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This paper studies a Lie group extension of the generalized-α time integration method for the
simulation of flexible multibody systems. The equations of motion are formulated as an index-3
differential-algebraic equation (DAE) on a Lie group, with the advantage that rotation variables
can be taken into account without the need of introducing any parameterization. The proposed
integrator is designed to solve this equation directly on the Lie groupwithout index reduction. The
convergence of the method for DAEs is studied in detail and global second-order accuracy is
proven for all solution components, i.e. for nodal translations, rotations and Lagrangemultipliers.
The convergence properties are confirmed by three benchmarks of rigid and flexible systemswith
large rotation amplitudes. The Lie group method is compared with a more classical updated
Lagrangian method which is also formulated in a Lie group setting. The remarkable simplicity of
the new algorithm opens interesting perspectives for real-time applications, model-based control
and optimization of multibody systems.

© 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

Today, the analysis of industrial flexible multibody systems can be efficiently and reliably achieved even by non-specialists
using off the shelf simulation packages. More advanced studies may require the development of semi-analytical sensitivity
analysis, structural optimization methods, real-time simulations and control design procedures which are generally not available
in current simulation tools. Due to the underlying complexity of state of-the-art formulations in flexible multibody dynamics, the
modification and extension of functionalities in existing simulation codes for such purposes is not a straightforward task.
Therefore, the aim of the present work is to develop simpler but performant simulation methodologies for flexible multibody
systems which are more suitable for the development of open platforms with extended functionalities.

The description of large rotations and the time integration problem are the main aspects reconsidered here for the
development of simpler formulations in flexible multibody dynamics. According to the nonlinear finite element method, the
configuration of an articulated system composed of rigid and flexible bodies is represented by a set of absolute nodal translation
and rotation variables, see e.g. [1]. Each translation variable belongs to the linear space R3 whereas each rotation variable belongs
to the nonlinear group of special orthogonal transformations SO(3). In classical parameterization based approaches, rotation
matrices, angular velocities as well as angular accelerations are explicitly represented in a coordinate system. The equations of
motion are then written as differential-algebraic equations (DAE) in the vector space Rk so that they can be solved using standard
DAE-solvers. In contrast, this paper shows that the formulation of the equations of motion in a vector space using an explicit
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parameterization of large rotations is not a necessary step for the simulation of flexible multibody systems and that significant
simplifications are obtained if the equations of motion as well as the integration algorithm are directly formulated in a Lie group
setting.

Let us briefly review classical parameterization-based simulation strategies. A first family of methods is based on a minimal
parameterization, which means that three parameters are used to represent each rotation variable. Due to singularity problems,
minimal parameterizations have a limited validity range and they can only be used locally. A reparameterization of the rotation
manifold is needed when rotation amplitudes become too large. The updated Lagrangian point of view proposed in [1,2] is a kind
of limit-case of this approach where the reparameterization is systematically planned at the end of each time step. In other words,
the parameterization represents the incremental rotation with respect to the previous time step. A second family of methods is
based on a global but redundant parameterization of rotations, which allows to avoid singularity problems at the cost of a larger
set of equations to be solved. For example, the 4 Euler parameters can be used to represent an arbitrarily large rotation but one
additional constraint should then be defined for each rotation variable [3]. Alternatively, the 9 components of the rotation matrix
allow to represent a large rotation provided the definition of 6 additional constraints for each rotation variable [4]. The resulting
equations of motion have the structure of a DAE on the linear parameter space, which can be solved using a suitable DAE solver.

Compared to classical parameterization-based methods, Lie group time integrators are designed to solve differential equations
on Lie groups without any a priori definition of generalized coordinates. Crouch and Grossmann [5] and Munthe-Kaas [6,7]
addressed some generalizations of classical Runge–Kutta and multistep time integration schemes for differential equations on Lie
groups. By construction, those methods yield a numerical solution which inherently evolves on the manifold, without any drift-off
phenomenon. In the Crouch and Grossman method, the exponential map is considered as the fundamental solution of differential
equations on the Lie group, which allows to evaluate exactly the flow of “frozen” velocity fields. Hence, the numerical solution on
the Lie group is computed by a suitable composition of elementary flows. In theMunthe-Kaasmethod, the exponential map is used
to construct a local coordinate chart at each time step. This chart is defined about a particular point on the group which can be
selected as the numerical solution at the previous time step. In this local coordinate system, a classical integration method can be
used to compute the numerical solution. A close similarity is observed between the Munthe-Kaas approach and the updated
Lagrangian method discussed above. Lie group methods have been applied for the analysis of rigid body dynamics [8] and
nonlinear flexible beams [9].

The Lie group nature of rotational fields already played a major role in the development of geometrically consistent models for
mechanical systems with large rotations [10–12]. This paper proposes a general DAE Lie group formulation of the equations of
motion for flexible multibody systems. According to the nonlinear finite elementmethod [1,13], themotion of a flexible multibody
system is described on the Lie group defined by a multiple Cartesian product of R3 and SO(3). The interconnections between the
various bodies of the multibody system are modeled using nonlinear algebraic constraints. As a consequence, the motion of the
system is restricted to a submanifold of the Lie group and the equations of motion have the structure of a DAE on a Lie group.

A family of Lie group time integrators was proposed in [14] to solve this DAE directly on the Lie group so that the equations of
motion are not explicitly written in a local coordinate chart. The method is actually an extension of the generalized-αmethod for
Lie group systems, which includes as special cases the classical generalized-α method for dynamic systems on a linear space [15]
and the algorithm described in [10]. In the present paper the convergence of the method in the DAE case is studied in detail and
second-order accuracy is proven for all solution components, i.e. for nodal translations, rotations and Lagrange multipliers. It is
shown that the method inherits the favorable accuracy and stability properties of the classical generalized-αmethod and that it is
a reliable approach for the simulation of complex multibody systems.

The proposed Lie group integrator is also compared with the updated Lagrangian method [1,2], which is reformulated here in a
Lie group setting. The similarity between the updated Lagrangian approach and Munthe-Kaas Lie group method is highlighted.
Numerical tests based on critical benchmarks for rigid and flexible multibody systems allow to compare the performance of the Lie
group method and of the updated Lagrangian method from the viewpoint of accuracy and stability.

2. Equations of motion on a Lie group

The dynamics of a flexible multibody system can generally be described on a k-dimensional manifold G with a Lie group
structure. From a mathematical viewpoint, a Lie group G is a differentiable manifold for which the product (or composition) and
inversion operations are smooth maps, see [16]. In an absolute coordinate formulation, an element q∈G is composed of several
subsets of absolute nodal translations and rotations, a priori considered as independent variables. The composition operation
G×G→G is written as

qtot¼q1∘q2 ð1Þ

with q1,q2 ,qtot∈G and the identity element e is such that q ∘e=e ∘q=q,∀q∈G. TqG denotes the tangent space at a point q∈G and
the Lie algebra is defined as the tangent space at the identity g = TeG. The Lie algebra is a vector space, which is isomorphic to Rk

by an invertible linear mapping

˜•
� �

: Rk→g; v↦ṽ: ð2Þ
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A tangent vector at any point q can be represented in the Lie algebra using the left translation map Lq. Indeed, Lq is a
diffeomorphism of G

Lq: G→G; y↦q∘y ð3Þ

and its derivative defines a diffeomorphism between TyG and Tq∘yG. In the particular case y=e, we thus have a bijection between
TeG=g and TqG:

DLq eð Þ: g→TqG; w̃↦DLq eð Þ⋅ w̃ ð4Þ

where DLq eð Þ⋅ w̃ is the directional derivative of Lq evaluated at point e in the direction w̃ ∈ g. Hence, a tangent vector w̃ ∈ g

defines a left invariant vector field on G which is constructed by left translation of w̃ to the tangent space at any point of G.
In a multibody system, the nodal translation and rotation variables are generally not independent but they have to satisfy a set

of m kinematic constraints Φ: G→Rm, which restrict the dynamics to the submanifold N of dimension k−m

N = q ∈ G: Φ qð Þ = 0f g: ð5Þ

Using classical principles of mechanics [1], the equations of motion of a flexible multibody system have the following index-3
differential-algebraic structure

q̇ = DLq eð Þ⋅ ṽ ð6Þ

M qð Þv̇ = −g q; v; tð Þ−BT qð Þλ ð7Þ

Φ qð Þ = 0 ð8Þ

where q∈G represents the configuration of the system, v ∈ R
k is the velocity vector and λ ∈ R

m is the vector of Lagrange
multipliers associated with the constraints Φ. M is the k×k symmetric mass matrix, g is the vector of external, internal and
complementary inertia forces and B is the m×k matrix of constraint gradients such that

DΦ qð Þ⋅ w̃ = B qð Þw;∀w ∈ R
k
: ð9Þ

In the above equation,DΦ qð Þ⋅ w̃ is the directional derivative ofΦ evaluated at point q in the direction of the tangent vector defined
by left translation of w̃, more precisely, it is equivalent to DΦ qð Þ⋅ DLq eð Þ⋅ w̃

� �
. The equations of motion (6–8) allow to represent

the dynamics of a general class of flexible multibody systems, e.g. using the finite element approach described in [1]. We observe
that no parameterization of rotations is needed to formulate those equations.

In this formulation, velocities are represented using left invariant vector fields. Alternatively, velocities could also be
represented using right invariant vector fields. In order to keep the mathematical developments compact, this alternative
formulation is not developed in detail in the present paper.

2.1. Example 1: Single rotation system

For a dynamic systemdescribed by a single 3D rotation, the 3-dimensional Lie groupG is simply SO(3), the group of 3×3 proper
orthogonal linear transformations. The composition operation is the matrix product R1 ∘R2=R1R2 and the identity element is the

3×3 identity matrix I3. At any point R, the tangent space is noted TRSO(3) and the Lie algebra so 3ð Þ = Ω̃: Ω̃ + Ω̃
T
= 0

� �
is the set

of skew-symmetric matrices. The Lie algebra can be identified to R3 since any matrix Ω̃ ∈ so 3ð Þ

Ω̃ =
0 −Ω3 Ω2
Ω3 0 −Ω1
−Ω2 Ω1 0

2
4

3
5 ð10Þ

can be represented by the 3×1 axial vector Ω=[Ω1 Ω2 Ω3]T. The tangent space TRSO(3) is thus isomorphic to R3 and Eq. (6)
becomes

Ṙ = DLR I3ð Þ⋅ Ω̃ = RΩ̃: ð11Þ

From a physical point of view, Ω is the vector of angular velocities in the body-attached (material) frame. Eq. (7) represents the
equilibrium of angular momentum in the body-attached frame

JΩ̇ + Ω × JΩ = C tð Þ ð12Þ
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with J, the inertia tensor in the body-attached frame, and C(t), the vector of applied external torque. There is no kinematic
constraint in this example.

The alternative representation of velocities using right invariant vector fields would lead to the definition of ω, the vector of
angular velocities in the inertial (spatial) frame. Both vectors are related by the frame transformation ω=RΩ. Based on a right
invariant representation, the equations of motion would be written in the inertial frame.

2.2. Example 2: System evolving on Rk

The vector space Rk is a Lie group with the composition q1 ∘q2=q1+q2. Eq. (6) simply becomes q̇ = v.

2.3. Example 3: Rotation and translation of a single body system

The free motion of a single rigid bodywith combined translations and rotations can either be represented in SE(3), the group of
4×4 homogeneous transformations, or in R3 × SO 3ð Þ, the group formed by the Cartesian product of R3 and SO(3). The second
option is retained in the following, so that the configuration of the rigid body is represented by the pair (x, R) with the translation
vector x∈R3 and the rotation matrix R ∈ SO(3). Indeed, the set R3 × SO 3ð Þ is a 6-dimensional Lie group with the composition
operation defined as (x1, R1) ∘(x2, R2)=(x1+x2, R1R2).

2.4. Example 4: Multibody system

The motion of a complex multibody system with kn nodes is represented in the Lie group formed by the multiple Cartesian
product of R3 and SO(3)

G = R
3 × … × R

3 × SO 3ð Þ × … × SO 3ð Þ: ð13Þ

Its elements have the form (x1,…, xkn, R1…, Rkn) with xi ∈ R3, the translation vector of node i, and Ri ∈ SO(3), the rotation matrix
of node i. The composition operation is defined component-wise as in Example 3.

3. Exponential map

As seen in the previous section, the time derivative of the configuration variable q is conveniently represented in the Lie algebra
using the left translationmap of the group. The exponential map, whichmaps any element of the Lie algebra to the Lie group

exp: g→G; q̃↦q = exp q̃
� � ð14Þ

is a useful tool for the design of Lie group integrators. Its mathematical definition is related with integral curves of left (or right)
invariant vector fields. Accordingly, the solution of the fundamental equation

q̇ tð Þ = DLq eð Þ⋅ w̃; q 0ð Þ = q0 ð15Þ

for a constant w̃ ∈ g is given by

q tð Þ = q0∘exp t w̃
� �

: ð16Þ

The exponential map admits the series expansion

exp q̃
� �

= ∑
∞

i=0

1
i!

q̃i
: ð17Þ

However, this equation only holds formatrix Lie groups, i.e. Lie groupswhose elements can be represented asmatrices, see [17] for
more details. It can easily be seen that all Lie groups considered in this paper for the analysis of multibody systems are actually
matrix Lie groups. The exponential map allows the construction of a local parameterization of G about an arbitrary point q0∈G.
Indeed, the relation

q = q0∘exp q̃
� � ð18Þ

defines a diffeomorphism between G and g and consequently between G and R
k. This diffeomorphism can be written as a

coordinate map R
k→G: q↦q = q0∘exp q̃

� �
.
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The derivative of the exponential map can be obtained by differentiation of Eq. (18) with respect to time

q̇ = qo∘ Dexp q̃
� �

· ˜̇q
� �

: ð19Þ

This equation defines a relation between q̇ and the time derivative of the Lie algebra coordinates q̇. Using Eqs. (6) and (18), q̇ can
also be written in terms of the left invariant derivative

q̇ = qo∘ DLexp q̃ð Þ eð Þ · ṽ
� �

ð20Þ

A comparison of the last two equations leads to a linear relationship between q̇ and v

Dexp q̃
� �

⋅ ˜̇q = DLexp q̃ð Þ eð Þ · ṽ: ð21Þ

In literature, this relation is sometimes written as

d expq̃: g→g; ˜̇q↦ ṽ ð22Þ

or as a linear relation from R
k to R

k

v = T qð Þq̇ ð23Þ

where T(q) is the so-called tangent operator of the exponential map. For a matrix group, it admits the series expansion [17]

TðqÞ = ∑
∞

i=0

−1ð Þi
i + 1ð Þ! q̃

i
: ð24Þ

For G=SO(3), the exponential operator can be computed using the Rodrigues formula:

expSO 3ð Þ ψ̃
� �

= I3 +
sinϕ
ϕ

ψ̃ +
1−cosϕ

ϕ2 ψ̃ ψ̃ ð25Þ

where the axial vector ψ ∈ R3 is the so-called Cartesian rotation vector and ϕ=∥ψ∥. The tangent operator TSO(3)(ψ), which
appears in the relation Ω = TSO 3ð Þ ψð Þψ̇ between the angular velocity Ω and the vector ψ̇, is given by the formula

TSO 3ð Þ ψð Þ = I3 +
cosϕ−1

ϕ2 ψ̃ + 1− sinϕ
ϕ

� 	
ψ̃ ψ̃
ϕ2 : ð26Þ

For G = Rk, the exponential map is the identity expRk ðqÞ ¼q and the tangent operator is the identity TRk qð Þ = Ik.
For G = R3 × SO 3ð Þ, the exponential map (as well as the tangent operator) is computed independently for the translation and

rotation variables: expR3×SO 3ð Þ x; ψ̃
� �

= expR3 xð Þ; expSO 3ð Þ ψ̃
� �� �

. This definition is easily extended to general multibody systems

with an arbitrary number of translation and rotation variables. In such a way, the exponential map and the tangent operator can be
evaluated using analytical formulae in the general case.

4. Lie group time integrator

Inspired by the index-3 formulation of the generalized-α time integration scheme for classical systems of differential-algebraic
Eq. [18] as well as by the work of Crouch and Grossmann [5] and Munthe-Kaas [6,7], we propose a family of Lie group time
integrators based on the following discretized set of equations:

M qn+1
� �

v̇n+1 = −g qn+1; vn+1; tn+1
� �

−BT qn+1
� �

λn+1 ð27Þ

Φ qn+1
� �

= 0 ð28Þ

qn+1 = qn∘exp h̃Δqn

� �
ð29Þ

Δqn = vn + 0:5−βð Þhan + βhan+1 ð30Þ

vn+1 = vn + 1−γð Þhan + γhan+1 ð31Þ
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1−αmð Þan+1 + αman = 1−αf

� �
v̇n+1 + αf v̇n ð32Þ

where h= tn+1− tn is the time step size. The variable Δ̃qn may be interpreted as an average and “frozen” velocity field in the time
interval between tn and tn+1. The particular form of Eq. (29) makes this formulation applicable to dynamic systems on Lie groups.
Let us note that additional similar Lie group schemes are discussed in [14], which are based on alternative formulations of Eqs. (29)
and (30).

The proposed integration scheme has several interesting properties.

1. The equations of motion are enforced exactly at time n+1 and there is no weighted combination of forces between time n and
time n+1. As a consequence, the Lagrange multipliers λn are not involved in the computation of step n+1.

2. The variable an+1 is an acceleration-like variable which is different from the true acceleration v̇n+1 at time tn+1. Using a first
order approximation, it can be initialized as a0 = v̇0.

3. The derivative q̇ ∈ TqG is never explicitly evaluated in the numerical procedure. The algorithm only involves operations on
tangent vectors in the Lie algebra g.

4. Nonlinearities are present not only in the equations of motion, but also in the integration formula (29).
5. The algorithm includes as a special case the classical generalized-α algorithm described in [18].

In the step-by-step integration procedure, Eqs. (27–32) are solved for all variables at time step n+1 based on their value at
time step n using the Newton–Raphson algorithm in Table 1. In this algorithm, the k×1 residual vector is defined as

r q; v;λ; v̇; t
� �

= M qð Þ v̇ + g q; v; tð Þ + BT qð Þλ ð33Þ

and the variables β′=(1−αm)/(βh2(1−αf)) and γ′=γ/βh are algorithmic parameters. The (k+m)×(k+m) iteration matrix
St q;hΔq; v; v̇;λ; t
� �

is evaluated as

St =
M qð Þβ′ + Ct q; v; tð Þγ′ + Kt q; v; v̇;λ; t

� �
T hΔqð Þ BT qð Þ

B qð ÞT hΔqð Þ 0


 �
: ð34Þ

In this expression, Kt and Ct are the tangent stiffness and damping matrices such that D1r q; v;λ; v̇; t
� �

⋅ w̃ = Ktw and
D2r q; v;λ; v̇; t

� �
⋅ w = Ctw ∀w ∈ R

k, where D1 (respectively, D2) indicates the directional derivative with respect to the first
argument q∈G (respectively, to the second argument v ∈ R

k). For small time steps h, the matrix St becomes severely ill
conditioned. This difficulty can be eliminated by the implementation of a suitable scaling strategy, see e.g. [18–20]. Compared to
classical parameterization-based methods, one also observes that the iteration matrix is much simpler here so that the
implementation of its exact expression in a simulation code is more easily feasible.

Table 1
Numerical algorithm for a single time step.
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5. Convergence of the proposed Lie group time integrator

Inspired by the convergence analysis of multi step methods for higher index DAEs [21], second order convergence of the
generalized-α method for constrained systems was shown in [18]. In this section, this result is generalized to the Lie group
integrator defining local and global errors as elements of the corresponding Lie algebra [22].

The inherent nonlinearity of the Lie groupmethod introduces additional higher order error terms that are analyzed in detail using
the Baker–Campbell–Hausdorff formula for the product of matrix exponentials ([23], Section III.4.2). For commuting matrices A, B,
we have exp(A) ∘exp(B)=exp(A+B). In the general case, additional terms containing commutators [A,B]: =AB−BA have to be
considered. For matrices A = O hð Þ, B = O hð Þ, we get

exp Að Þ∘exp Bð Þ = exp A + B +
1
2

A;B½ � + O hð Þ∥ A;B½ �∥
� 	

; ð35Þ

see ([23], Eq. (III.4.11)). AssumingmatricesA = O hrAð Þ,B = O hrBð ÞwithA−B = O hrA−Bð Þ andusing the identity [A,B]=−[A,A−B]=
[A−B,B], estimate (35) results in

exp Að Þ∘exp Bð Þ = exp A + B + O hr
� �� � ð36Þ

with r: =max{rA+rB, rA+rA−B, rB+rA−B}.

5.1. Local error

The local errors ln(•) in solution components q ∈ G, v ∈ Rk and a ∈ Rk are defined similar to the local error of one step methods
for ODEs [21] and for differential equations on Lie groups [22]:

q̂n+1 = q tn+1
� �

∘exp l̃
q
n

� �
; v̂n+1 = v tn+1

� �
+ lvn; ân+1 = v̇ tn+1 + Δαh

� �
+ lan ð37Þ

with q̂n+1 := q tnð Þ∘exp h̃Δq tnð Þ
� �

, Δαh: =(αm−αf)h and

Δq tnð Þ:= v tnð Þ + h 0:5−βð Þ v̇ tn + Δαhð Þ + hβ v̇ðtn+1 + ΔαhÞ ð38Þ

v̂n+1 : = v tnð Þ + h 1−γð Þ v̇ tn + Δαhð Þ + hγ v̇ tn+1 + Δαh
� � ð39Þ

1−αmð Þ ân+1 + αm v̇ tn + Δαhð Þ = 1−αf

� �
v̇ tn+1
� �

+ αf v̇ tnð Þ: ð40Þ

At the right hand sides of Eqs. (37), (38) and (39) and at the left hand side of Eq. (40), the arguments of v̇ are shifted by Δαh to
guarantee the local error estimate lan = O h2

� �
which is a straightforward consequence of

1−αmð Þlan = 1−αf

� �
v̇ tn+1
� �

+ αf v̇ tnð Þ
� �

− 1−αmð Þ v̇ tn+1 + Δαh
� �

+ αm v̇ tn + Δαhð Þ� �
: ð41Þ

In other words, ân is a second order approximation to v̇ tn + Δαhð Þ. With the standard second-order condition γ=0.5+αf−αm

for generalized-α methods [15], Taylor expansion of lnv results in

lvn = h2 γ−αf + αm−0:5
� �

̈v tnð Þ + O h3
� �

= O h3
� �

: ð42Þ

The local error analysis for solution components q∈G is based on the Taylor expansion of h̃Δq tnð Þ∈g in the definition of q̂n+1, see
Eq. (38), and a corresponding expression for the analytical solution q(tn+1). If ṽ tð Þ in Eq. (6) is given, then we get

q tn+1
� �

= q tn + hð Þ = q tnð Þ∘exp h ṽ h; tn; q tnð Þð Þ� � ð43Þ

with a smooth function ṽ: −h0; h0½ � × R × G→g. With this notation, an explicit expression for exp l̃
q
n

� �
in Eq. (37) is obtained:

exp l̃
q
n

� �
= ðq tn+1

� �Þ−1
∘q tnð Þ∘exp h̃Δq tnð Þ

� �
= exp −hṽ h; tn; q tnð Þð Þ� �

∘exp h̃Δq tnð Þ
� �

: ð44Þ

Following the approach of Müller [24], the Magnus expansion of hṽ, see [23], may be used to show

hṽðh; tn; q tnð ÞÞ = hṽ tnð Þ + h2

2
˜̇v tnð Þ + h3

6
˜ ̈v tnð Þ + h3

12
ṽ tnð Þ; ˜̇v tnð Þ

h i
+ O h4

� �
ð45Þ

= h̃Δq tnð Þ + h3

6
1−6β−3 αm−αf

� �� �
˜ ̈v tnð Þ + 1

2
ṽ tnð Þ; ˜̇v tnð Þ
h i� 	

+ O h4
� �

ð46Þ
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which coincides for the translational degrees of freedom (as in the classical ODE case) with a standard Taylor expansion of
the analytical solution since the Lie bracket [.,.] vanishes in this special case. Applying the Baker–Campbell–Hausdorff formula, see
Eqs. (36) to (44) we have rA=rB=1, rA−B=3 and

l̃
q
n = h Δ̃q tnð Þ− ṽðh; tn; q tnð ÞÞ� �

+ O h4
� �

= O h3
� �

and

l̃
q
n−1 =

h3

6
6β + 3 αm−αf

� �
−1

� �
˜ ̈v tn−1ð Þ−1

2
ṽ tn−1ð Þ; ˜̇v tn−1ð Þ
h i� 	

+ O h4
� �

= l̃
q
n + O h4

� �
: ð47Þ

5.2. Global error

In the Lie group integrator for constrained systems, the error propagation in the differential components q, v is coupled with
the error propagation in the algebraic components a, λ. Similar to Eq. (37), the global errors en(•) are defined by

qn = q tnð Þ∘exp ẽqn
� �

; vn = v tnð Þ + evn; an = v̇ tn + αm−αf

� �
h

� �
+ ean; λn = λ tnð Þ + eλn : ð48Þ

Furthermore, thenotationev̇n with v̇n = v̇ tnð Þ + ev̇n will beuseful. Becauseof Eqs. (7) and (27) at t=tn, this term isboundedby

‖ev̇n‖ = O 1ð Þ ‖eqn‖ + ‖evn‖ + ‖eλn ‖
� �

: ð49Þ

Multiplying Eq. (7) at t= tn and Eq. (27) from the left by [(BM−1BT)−1BM−1](q(tn)), we get

eλn = − BM−1BT
� �−1


 �
ðq tnð ÞÞ⋅B q tnð Þð Þev̇n + O hð Þ‖ev̇n‖ + O 1ð Þ ‖eqn‖ + ‖evn‖

� �
+ O hð Þ‖eλn ‖: ð50Þ

Here and in the following we suppose ‖eqn‖ = O hð Þ, ‖evn‖ = O hð Þ and ‖ean‖ = O 1ð Þ. For a second order method, this technical
assumption may be verified by standard arguments [21].

5.3. Error propagation in the Lie group and its tangent space

The error propagation in the solution components v may be studied similar to one step methods for ODEs:

evn+1 = vn+1−v tn+1
� �

= vn+1− v̂n+1
� �

+ v̂n+1−v tn+1
� �� �

= evn + h 1−γð Þean + hγean+1 + lvn: ð51Þ

For component a, we get

1−αmð Þean+1 + αme
a
n = 1−αmð Þ an+1− ân+1

� �
+ 1−αmð Þ ân+1− v̇ tn+1 + αm−αf

� �
h

� �� �
+ αm an− v̇ tn + αm−αf

� �
h

� �� �

= 1−αmð Þlan + 1−αf

� �
ev̇n+1 + αf e

v̇
n = O h2

� �
+ O 1ð Þ∑

1

k=0
‖eqn+k‖ + ‖evn+k‖ + ‖eλn+k‖

� �
;

ð52Þ
see Eq. (49). This estimate can be used to eliminate ena, en+1

a in Eq. (51) considering a weighted linear combination of two
subsequent time steps [18], see also [25]:

1−αmð Þevn+1− 1−2αmð Þevn−αme
v
n−1 = 1−αmð Þ evn+1−evn

� �
+ αm evn−evn−1

� �
= h 1−γð Þ 1−αmð Þean + αme

a
n−1

� �
+ hγð 1−αmð Þean+1 + αme

a
nÞ + O h3

� �

= h 1−γð Þ 1−αf

� �
ev̇n + αf e

v̇
n−1

� �
+ hγ 1−αf

� �
ev̇n+1 + αf e

v̇
n

� �
+ O h3

� � ð53Þ

= O hð Þ ∑
2

k=0
‖eqn+k−1‖ + ‖evn+k−1‖ + ‖eλn+k−1‖

� �
+ O h3

� �
: ð54Þ

To get an expression like Eq. (51) for the solution components q(t), we observe that q tnð Þ∘exp h̃Δq tnð Þ
� �

= q̂n+1 = q tn+1
� �

∘
exp l̃

q
n

� �
, i.e.,

exp l̃
q
n

� �
∘expð−h̃Δq tnð Þ

�
= q tn+1

� �� �−1∘q tnð Þ = ðqn+1∘exp − ẽqn+1

� �Þ−1∘ðqn∘exp − ẽqn
� �Þ

= exp ẽqn+1

� �
∘q−1

n+1∘qn∘exp −ẽq
n

� �
= exp ẽq

n+1

� �
∘exp −h̃Δqn

� �
∘exp − ẽn

q� �
;
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see Eq. (29). The resulting error recursion

exp ẽqn+1

� �
= exp l̃

q
n

� �
∘exp −h̃Δq tnð Þ

� �
∘exp ẽqn

� �
∘exp h̃Δqn

� �
ð55Þ

for one time step of the Lie group integrator is nonlinear and may be transformed by recursive application of the Baker–Campbell–
Hausdorff formula, see Eq. (35):

exp ẽqn+1

� �
= exp l̃

q
n

� �
∘exp −h̃Δq tnð Þ

� �
∘exp ẽqn

� �
∘exp h̃Δq tnð Þ

� �
∘exp −h̃Δq tnð Þ

� �
∘exp h̃Δqn

� �

= exp l̃
q
n

� �
∘exp ẽqn + h ẽqn; ṽ tnð Þ� 


+ O h2
� �

‖ẽqn‖
� �

∘exp h Δ̃qn−̃Δq tnð Þ
� �

+ O h2
� �

‖̃Δqn−̃Δq tnð Þ‖
� �

= exp l̃
q
n + ẽqn + h Δ̃qn−̃Δq tnð Þ

� �
+ h r̃n

� �
ð56Þ

with

h r̃n = h ẽqn; ṽ tnð Þ� 

+ O h2

� �
‖ẽqn‖ + O h2

� �
‖ Δ̃qn− Δ̃q tnð Þ‖ + O hð Þ‖ l̃qn‖

= h ẽqn; ṽ tnð Þ� 

+ O h2

� �
‖ẽqn‖ + ‖ẽvn‖ + h‖ẽan‖ + h‖ẽan+1‖

� �
+ O h4

� � ð57Þ

since ‖l̃
q
n‖ = O h3

� �
, ‖ẽqn‖ = O hð Þ and ‖Δ̃qn−Δ̃q tnð Þ‖ = ‖ẽvn‖ + O hð Þ ‖ẽan‖ + ‖ẽan+1‖

� �
= O hð Þ. Because of Eq. (56), the equivalent

eqn+1∈R
k to the global error ẽqn+1∈g at time tn+1 may be expressed as

eqn+1 = eqn + hðΔqn−Δq tnð ÞÞ + lqn + hrn: ð58Þ

The only (but important) difference between this estimate for the Lie group time integrator and the classical estimate (51) from ODE
theory is the additional higher order error term hrn.

As in Eqs. (53) and (54), we obtain from Eq. (58) a three-term recursion for enq:

1−αmð Þeqn+1− 1−2αmð Þeqn−αme
q
n−1

= hð 1−αmð Þevn + αme
v
n−1Þ + h2 0:5−βð Þ 1−αf

� �
ev̇n + αf e

v̇
n−1

� �
+ h2β 1−αf

� �
ev̇n+1 + αf e

v̇
n

� �

+ 1−αmð Þlqn + αml
q
n−1 + h2 1−αmð Þ βlan + 0:5−βð Þlan−1

� �
+ hð 1−αmð Þrn + αmrn−1Þ

ð59Þ

= O hð Þ ∑
2

k=0
‖eqn+k−1‖ + ‖evn+k−1‖ + h‖eλn+k−1‖ + h2‖ean+k−1‖

� �
+ O h3

� �
ð60Þ

since the global errors in v̇ and the higher order terms hrn, hrn−1 satisfy the estimates (49) and (57).

5.4. Error recursion for the Lagrange multipliers

It is a key idea of the convergence analysis for generalized-α methods applied to constrained systems to consider the error
recursion in a time-discrete difference approximation (enq)′:=(enq−en−1

q )/h of the global error in q̇ tð Þ, see [18]. This error recursion is
obtained from the difference of Eq. (59) for time step tn→tn+1 and Eq. (59) for time step tn−1→ tn. There are three terms in the right
hand side of this difference that require special attention: The first one is the weighted sum(1−αm)(env−en−1

v )+αm(en−1
v −en−2

v )
thatmay be substituted by Eq. (53). At second, there are terms (1−αm)(lnq− ln−1

q )/h and αm(ln−1
q − ln−2

q )/h approximating a scaled
time derivative of local errors in q. Note, that lqn = O h3

� �
, i.e. lqn = h = O h2

� �
, but the difference quotients (lnq− ln−1

q )/h are
nevertheless of size O h3

� �
, see Eq. (47).

Finally, there are terms (1−αm)(rn−rn−1) and αm(rn−1−rn−2) that are bounded by O hð Þ ‖ẽn−1
q ‖ + ‖ẽn−2

q ‖ + ‖ ẽn
q

� �
′‖ +

�
‖ ẽn−1

q
� �

′‖Þ and some higher order terms since

½ẽnq ; ṽ tnð Þ�−½ẽn−1
q

; ṽ tn−1ð Þ�= h½ ẽn
q� �
′; ṽ tnð Þ� + O hð Þ‖ ẽn−1

q ‖:

These estimates may be summarized to

1−αmð Þ eqn+1

� �
′− 1−2αmð Þ eqn

� �
′−αm eqn−1

� �
′

= h∑
3

k=0
b′ke

v̇
n+k−2 + O hð Þ∑

3

k=0
‖eqn+k−2‖ + ‖evn+k−2‖ + ‖ eqn+k−2

� �
′‖

� �

+ O h2
� �

∑
3

k=0
‖eλn+k−2‖ + ‖ean+k−2‖

� �
+ O h3

� �

ð61Þ
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with coefficients bk′ being given in ([18], Eq. (19)). As in [18], an error recursion for the Lagrange multipliers λ is obtained by left

multiplication of Eq. (61) with
1
h

BM−1BT
� �−1

B

 �

ðq tnð ÞÞ, see Eq. (50):

∑
3

k=0
b′ke

λ
n+k−2 = O 1ð Þ‖ 1−αmð ÞBðq tnð ÞÞ eqn+1

� �
′− eqn

� �
′

h
+ αmBðq tnð ÞÞ eqn

� �
′− eqn−1

� �
′

h ‖
+ O 1ð Þ∑

3

k=0
‖eqn+k−2‖ + ‖evn+k−2‖ + h‖eλn+k−2‖ + h‖ean+k−2‖

� �
+ O h2

� �
:

ð62Þ

In the classical case, estimates for Bðq tnð ÞÞ eqn+k

� �
′− eqn+k−1

� �
′

� �
= h; k = 0;1ð Þ; in terms of scaled constraint residuals

‖Φ qn+k−l

� �
‖ = h2 are obtained from a time-discrete difference approximation for the second time derivative of constraints (8), see

Lemma 2 and Lemma 3 in [18]. The extension of these results to the Lie group setting of the present paper is technically rather
complicated and has to be omitted to keep the presentation compact. As in the classical case, see ([18], Eq. (37)), we get finally a
four-term recursion for the global errors eλn :

∑
3

k=0
b′ke

λ
n+k−2 = O 1

h2

� 	
∑
3

k=0
‖Φ qn+k−2

� �
‖ + O 1ð Þ∑

3

k=0
‖eqn+k−2‖ + ‖evn+k−2‖ + ‖ eqn+k−2

� �
′‖ + h‖eλn+k−2‖ + h‖ean+k−2‖

� �
+ O h2

� �
:

ð63Þ

Formally, the first term at the right hand side of Eq. (63) vanishes, see Eq. (28), but it illustrates the influence of round-off errors
that can not be avoided in a practical implementation of the method.

In contrast to the convergence analysis in the classicalDAE case [18], the global errors ean cannot be completely eliminated from the
three- and four-term recursions (60), (61) and (63) for eqn, eqn

� �
′ and eλn since the Baker–Campbell–Hausdorff formula applied to

Eq. (55) results in additional higher order error terms hrn that reflect the nonlinearity of Lie group integrators. It is an important detail
of the convergence analysis that the coefficient of ‖ean+k−2‖ in the four-term recursion (63) may be bounded by a factor of sizeO hð Þ
comparing the numerical solution an not with v̇ tnð Þ but with v̇ tn + αm−αf

� �
h

� �
to define the global error ean, see Eq. (48).

5.5. Convergence

The three-term recursions (60), (54) and (61) for the global errors eqn, evn and eqn
� �

′ in thedifferential components and the two- and
four-term recursions (52) and (63) for the global errors ean and eλn in the algebraic componentsmay be summarized to a coupled four-
term recursion for the global errors in all solution components, see ([18], Eqs. (39), (40)). The stability of such coupled error recursions
was studied in great detail to prove convergence of linear multi step methods applied to higher index DAEs ([21], Section VII.3), see
also the discussion of technical details in the application to generalized-α methods in Section 3.4 of [18].

For fixed time step sizes h, the generalized-α Lie group time integrator has global errors O h2
� �

in all solution components
(second order convergence), if the classical order condition γ=0.5+αf−αm and the additional stability conditions

αm<αf <0:5;β> 0:25 + αf−αm

� �
= 2 ð64Þ

are satisfied and the errors in all initial values are of size O h2
� �

. The first order approximation a0 = v0 may introduce slightly
larger errors in the initial phase that are rapidly damped out during integration [21]. In the numerical tests of Section 7, the order
condition and the stability conditions (64) are always satisfied selecting parameters αm, αf, β, γ according to [15] with a spectral
radius at infinity ρ∞∈ [0, 1).

6. Updated Lagrangian method

The updated Lagrangian method proposed in [2] for the integration of large rotation variables is also closely related to the
strategy proposed byMunthe-Kaas for Lie group integrators. This method, whichwill be used in the following numerical examples
as a reference solution, is briefly described here. The key idea is, at each time step, to map the differential equation to a local
coordinate system. In the coordinate system, any classical integrator can be used to solve the dynamic problem. More precisely, at
the current time t, the relative motion with respect to the previous time step tn is parameterized using a vector qn tð Þ∈Rk and the
exponential map according to

q tð Þ = qn∘exp̃ qn tð Þ
� �

: ð65Þ

Two successive differentiations of this equation yield

v tð Þ = Tðqn tð ÞÞq̇n tð Þ ð66Þ
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v̇ tð Þ = Tðqn tð ÞÞ ̈qn tð Þ + Ṫðqn tð Þ; q̇n tð ÞÞq̇n tð Þ: ð67Þ

The numerical solution at time tn (resp. tn+1) is denoted by qn
0 (resp. qn

1). Observing that T 0ð Þ = Ik and Ṫ 0; q̇
� �

q̇ = 0k, we
have

qn
0 = 0 ð68Þ

q̇n
0 = vn ð69Þ

q̈n
0 = v̇n: ð70Þ

Using this strategy with the generalized-α method leads to the following algorithm

M qn+1
� �

v̇n+1 = −g qn+1; vn+1; tn+1
� �

−BT qn+1
� �

λn+1 ð71Þ

Φ qn+1
� �

= 0 ð72Þ

qn+1 = qn∘exp q̃n
1

� �
ð73Þ

vn+1 = T qn
1

� �
q̇n
1 ð74Þ

v̇n+1 = T qn
1

� �
q̈n
1 + Ṫ qn

1; q̇
n
1

� �
q̇n
1 ð75Þ

an+1 = T qn
1

� �
an1 + Ṫ qn

1; q̇
n
1

� �
q̇n
1 ð76Þ

qn
1 = hvn + 0:5−βð Þh2an + βh2an1 ð77Þ

q̇n
1 = vn + 1−γð Þhan + γhan1 ð78Þ

1−αmð Þan1 + αman = 1−αf

� �
q̈n
1 + αf v̇n: ð79Þ

This set of equations can be solved for given values of qn, vn, v̇n and an. In contrast with the previous scheme, the integration
formulae are defined in the local coordinate system and are not based on purely geometric quantities as angular velocities and
accelerations. Moreover, the complexity of the updated Lagrangian algorithm is increased due to the presence of velocity and
acceleration transformation formulae (74–76). Themain difference between the algorithm (71–79) and the approach in [2] comes
from the definition of the acceleration-like variable, which is based on a linear combination at acceleration level here and on a
linear combination at residual force level in [2].

Eq. (65) defines a local parameterization of the manifold based on the exponential map. Other updated Lagrangian methods
can be obtained if other coordinate maps μ : Rk→G are used

q tð Þ = qn∘μðqn tð ÞÞ: ð80Þ

Following the same idea as in [26], the examples below will be treated using an updated Lagrangian method with a
parameterization based on the conformal rotation vector (CRV). If G=SO(3), the CRV coordinate map is given by

μCRV ;SO 3ð Þ cð Þ = 1
4−c0ð Þ2 ½ c20 + 8c0−16

� �
I + 2ccT + 2c0 c̃ �; c0 =

16−∥c∥2
8

ð81Þ

and the tangent operator is

TCRV ;SO 3ð Þ cð Þ = 2
4−c0ð Þ2 c0I +

1
4
ccT− c̃

� 	
: ð82Þ

Sometimes, those coordinates are also referred to as the Wiener–Milenkovic parameters. The definition of the CRV coordinates is
easily extended to any Lie group G formed by a multiple Cartesian product of R3 and SO(3).

7. Numerical examples

In the following numerical examples, two time integration methods are compared

• The “Lie-α” method is the proposed generalized-α method for dynamic systems on Lie group, see Section 4.
• The “UL-CRV” method is the updated Lagrangian method based on the conformal rotation vector parameterization, see Section 6.
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7.1. Heavy top — constrained formulation

As shown in Fig. 1, the heavy top is a rotating body fixed to the ground by a spherical joint. In principle, the motion could be
described in SO(3) if the equilibrium of momentum were expressed with respect to the fixed point. However, in order to test our
algorithms for constrained systems, the translation of the center of mass and the rotation of the body are considered as
independent variables. This strategy is in agreement with the finite element approach described in [1]. The configuration of the
system is thus represented by q = x;Rð Þ∈R3 × SO 3ð Þ. However, due to the fixed point condition, the variables x and R have to
satisfy three kinematic constraints so that themotion is restricted to a 3-dimensional submanifold ofR3 × SO 3ð Þ. Themotion of the
top is described by a set of differential-algebraic equations

mẍ−λ = mγ ð83Þ

JΩ̇ + Ω × JΩ + X̃RTλ = 0 ð84Þ

−x + RX = 0: ð85Þ

The vector x ∈ R
3 represents the position of the center of mass in the inertial frame,X ∈ R

3 represents the constant position of the
center of mass in the body-fixed frame and R ∈ SO 3ð Þ is the 3×3 rotation matrix of the body. m is the mass of the top and the
inertia tensor J in the body-fixed frame is defined with respect to the center of mass. Ω ∈ R

3 is the angular velocity in the body-
fixed frame and γ is the 3×1 vector of gravity acceleration in the inertial frame. The third equation is a set of 3 algebraic constraints
and λ is the associated 3×1 vector of Lagrange multipliers. The constraint gradient matrix is given by B qð Þ = −I3−RX̃

h i
.

In the numerical tests, the parameters of the model are defined as m=15 kg, J = diag 0:234375;0:46875;0:234375ð Þkgm2,
X = 0:1:0:½ �T m, γ=[0.0.−9.81]Tm/s2 and the initial conditions are R 0ð Þ = I3, Ω 0ð Þ = 0:150:−4:61538½ �T rad/s. The initial values
ẋ 0ð Þ, ẍ 0ð Þ and Ω̇ 0ð Þ are set to be consistent with the constraints and the equations of motion. In Fig. 2, the numerical results are
obtained using a time step h=0.002 s and the algorithmic parameters are defined according to the Chung–Hulbert scheme [15] in
order to have a spectral radius at infinity ρ∞=0.9. The solutions obtained by the proposed Lie group method and by the updated
Lagrangian method are compared. The vertical displacement of the center of mass x3 is shown in the interval [0, 2]s and the fast
rotation of the top is represented by the second component of the Cartesian rotation vector ψ2 in the interval [0, 0.2] s. The figure
shows numerical oscillations for the multiplier λ1 at the beginning of the simulation, which are stabilized efficiently by the time
integrator. The mean number of Newton iterations per time step is equal to 3 for both methods.

The energy is not exactly preserved but the drifts are much smaller for the Lie-α than for the UL-CRVmethod. Fig. 2 shows that
total energy is continuously increasing for computations using UL-CRV algorithm. This behavior is due to the significant
nonlinearity of the CRV parameterization. When performing the same computations using the rotational vector to parameterize
rotations in the updated Lagrangian method, this effect does not appear and the energy evolution is much closer to the results
presented by the Lie group integrator, as shown in [14].

In order to analyze the convergence, a reference solution was computed using a small time step h=1.5625 e−5s. In
agreement with the theoretical convergence analysis, second-order accuracy is observed both for differential and algebraic
variables x and λ. The errors in x are closely related with the errors in R since the constraint (85) is satisfied at each time step with
a precision fixed by the tolerance of the Newton iteration process.

7.2. Right-angle cantilever beam

The second example is a classical benchmark for nonlinear dynamic beam formulations, see [26] and references therein. An L
shape cantilever beam made of two 10-meter-long segments is set into motion by applying an out-of-plane concentrated load at
its elbow as is depicted in Fig. 3. The applied force is linearly increasing on 0≤ t≤1 s to reach the maximum value of 50 N and then
is decreasing on 1≤ t≤2 s to reach the 0 value. In the remaining time until t=30 s, the cantilever is undergoing free vibrations of
finite amplitude with combined bending and torsion.

The equations of motion are derived using a classical geometrically exact beam formulation described in [26]. The translation
and rotational fields along the beam axis are discretized according to the finite element method. Compared to [26], the beam

Fig. 1. Heavy top.
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formulation is adapted for the Lie group solver, with the main difference that the equations of motion are now formulated in the
Lie algebra and not in a parameter space. This significantly simplifies the formulation and the implementation of the beammodel.
The model does not include any kinematic constraint, which means that the equations of motion have the structure of an ODE.

The computation is carried out using 10 beam elements and a constant time step h=0.2 s. The algorithmic parameters are
defined according to Hilber–Hughes–Taylor method (HHT-method) with the numerical damping coefficient α=0.05. This choice
leads to a spectral radius ρ∞=0.905. The results are shown in Fig. 4. The response for out-of-plane displacements of the tip is
plotted. Note that the amplitudes of the vibration have same order of magnitude as the structure dimensions, which means that
the beam is really subjected to very large displacements and rotations in 3D. The results obtained using the proposed Lie group
method and the updated Lagrangian approach are in close agreement with each other as well as with [26] and references therein.
There is no significant difference in the mean number of Newton iterations per time step, which is equal to 3.77 for the UL-CRV
algorithm and to 3.83 for the Lie-α algorithm. Even though the method was not designed to preserve exactly the energy, one can
appreciate the small variations of energy during the free-vibration phase of the simulation.

Based on a reference solution computed using the same algorithm and a small time step h=7.8e−4s, a convergence study of
displacements has been achieved. As predicted by the theoretical analysis, the proposed Lie group generalized-α method is
second-order accurate and it has a similar level of accuracy as the updated Lagrangian method for computing the solution of
nonlinear structural dynamics problems with large finite rotations. Indeed, the main advantage of the Lie group method is the
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Fig. 2. Heavy top: Simulation results.
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simpler formulation of the integrator and of the nonlinear beam element in the Lie algebra, compared to formulations in the
parameter space.

7.3. Four-bar flexible mechanism with a misaligned hinge

This four-bar mechanism problem, which is illustrated in Fig. 5, was presented by Bauchau and Bottasso [27]. The system is
composed of three flexible bars connected to each other and to the ground by ideal revolute joints. The axis of the joints at points A,
B and D are normal to the plane of the mechanism but the axis of the joint at point C makes an angle of 5° with the z axis, which
simulates a fabrication default of the system. If all the bars were rigid, no motion would be possible for this mechanism. Motion is
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Fig. 4. Right-angle beam: Simulation results.
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only possible since the flexibility of the bars is taken into account. In this test-case, a constant rotation speed is imposed for the
hinge at point A, which results in a cyclic 3Dmotion of the system. Indeed, deformations of the flexible bars have both in-plane and
out-of-plane components. When bar AB rotates at constant speed, bar CD does not complete an entire turn but it oscillates back
and forth.

It was not possible to have the whole set of parameters used in [27], which explains the fact that our simulation results are
different. The parameters of the system are selected as follows. For the axis orientation of the defective hinge, the angle of 5° is
measured positively about y-axis. For the three bars, the Young modulus and Poisson ratio are E=2.1e11N/m2, ν=0.3, so that
G=E/(2(1+ν)). The other properties of the bars are given in Table 2. The relative angle θA of hinge A is imposed with a smooth
acceleration phase between t= t0 and t= ts followed by a constant speed phase according to the law

θA tð Þ = ω = tsð Þ t2 = 2 + ðts = 2πð ÞÞ2ðcos 2πt = tsð Þ−1Þ� 	
for t0≤t≤ts

ω t−ts = 2ð Þ for ts≤t

8<
: ð86Þ

with t0=0s, ts=0.5s and ω=−5 rad/s.
Themodel of the flexible beams is based on the same nonlinear finite element formulation as in the previous example. Each bar

is discretized into 10 finite elements. The step-size is selected as h=2.e−2s and the numerical parameters of the proposed Lie
group method and of the updated Lagrangian method are selected according to the Chung–Hulbert method [15], with a spectral
radius at infinite frequency ρ∞=0.9. Numerical results are shown in Fig. 6. As in the previous examples, there is no significant
difference in the mean number of Newton iterations per time step, which is equal to 3.06 for the UL-CRV algorithm and to 3.05 for
the Lie-α algorithm. Again, even though the Lie group formulation of the beam element and of the time integrator are much
simpler, the results obtained by the two algorithms are in close agreement with each other and second-order convergence is
observed for both displacements and Lagrange multipliers. This example shows how the theoretical conclusions of this study are
valid for constrained flexible multibody systems.

8. Conclusions

This paper studies a Lie group extension of the generalized-α time integrator for the simulation of flexible multibody systems
with kinematic constraints. The method provides an elegant solution to the rotation parameterization problem, it does not suffer
from parameterization singularities and it does not require the definition of redundant rotational coordinates. Moreover, it is
general and applicable to any mechanical model with large rotation variables.

Second-order accuracy is demonstrated in the DAE case and is verified for three examples of rigid and flexible body systems.
The Lie group integrator is compared with a more classical updated Lagrangian method, which is also formulated in a Lie group
setting. We conclude that the newmethod can compete with the more classical ones from the viewpoint of accuracy, stability and
energy conservation.

Themain advantages of the Lie groupmethod are related with its particular formulation, which is both generic and remarkably
simple compared to parameterization-based algorithms. Important simplifications appear in the expression of the iterationmatrix
involved in the Newton procedure to solve the nonlinear problem at each time step. Therefore, the implementation of the exact

A

B C

Dx

y

misaligned
hinge

Fig. 5. Four-bar flexible mechanism.

Table 2
Parameters of the four-bar system. Parameters EI, GAshear and Ii have the same values along the two principle axes of the cross section.

Bar AB BC CD

Length (m) 0.12 0.24 0.12
Traction stiffness EA (N) 4.e7 4.e6 4.e5
Flexion stiffness EI (Nm2) 2.4e6 2.8e5 2.4e4
Torsion stiffness GJ (Nm2) 2.8e5 2.8e4 2.8e4
Shearing stiffness GAshear (N) 2.e6 2.e5 2.e5
Mass per unit length (kg/m) 3.2 1.6 1.6
Section inertia about beam axis Ji (kgm) 2.4e−2 1.2e−2 1.2e−2
Section inertia about transverse axis Ii (kgm) 1.2e−2 6.e−3 6.e−3
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expression of this matrix in a simulation code is more easily feasible in order to guarantee the fastest convergence rate of the
iterations. The potential improvement in computational efficiency is an advantage for real-time applications, large scale problems,
parametric studies and optimization. The simplicity of the formulation is also interesting for a semi-analytical sensitivity analysis
or for model-based control schemes. Hence, Lie group time integrators are promising candidates for the development of robust,
efficient and open simulation software for the analysis of flexible multibody systems.
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Fig. 6. Four-bar flexible mechanism: Simulation results.
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