect to the reference � map.

ject #15; b) acquired in Subject #18 (best correction detected by
our method); c) acquired in Subject #10 (best correction avail-
able for this subject).

Fig. 12 shows the percentage of pixels in the template
maps for Subject #15 for relative differences with respect to
the reference map less than 10%. Particularly, for the best
available map, 93.3% of the pixels have a difference less than
3%. For the map detected by the method, that percentage is
88.2%.

maps for Subject #15 are displayed in Fig. 13 under dif-
ferent corrections: a) no correction; b) reference map

; c) N3 method ; d) corrected using the map
from the same Subject #15 but under a linear approximation

shown in Fig. 1; e) corrected using the map from
Subject #18 ; and f) corrected using the map from
Subject #10 . No relevant differences can be observed
between those maps corrected with the map of the same
subject, with and without the linear approximation [Fig. 13(b)
and (d)]. map corrected with the N3 method [Fig. 13(c)]
shows lower intensities as in the noncorrected map [Fig. 13(a)],
but without inhomogeneity throughout voxels of the same tis-
sues. maps corrected with the map detect by our method

Fig. 13. � maps (in ms) for Subject #15 computed using different � cor-
rections displayed with the same window/level settings: (a) no � correction,
� ; (b) reference � map, � ; (c) N3 method, � ; (d) corrected using the
� map from the same Subject #15 but under a linear approximation, � ; (e)
corrected using the � map from Subject #18, � (best correction detected
by our method, � ); (f) corrected using the� map from Subject #10, �
(best nonsubject-specific correction available, � ).

[Fig. 13(e)] and the best correction available [Fig. 13(f)] do not
differ significantly. The corresponding histograms are shown in
Fig. 10(a) and (b). It can also be observed that , and

do not exhibit significant differences. has a lower
mean value similar to that of .

For Subject #19 the method detected a correction that
ranked as 41% in the list. However, given that for this sub-
ject the best correction was comparable to (92.6%
of the voxels had a difference less than 10%), that percentage
was 59.7% for , which was still higher than the 27.7% cor-
responding to .

It is expected that the bigger the library size is, the more ac-
curate the correction will be. However, the study does not con-
tain sufficient number of cases to perform a reliable convergence
analysis. Instead, we designed a simple experiment to estimate
the effect of the library size on the accuracy of the correction.
For each subject in the learning set, the best template was re-
moved from the library. Therefore, the method found the fol-
lowing best template. The position in the ranking list was ob-
tained and compared to the best template. For the seven cases
where the method detected the best template the average po-
sition in the ranking list dropped to 87%. The complete list is
found in Table III.
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TABLE III
POSITIONS IN THE RANKING LIST OF THE TEMPLATE DETECTED BY

THE METHOD WHEN THE BEST TEMPLATE IS INCLUDED (A) AND

WHEN IT IS NOT CONSIDERED (B)

It is important to mention that no correlation was found be-
tween the age, the head size and the sex of the subject under
study and the subject of the best available template. Particularly,
the standard deviation of ages was 11.3 years, while that of the
age difference between both subjects was 9.8 years. For the head
sizes, those values were and . Regarding the
sex, only 60% of the best available templates corresponded to
same sex individuals. Finally, Fig. 14 shows all the nineteen
maps at the middle slice used for this study (same w/l settings),
after being mapped to the same space. Fig. 15 shows all the
maps in the learning set along with the best template, exhibiting
similarities between them.

F. Comparison to Deoni’s DESPOT1-HI-FI Method

Alternatively to Treier’s method, Deoni’s DESPOT1-HI-FI
technique combines the usual multiangle SPGR data with at
least one inversion-prepared SPGR data in order to obtain an
unique solution for the map, the factor proportional to the
longitudinal magnetization and the spatial variation of the radio-
frequency field by least square minimization, which requires
6:40 min for a map ( matrix) [32]. That
acquisition time is much shorter than multiple inversion time
IR-SPGR (14:43 min) and the acceleration Lock-Locker ap-
proach (26 min). Instead, out scanning time using a

matrix for low- and high-flip images, and a
matrix for the low and high images) is 7:30

min total.
For comparison purposes we also performed acquisitions

using Deoni’s technique. The SPGR signal equation in its linear
form is given by (2). Both and a factor proportional to the
longitudinal magnetization can be computed from the slope
and the intercept of this relation. We used an inversion recovery
SPGR approach called DESPOT1-HI-FI involving application
of a 180 inversion pulse, an inversion time (TI) delay and a
train of low angle RF pulses, separated by a , which sample
successive k-space lines. If the center of k-space is acquired
immediately following each 180 pulse, the IR-SPGR signal
can be approximated as

(17)

Fig. 14. All� maps at a middle slice used in this study, with the same window/
level settings, after being mapped to the same space.

where is the time between 180 pulses and k denotes the spa-
tially varying profile . A unique solution for ,

, and k can then be calculated using least-squares minimization
of (3) and (17) [38]. The k parameter map represents the scaling
correction of the flip angles, i.e., error.
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Fig. 15. � maps of all subjects in the learning set along with the � map
of the best template, displayed at the middle slice with the same window/level
settings.

Fig. 16. � map without� correction (a), with� correction (b) and� map
(c) of a healthy volunteer using DESPOT-HI-FI method.

TABLE IV
MEAN VALUES AND DEVIATION OF WM AND GM REGIONS IN

� MAP OF A HEALTHY VOLUNTEER USING DESPOT-HI-FI
WITH AND WITHOUT � CORRECTION

In order to compare our methodology, based on Treier’s
method, to the Deoni’s DESPOT1-HI-FI mapping with cor-
rection, we scanned an additional healthy volunteer using that
technique. The acquisition time was 19 min for a
matrix. maps acquired using Deoni’s and Treier’s technique
had similar overall characteristics (see Fig. 16). Furthermore,
mean WM and GM in the corrected and uncorrected maps are
in the range of those found in our work (see Table IV).

IV. DISCUSSION

Accurate estimation of relaxation time from high magnetic
field MRI using a dual flip angle method may require correction
of not only the transmitted flip angle inhomogeneity but also
any possible image misalignment. In order to investigate this
hypothesis we addressed both corrections by acquiring the
map using a dual strategy and a rigid registration algorithm.

The correction module was evaluated using a spherical
phantom resulting in a narrower intensity histogram whose
mean value is in agreement to that from an inversion recovery
technique. It was also observed that retrospective methods like
the N3 method that preserve the mean value of the map do
not show the observed shift in relaxation times between
and . Although methods that preserve the mean value re-
move the inhomogeneity producing bimodal histograms, those

values are shifted with respect to those in maps corrected
with a map. Those corrections may not be suitable for quan-
titative analyses.

maps were analyzed in nineteen normal volunteers. Prior
to correction, histograms of whole brain did not exhibit a
bimodal peak (WM and GM). On the other hand, all corrected
histograms showed two separated peaks whose values are
in agreement with previously reported data. However, slightly
misaligned images used to compute maps resulted in
inaccurate map in two subjects. In those cases, image mis-
alignment and flip angle inhomogeneity produced comparable
effects on that map, whose histogram did not exhibit two peaks
when only correction was performed.

In order to obviate the need for obtaining a map each
and every time a patient is scanned, a template map may
be used instead. Therefore, each map was recomputed using
the maps from the other subjects. For that purpose, twelve-
parameter affine registration using mutual information metric
with linear interpolation was applied to each pair of high-flip-
angle images. The computed transformation was applied to the

map in order to match the geometry of the subject under
study. Although most corrections reduced the inhomogeneity,
the performance depends on the map used. Therefore, in
order to automatically detect the best map available, a set
of features were computed and included with an optimum set of
weighting factors in the minimization of a metric function. The
set of features used allowed the detection of the best available

map in most cases. In the others, maps comparable to the
reference one are obtained.

Although results are promising and have the potential for clin-
ical applications, the methodology has some limitations. First,
acquired maps exhibit different mean values. Therefore, if all

maps in the library significantly differ from the proper (even
unknown) map, a shift in the corrected values would be ex-
pected. Therefore, even though the method may detect the best
available map, it may not produce a map that is accurate
enough. In order to avoid that, a wide range of maps with
different characteristics should be included in that library. Even
though that would increase the computational time to detect the
best correction, we still have a reduced acquisition time.

Secondly, this methodology has the potential to improve the
cancer detection by means of more accurate maps. In order
to investigate whether or not the template correction of
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Fig. 17. � weighted image (a) and � map (b) of a patient with a tumor in
the frontal region of the brain and ventricle enlargement.

maps of a patient with a brain tumor could be applied using a
library containing maps of normal subjects, the weighted
images and map of a patient with a tumor in the frontal
region were studied. Fig. 17 shows a map (b) associated
with obvious pathology on the correlated weighted image (a).
While there is significant deviation from normal brain in terms
of the image contrast in the enlarged ventricles as well as frontal
cortex, the corresponding map is remarkably homogeneous.
This is due to the predominant mechanism of RF inhomogeneity
being due to the air water susceptibility interface as the RF wave
traverses the different media. Since most pathology will still
consist of relatively homogeneous proton density the map
is quite similar to other normal volunteer maps.

Therefore, in order for the methodology to be applied to pa-
tients with brain tumor, it should include a tumor segmentation
module to compute the features only outside the tumor. While
we would expect the template method to yield improved results
on a clinical population, this work is currently being evaluated
prior to implementation. Furthermore, the accuracy of the
mapping process itself is limited if there is significant deviation
from uniform proton density so correction with an inaccurate
but patient specific map will also decrease the accuracy of
the calculated values.

V. CONCLUSION

The results presented in this work show that correction of both
image misalignment and transmitted flip angle inhomogeneity
markedly improve the accuracy of maps obtained by means
of a dual flip angle method at high fields. It was observed that
the nonlinear relation between the correction factors at every
voxel and the corrected value produce a shift in the mean
value of the reference map when compared to the uncor-
rected map. That may suggest that methods that preserve that
mean value could lead to inaccurate estimations regardless
their ability to maximize the homogeneity within each kind of
tissue. Additionally, since in the clinical setting it is beneficial to
minimize scanning time and it would be desirable that cor-
rections may be made from a template, obviating the need for
obtaining a map each and every time a patient is scanned.

inhomogeneity in maps computed from registered images
were also compensated using maps acquired from other sub-
jects, after being aligned using an affine registration algorithm.

When maps from other subjects are properly aligned,
many corrected maps are comparable to the reference
map and a considerable number of other maps exhibit a relevant

improvement when compared to the noncorrected ones. An au-
tomatic method to characterize the quality of the correction and
detect the map that best performs for a given subject was
designed and evaluated. Even though a larger study is needed
to corroborate the efficiency of the method, these results are
very promising and have the potential for clinical application.
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