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Quantitative and qualitative analyses of isolated teeth and postcranial elements of non-avian theropod
dinosaurs from the Upper Cretaceous (Santonian) Csehbánya Formation, Iharkút (western Hungary)
indicate that these remains represent multiple dinosaur groups. Based on comparative and statistical
analyses, 58 teeth and tooth fragments are identified as belonging to medium-sized basal tetanuran
theropods that may have represented the top-predator of the terrestrial Iharkút ecosystem. These teeth
are almost identical with the two ‘Megalosaurus pannoniensis’ teeth from the lower Campanian of
Muthmannsdorf (Austria) and show a notable similarity to teeth of the Middle Jurassic M. bucklandii and
the Lower Cretaceous ‘M. dunkeri’ from England. A single pedal ungual phalanx is interpreted as the
oldest European occurrence of Late Cretaceous abelisaurids, as suggested by a ventral groove and
bifurcated grooves laterally bordering a convex, triangular area. Small-bodied paravian theropods are
found to be the best represented group in Iharkút, including teeth, caudal vertebrae, a metacarpal III,
manual phalanges, and a fragmentary left tibia. A particularly notable paravian remain is a complete left
scapulocoracoid possessing a unique pneumatic foramen ventral to the coracoid foramen. This specimen
is assigned to Pneumatoraptor fodori n. g. et sp. Finally, numerous postcranial elements of Theropoda
indet. were recovered, including a fragmentary sacrum that offers new insights into the sacral pneu-
maticity of theropods. The presence of these theropods in the Santonian Iharkút ecosystem provides the
first evidence that during the early Late Cretaceous the Mediterranean archipelago was inhabited by both
Gondwanan and Euramerican members of theropod dinosaurs. Consistent with data available for other
archosaurian taxa, the close relationship of the basal tetanuran teeth with much older forms suggests
that the Iharkút area may have functioned as a refugium in the early Late Cretaceous Mediterranean
archipelago.

� 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

The Cretaceous fossil record of terrestrial vertebrates is
discontinuous in Europe, with most fossil occurrences concentrated
in two time intervals: the Early Cretaceous and the youngest part of
the Cretaceous (late Campanian to Maastrichtian) (Weishampel
et al., 2004). The dearth of early Late Cretaceous records of
terrestrial vertebrates masks the evolutionary and faunal succes-
sions that took place throughout the Cretaceous across islandic
landscape of the European archipelago

The Early Cretaceous fossil record offers a detailed documen-
tation of diverse vertebrate taxa, with clear faunal links to verte-
brate associations of both other Euramerican regions (especially
i), sebapesteguia@gmail.com
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North America) as well as Gondwanan landmasses. These Early
Cretaceous faunas are represented by fossils of the Wealden
Supergroup and its equivalents in Belgium, England, France,
Germany, Portugal, and Spain (Martill and Naish, 2001; Weisham-
pel et al., 2004, Sánchez-Hernández et al., 2007). In contrast Q, the
Late Cretaceous fossil record is affected by an almost 20 myr long
gap between the Cenomanian to early Campanian, thus, providing
a limited record of faunal associations that dominated ecosystems
of this long and evolutionarily important time interval.

The European fossil record of the early Late Cretaceous theropod
dinosaurs is even more limited due, most likely, to poor preserva-
tion of their usually fragile and hollow bones. Until recently, the
Cenomanian record of non-avian theropods was documented by
teeth and a few isolated, fragmentary bones documented from
a few localities in France (Buffetaut et al., 1991; Buffetaut, 1994;
Buffetaut and Pouit, 1994) and western Russia (Rozhdestvensky,
1973). Most of this material was identified as Theropoda indet.
osaurs from the early late cretaceous of central Europe, Cretaceous
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Recently, on the basis of isolated teeth, carcharodontosaurs, dro-
maeosaurids, and troodontids have been reported from western
France (Vullo et al., 2007; Vullo and Neraudeau, 2008). Further-
more, theropod footprints have been described from Spain
(Cuenca-Bescós et al., 1999) and Croatia (Dalla Vecchia, 2001). From
the Turonian to the Coniacian, the theropod record is almost non-
existent. Only Buffetaut et al. (1991) mentioned some material from
Turonian deposits. Until the discovery of the Iharkút locality in
western Hungary (see below), the Santonian theropod record was
also extremely poorly known, with data limited to terrestrial
vertebrate occurrences in shallow marine sedimentary rocks of
Belgium (Dollo 1903; Le Loeuff and Buffetaut, 1991) and France
(Buffetaut and Pouit, 1994). Early Campanian fossils were reported
from Scania, Sweden (Persson, 1959), France (Buffetaut et al., 1991;
1997), eastern Austria (Seeley, 1881), Slovenia (Debeljak et al.,
1999), and possibly from Borod (Nagybáród) in western Romania
(Nopcsa, 1902; Csiki and Grigorescu, 1998, these latter specimens
appear to be lost).

Due to the relatively higher number of Late Campanian–Maas-
trichtian localities, the abundance and diversity of theropods from
this time interval are also higher (Pereda-Suberbiola, 2009). The
main localities of Portugal, Spain, France, and western Romania
provided evidence for presence of abelisauroids (Buffetaut et al.,
1988; Astibia et al., 1990; Le Loeuff and Buffetaut, 1991), tetanurans
(Casanovas-Cladellas et al., 1988; Csiki and Grigorescu, 1998;
Prieto-Marquez et al., 2000), dromaeosaurids (Antunes and
Sigogneau-Russell, 1991, 1992; Le Loeuff et al., 1992; Weishampel
and Jianu, 1996; Csiki and Grigorescu, 1998; Le Loeuff and Buffetaut,
1998; Antunes and Mateus, 2003; }Osi and F}ozy, 2007), troodontids
(Grigorescu et al., 1999; Codrea et al., 2002), ornithomimosaurs
(Pereda-Suberbiola et al., 2000; Canudo and Ruiz-Omeńaca, 2003),
and alvarezsaurids (Naish and Dyke, 2004; Kessler et al., 2005).

Throughout the Late Cretaceous of Europe, the dominant
terrestrial faunal assemblages vary across time and regions. Only for
the Campano-Maastrichtian, sufficient data are available to provide
a tentative picture of dinosaur (and mostly other vertebrate) faunas
of that time. The Campano–Maastrichtian record clearly indicates
a mixed fauna consisting of both Euramerican (e.g. nodosaurid
ankylosaurs, dromaeosaurids) and Gondwanan (e.g. bothremydid
turtles, sebecosuchian crocodylians, abelisaurid theropods)
components (Le Loeuff, 1991; }Osi and Rabi, 2006). However, the
spotty nature of the pre-Campanian fossil record hinders a more
complete understanding on the origin and evolution of the Creta-
ceous European vertebrate faunas before the Campanian. Conse-
quently, the theropod material discovered in the Santonian of
Iharkút represents a particularly important source of data.

The aim of the present study is to discuss the systematics of the
Hungarian theropods discovered recently in the Santonian Cseh-
bánya Formation in Iharkút (western Hungary). Given that the
material is dominated by isolated teeth, the traditional qualitative
systematics has been augmented here with an array of statistical
analyses based on univariate, bivariate, and multivariate evalua-
tions of morphometric data. In addition, the documented fossils
have been also used to provide new data regarding the continental
paleobiogeography of the Late Cretaceous European archipelago.

Institutional AbbreviationsdIGM, Mongolian Institute of
Geology, Ulan Bataar; MTM, Hungarian Natural History Museum,
Budapest; NHM, Natural History Museum, London, UK; PIUW,
Paläontologisches Institut, Universität Vienna, Vienna; OUMNH,
Oxford University Museum of Natural History, Oxford.

2. Material and methods

The material described here was collected during the field work
conducted between 2001 and 2008 at the Iharkút locality, Bakony
Please cite this article in press as: }Osi, A., et al., Non-avian theropod din
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Mountains, western Hungary. All the bones and teeth represent
isolated specimens and were recovered from a sedimentary breccia
layer that represents the richest bone-yielding horizon within the
Santonian (Knauer and Siegl-Farkas, 1992; Mártonné Szalai, 2005)
fluvial Csehbánya Formation (for geological details see Makádi
et al., 2006; Tuba et al., 2006; }Osi and Mindszenty, 2009). Speci-
mens were prepared mechanically in the technical labs of the
Department of Paleontology, Eötvös Loránd University and the
Hungarian Natural History Museum. The bones are well preserved,
rich in pyrite and organic material, and black in color.

The theropod teeth were analyzed and compared using both
descriptive morphological characters as well as quantitative
morphometric techniques. The latter approach, detailed in the next
section, was based on numerical parameters developed recently for
theropod teeth by Smith et al. (2005).

2.1. Analytical methods

The primary analytical motivation is to summarize variation in
theropod tooth morphology and examine this variation in the
context of pre-existing taxonomic classifications. In addition to the
two groups of Hungarian theropod teeth (basal Tetanurae, Paraves
indet.), the parameters of two teeth from the lower Campanian of
Austria (‘Megalosaurus pannoniensis’) and three teeth of ‘Mega-
losaurus dunkeri’ from the Lower Cretaceous of England were merged
with the dataset reported by Smith et al. (2005). To evaluate new data
in the context of preexisting data, a combination of univariate,
bivariate and multivariate methods is employed here. Univariate and
bivariate methods include standard parametric (e.g., ANOVA) and
non-parametric (e.g., Kruskal-Wallis test) statistical methods. In
addition to ANOVA, the Tukey’s test, which allows for simultaneous
pairwise comparisons of all possible pairs of taxa, was also carried
out. Multivariate methods include a series of exploratory and
confirmatory approaches selected to maximize inherent strengths
(and also minimize inherent weaknesses) of the analyzed data.

In the case of multivariate methods, a diverse array of tech-
niques has been employed to fully explore the data. These methods
are partly redundant, but differ somewhat in terms of assumptions,
goals, and analytical efficiency. Some require substantial restric-
tions (due to missing values or inadequacy of variables), while
others offer an all-inclusive opportunity to explore the entire
dataset, but typically provide analytical results that are less
powerful statistically and more ambiguous in terms of morpho-
metric interpretations.

Because tooth morphology is best captured by a mixture of
variables of various types, the standard landmark methods used
currently in most morphometric studies (e.g., Zelditch et al., 2004)
are not applicable here. In addition, because this study builds on
a major recent study by Smith et al. (2005), it necessarily requires
comparable (non-landmark) data. The multivariate approaches
used below includes a series of approaches often used in non-
landmark morphometric studies. These include the following
sequence of analyses:

1. Principal component analysis (PCA), based on log-transformed
linear dimensions, represents the ‘‘traditional morphometric
approach’’, which restricts data to linear-dimension variables and
excludes observations with missing values, but provides data that
can be readilyexplored in terms of morphometric interpretations.

2. Non-metric multidimensional scaling (MDS) allows for an all-
inclusive analysis of all variables and observations, but is much
more difficult to interpret in morphometric context. This
approach is also somewhat redundant with PCA, but offers an
opportunity to evaluate more variables and more observations
simultaneously.
osaurs from the early late cretaceous of central Europe, Cretaceous
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All analyses were performed using SAS/STAT procedures (e.g.,
PROC ANOVA, PROC NPAR1WAY, PROC PRINCOMP, PROC MDS) as
well as custom-designed SAS/IML codes. All statistical tests
assumed the significance level of a¼0.05.

The systematics used in this study follows primarily Holtz
(1994) and Turner et al. (2007). Specimens are housed in the
Hungarian Natural History Museum (MTM).

3. Systematic paleontology

Dinosauria Owen, 1842
Saurischia Seeley, 1889
Theropoda Marsh, 1881
Tetanurae Gauthier, 1986
Tetanurae indet.

Referred material: 58 isolated teeth and tooth fragments from
Iharkút: V.01.54, V.01.30, V.01.20, V.2003.04–08, V 2008.36.1–V
2008.36.51. Two fragmentary teeth from Muthmannsdorf, eastern
Austria (PIUW uncatalogued specimens).

Locality: Iharkút, Bakony Mountains, western Hungary; Muth-
mansdorf, eastern Austria.

Age and horizon: Late Cretaceous, Santonian, Csehbánya
Formation; early Campanian Gosau beds, Coal-bearing Complex,
Gosau Group (Grünbach Syncline).
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3.1. Description and comparisons

From the 58 isolated specimens, 27 have an almost complete
crown, and they seem to represent the whole, morphologically
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Fig. 1. Isolated teeth of basal tetanuran theropods from the Santonian Csehbánya Formation
mesial views. D, posterior tooth (MTM V.01.54) in lateral, E, distal, F, mesial views. G, micro
denticle is on the left and scratches are roughly parallel with this margin. H, distal serration
serration of MTM V 2008.36.30. K, MTM V 2008.36.30. in distal, L, and mesial views.
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heterodont tooth row. The assemblage is represented by rostral but
more frequently posterior teeth.

3.1.1. Rostral teeth
As in the rostralmost teeth of several other theropod groups (e.g.

coelophysoids, Tykosky and Rowe, 2004, basal tetanurans, Holtz
et al., 2004), the supposed rostral teeth from Iharkút (Fig. 1A–C)
have a lenticular, almost circular basal cross-section, as reflected by
a high (0.7–0.8; see supplementary data) crown base ratio
(CBR¼crown base width [CBW]:crown base length [CWL]; Smith
et al., 2005). Their crown curves only slightly distally (crown angle
[CA] is high, 63� in V 2008.36.6 and 70� in V.2003.05) being in
contrast with the posterior, transversely more flattened teeth that
show a slight lingual curvature. As usual in theropods, the base of
the crown is not constricted. These teeth show bands of growth
along both the labial and lingual surfaces but these bands are not as
strong as those on the more posterior teeth.

Both mesial and distal carinae are present and they are
completely serrated. In cross-section the carinae, especially the
mesial one, are not in the saggital plane of the crown instead, the
mesial carina is lingually displaced and the distal one passes labially.
Similar asymmetrical configuration of the carinae (Fig. 1B–C) has
been described in numerous theropod groups (Currie et al., 1990;
Holtz et al., 2004; Smith et al., 2005). The mesial carina does not
extend along the complete crown (Fig. 1C) being restricted to about
the apical half or two-third of it. In contrast to the more frequent
posterior teeth, in no case the distal carina of these rostral teeth
reaches the base of the crown, but rather it ends basally approxi-
mately at the two-thirds or four-fifths of the crown. The denticle-
free anterior margin is rounded basally and completely devoid of
any trace of carina. Distal denticles are larger than the anterior ones.
, Iharkút, western Hungary. A, rostral tooth (MTM V 2008.36.6.) in lateral, B, distal, C,
wear features on a denticle of MTM V 2008.36.30. Note that the cutting margin of the
of MTM V 2008.36.30., I, posterior tooth (MTM V 2008.36.30.) in lateral view. J, mesial

osaurs from the early late cretaceous of central Europe, Cretaceous
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The average serration density on the mesial carina (MAVG) is of 22–
24 denticles in 5 mm, whereas the distal carina (DAVG) bears 17
denticles in 5 mm. The number of denticles in both carinae is usually
higher both basally and apically than in the mid-section (see
supplementary data) because close to the crown base and apex
smaller denticles are present. Denticles are neither symmetrical nor
as hooked as those of troodontids (Currie,1987), but instead slightly
square-shaped similar to Dromaeosaurus albertensis (Currie et al.,
1990). They are chisel-like and the apex is oriented apically. Blood-
grooves are visible between the individual denticles.

3.1.2. Posterior teeth
Labiolingually flattened, distally curved teeth are more frequent

probably representing most probably the teeth more posterior than
those described above (Fig. 1D–L). They have mesiodistally elon-
gated, tear-shaped cross-section with lower (0.4–0.6) crown base
ratios compared to the rostral teeth (see supplementary data). The
crown curves only distally with a crown angle ranging between 56�

and 60� that appears to be a characteristic feature of these basal
tetanuran teeth (see statistical analyses below). Bands of growth or
enamel wrinkles are frequent and well-developed along the labial
and lingual surfaces, similarly to the teeth of Megalosaurus (Bru-
satte et al., 2007; Fig. 1D, I). The serrated distal carina always rea-
ches the base of the crown. The mesial carina, however, generally
continues only about half or one-third of the way down the crown.
Basally, the starting point of the serrated mesial carina is abrupt and
forms a small step in the tooth profile. Features of the denticles
described for the rostral teeth are almost identical with those of the
posterior teeth. The MAVG on the mesial carina is 20–21, the DAVG
varies between 14–19.

Currie et al. (1990) remarked the presence of strong blood
grooves in most Laurasian theropod teeth (e.g. Allosaurus, Tyran-
nosauridae, Dromaeosauridae) a feature absent in the Hungarian
specimens. Wear facets have been detected on both the apical
region and along the mesial and distal carinae of the teeth (Fig. 1G).
Apical wear is usually an oval-shaped, rounded surface with
developed dentine exposure. Spalled and irregular surfaces, similar
to those in tyrannosaurids (Schubert and Ungar, 2005) occur on two
teeth (MTM V2008.36.7., V.2003.06.). Scratches are usually heavy
and heterogeneously oriented. These spalled surfaces are more
rounded apically than basally. Besides scratches, heavy pits are also
frequent. Tooth wear along the carinae is usually not as heavy as
that of the apical region. Here, the dentine is usually not exposed
U
N
C
O
R

Fig. 2. Basal tetanuran teeth. A, ‘Megalosaurus pannoniensis’ (PIUW uncatalogued) from Mu
Cretaceous of England (Wealden). C, ‘Megalosaurus dunkeri’ (NHM R 15909) from the Lowe
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and wear patterns can be observed on the enamel surface. Micro-
wear features are represented by dominantly short and heavy
scratches (Fig. 1G) that are generally parallel to the edge of the
denticle, but longer scratches (max. 1–2 mm) also occur oriented in
an acute angle relative to the carinae. Besides scratches, deep,
rectangular pits also occur. Tanke and Currie (2000) elaborated
a classification of theropod tooth wear marks. From the five types
recognized by these authors, the studied material is in concordance
with their type 1 tooth wear, showing basically an oval shape in the
apex of the labial face. As they noted, this feature could be related to
puncture-shaped perforation of bone periostium.

One of the two fragmentary theropod teeth (Fig. 2A) from the
lower Campanian of Muthmannsdorf (estern Austria) was origi-
nally described and figured by Seeley (1881:plate 27, Fig 21–22) as
‘Megalosaurus pannoniensis’. This rather complete tooth is slightly
crushed distally at its base but has well-preserved, serrated mesial
and distal carinae. In general, the Austrian teeth are almost iden-
tical with the above described, posterior basal tetanuran teeth from
Iharkút in having a mesial carina that ends approximately at two-
third of the crown, with also showing similarly well-developed
bands of growth and distal curvature of the crown (CA¼60�). Other
variables measured in these teeth are also very similar to those of
the Iharkút teeth (see supplementary data).

Other theropod teeth from Europe particularly similar to these
basal tetanuran teeth from Iharkút and Muthmannsdorf are the
single erupted tooth in the lectotype dentary of Megalosaurus
bucklandii (OUMNH J.13505) from the Middle Jurassic (Benson
et al., 2008:423) and the isolated teeth of ‘Megalosaurus dunkeri’
(e.g. NHM R15909, R210, R1997, Fig. 2B–E; see the result of the
statistical analysis below) from the Lower Cretaceous (Wealden) of
England, the latter being considered as a nomen dubium by Holtz
et al. (2004). In addition, the Middle Jurassic ‘‘megalosaurid’’
Dubreuillosaurus valesdunensis (Allain, 2002) from northwestern
France possesses similar teeth. The general shape of the crown, the
crown base length/width, the crown curvature, the morphology of
the carinae (especially the development pattern of the mesial
carina) are all features shared by these Jurassic and Early
Cretaceous forms of basal tetanurans from Europe and the Late
Cretaceous tetanurans from Iharkút and Muthmannsdorf.

Abelisauroidea Bonaparte, 1991
Abelisauridae Bonaparte et Novas, 1985
Abelisauridae indet.
thmannsdorf, eastern Austria. B, ‘Megalosaurus dunkeri’ (NHM R 1997) from the Lower
r Cretaceous of England (Wealden) in lateral; D, anteromedial; E, basal views.
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Referred material: MTM V 2008.43.1.
Locality: Iharkút, Bakony Mountains, western Hungary.
Age and horizon: Late Cretaceous, Santonian, Csehbánya
Formation.

3.2. Description and comparisons

A single, well-preserved pedal ungual phalanx (Fig. 3) is 14 mm
long, but its distal tip is missing indicating an original total length of
around 16 mm. The pointed, slightly curved claw has a convex dorsal
surface. The articular surface is circular in proximal view and has
a shallow dorsoventrally oriented ridge dividing the articular surface
into two cotyles. The claw bears a shallowgroove on its ventral surface
(Fig. 3D) and bifurcated grooves laterally bordering a convex, trian-
gular area (Fig. 3A, C). These features are characteristic for the Abe-
lisauridae (Novas and Bandyopadhyay, 2001:147). Novas (1997)
mentioned bifurcated grooves in the alvarezsaurid Patagonykus, but
later indicated that their bifurcation is located more proximally
(Novas and Bandyopadhyay, 2001). This triangular surface is bordered
proximally by a different, third groove that separates this area from
the lateral margin of proximal end as it also occurs in Masiakasaurus
(Sampson et al., 2001). In dorsal view, the medial part of the margin of
the proximal articular surface is pointed extending proximally over
the articular surface. Proximoventrally, no flexor tuber is present.

The surface of the bone is not smooth but ornamented by
numerous small pores. Comparison of the pedal ungual from Iharkút
with other theropod ungual phalanges clearly points to abelisaurid
affinities. The Hungarian specimen differs from unguals of other
theropod groups in having the above mentioned characteristic
features on its ventral and lateral sides. In addition, the general form
and curvature of the bone is also much more similar to the unguals of
various abelisaurid forms (Novas and Bandyopadhyay, 2001;
Sampson et al., 2001; Novas et al., 2005; Carrano, 2007).

Maniraptora Gauthier, 1986
Paraves Sereno, 1997 sensu Holtz and Osmólska (2004)
Pneumatoraptor gen. nov.

Type species: Pneumatoraptor fodori described below.
Etymology: Genus name refers to the pneumatic construction of
the scapulocoracoid.
Diagnosis: as for the species.
Pneumatoraptor fodori sp. nov.
U
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Fig. 3. Abelisaurid pedal ungual phalanx (MTM V 2008.43.1.) from the Santonian Csehbánya

Please cite this article in press as: }Osi, A., et al., Non-avian theropod din
Research (2010), doi:10.1016/j.cretres.2010.01.001
Holotype: MTM V.2008.38.1., nearly complete, left scapulacora-
coid (Fig. 4).

Etymology: Named after Géza Fodor y, who provided a generous
support during the early stages of the Iharkút field works.

Locality: Iharkút, Bakony Mountains, western Hungary.
Age and horizon: Late Cretaceous, Santonian, Csehbánya

Formation.
Diagnosis: Pneumatoraptor fodori can be diagnosed on the basis of

a large, circular pneumatic foramen ventral to the coracoid foramen
(2 mm in diameter) that opens towards the coracoid tubercle and is
also in connection with the hollow scapular blade (Fig. 4C, D).
D
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F3.3. Description and comparisons

3.3.1. Scapulocoracoid
The scapular blade is narrow and proximally it is almost circular

in cross-section. In dorsal view, the scapular blade thins distal to
the glenoid and its distal end is a strongly flattened lamina with an
approximate thickness of 0.5 mm. In lateral view, the scapular
blade widens slightly distal to the glenoid (Fig. 4A). The suture
between the scapula and coracoid is indistinct referring to a skele-
tally mature animal. The bone along with other paravian post-
cranial remains indicate that the Iharkút paravian theropod was
a small-bodied animal, about three times smaller than the Late
Cretaceous Velociraptor (Norell and Makovicky, 1999) and 1.2–1.5
times smaller than the Barremian Sinornithosaurus (Xu et al., 2001 Q).
The scapulocoracoid is L-shaped, a paravian synapomorphy defined
by Turner et al. (2007).

Although the dorsal edge of the acromion process is eroded, it is
well-developed and anteroposteriorly more elongated than that in
Velocipraptor (Norell and Makovicky, 1999:Fig. 4b). The deeply
concave glenoid fossa is oriented laterally and slightly ventrally,
similarly to Velociraptor. The coracoid displays a flexure of
approximately 70� between its glenoid portion and the ventral
coracoid blade. This reverse flexure of the distal part of the cora-
coid is also present in Buitreraptor (Makovicky et al., 2005) and
Sinornithosaurus (Xu et al., 1999) but not in a so prominent extent
as on the Iharkút specimen (Fig. 4A–C). The coracoid tubercle
occupies this flexure anterolaterally, but it is a rounded knob
rather than a prominent boss as in Bambiraptor (Burnham et al.,
2000) or in Buitreraptor (Makovicky et al., 2005). The ventral
coracoid blade widens lateromedially as in various
Formation, Iharkút, western Hungary. A, lateral, B, proximal, C, dorsal, D, ventral views.
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Fig. 4. Pneumatoraptor fodori n. g. et n. sp. holotype, left scapulocoracoid (MTM V 2008.38.1.) from the Santonian Csehbánya Formation, Iharkút, western Hungary in A, lateral; B,
ventral; C, medial; D, anterior views. Abbreviations: ac, acromion process; cf, coracoid foramen; ct, coracoid tubercle; gl, glenoid; pf, pneumatic foramen; sc, scapula; spc, sternal
process of coracoid; suf, subglenoid fossa.
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dromaeosaurids. The thin, medial side of the coracoid is eroded, as
commonly occurs in dromaeosaurids, e.g. Velocirapor (IGM 100/
986) and Buitreraptor (Makovicky et al., 2005; A. Turner pers.
comm.). The distal end of the coracoid blade is damaged thus the
facet for the sternum is not recognizable. No trace of the supra-
coracoid fenestra, described in Sinornithosaurus (Xu et al., 1999),
can be observed. At the anteromedial part of the coracoid flexure
a small coracoid foramen is present that is bordered dorsally by the
anterior part of the acromion process and laterally by the coracoid
tubercle. As in Deinonychus (Ostrom, 1974:3), the tract of the
coracoid foramen forms an almost anteroposteriorly oriented canal
(Fig. 4C, D) in contrast with the dorsoventrally oriented canal
described in Velociraptor (Norell and Makovicky, 1999). The medial
margin of the coracoid is slightly crushed. The characteristic sub-
glenoid fossa is well-defined as in most dromaeosaurids (Norell
and Makovicky, 1999, 2004). In medial view, ventral to the coracoid
foramen a deep and rounded pneumatic foramen (2 mm in
diameter) that probably entered also the scapular blade, opens
towards the coracoid tubercle (Fig. 4C, D). This hypothesis is sup-
ported by the hollow condition of the scapular blade observed in
cross-section during preparation. This feature distinguishes clearly
the Iharkút specimen from the scapulacoracoid known in other
paravians. Pneumatoraptor fodori therefore provides additional
evidence for the presence of clavicular air sacs in non-avian teta-
nurans (see Wedel, 2009)., and perhaps shows that they were
present throughout paravians.

Paraves indet.
Referred material: isolated teeth: V.01.215, V.01.231, V.2000.35, V

2008.37.1–V 2008.37.10., V.2000.02–V.2000.06.; three isolated
distal caudal vertebrae V 2009.46.1–3., one metacarpal V 2009.45.1.,
three ungual phalanges V 2008.40.1–3., phalanges V 2008.42.1–2.,
proximal half of a left tibia V 2008.31.1.

Locality: Iharkút, Bakony Mountains, western Hungary.
Age and horizon: Late Cretaceous, Santonian, Csehbánya

Formation.
Remarks. All the following material referred to Paraves may

represent the remains of Pneumatoraptor fodori n. gen. et n. sp.,
a dromaeosaurid-like theropod dinosaur. However, as most of these
bones do not preserve features optimised by phylogenetic analysis
Please cite this article in press as: }Osi, A., et al., Non-avian theropod din
Research (2010), doi:10.1016/j.cretres.2010.01.001
P
as paravian synapomorphies (e.g. Turner et al., 2007) they are
referred to this clade on a comparative basis.
D

3.4. Description and comparisons

3.4.1. Teeth
Six isolated teeth referred to three different morphotypes within

the Theropoda have been described by }Osi (2004). 12 additional
isolated teeth have been discovered subsequently showing great
similarity to the earlier described ones; nevertheless, some addi-
tional comments can be added here. The small (max. height 8 mm),
distally curved teeth have an oval to flattened cross-section (see
MTM V 2007.37.4, Fig. 5D). Basally their labial and lingual surfaces
are slightly concave (Fig. 5A–D). The strong labiolingually
compressed crown indicates a low crown base ratio (0.38–0.54).
Crown angle is high ranging from 56� to 69� similarly to that found in
Deinonychus or Dromaeosaurus (Smith et al., 2005:appendix A). In
contrast to the basal tetanuran teeth from Iharkút, the crown base of
the higher and more elongate teeth is slightly constricted distally. It
is interesting to note that the paravian tooth MTM V.01.231 (Fig. 5B)
shows striae as in southern unenlagiine dromaeosaurids (Makov-
icky et al., 2005).

Average serration density on the mesial carina is of 18–20
denticles in 2 mm (following Smith et al., 2005), whereas the distal
carina bears 14–17 denticles in 2 mm. As in the basal tetanuran
teeth from Iharkút and most theropod teeth, the number of
denticles on both carinae are usually higher both basally and
apically compared to the mid-section (see supplementary data).
Denticles are slightly rounded and both the mesial and distal ones
resemble those of Richardoestesia gilmorei (Currie et al., 1990). The
statistical analysis based on the various parameters derived from
the teeth resulted in a great similarity of these small teeth with
those of Bambiraptor feinbergi (see below).

3.4.2. Caudal vertebrae
Three, elongated distal caudals (MTM V 2009.46.1–3.; Fig. 5E–I)

were identified as belonging to paravians on the basis of a distinct
lateral ridge on the vertebral body and the elongated zygapophyses
(A. Turner pers. comm.). They are slightly amphycoelous and the
osaurs from the early late cretaceous of central Europe, Cretaceous
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Fig. 5. Paraves indet. remains from the Santonian Csehbánya Formation, Iharkút, western Hungary. A–C, paravian teeth in?lateral view (from left to right: MTM V 2007.37.4,
V.01.231, V 2007.37.1.). D, cross-section of the base of MTM V 2007.37.4. E, caudal vertebra in posterior; F, lateral; G, dorsal views; H, distal caudal vertebra in lateral; I, dorsal views;
J, manual ungual phalanx in lateral view; K, metacarpal III of the left? manus in dorsal, L, lateral views. M, left fragmentary tibia in posterior; N, lateral; O, medial; P, anterior;
Q, proximal views. Abbreviations: cc, cnemial crest; fc, fibular crest; ft, flexor tubercle; lc, lateral condyle; lr, lateral ridge; mc, medial condyle; poz, postzygapophysis;
prz, prezygapophysis;
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articular facet of the vertebral body is heart-shaped. The neural
arch is low and the neural spine is ridge-like.

3.4.3. Metacarpal
A complete limb element has been identified as metacarpal III of

the left? manus (MTM V 2009.45.1.; Fig. 5K–L). It is very slender,
similar to that of Deinonychus (Ostrom, 1969) and Velociraptor
(Norell and Makovicky, 1999). The diaphysis is straight in dorsal
view and slightly bowed in lateral view. Proximally, the epiphysis is
slightly compressed mediolaterally and its proximal surface is
finely concave. No proximoventrally oriented process on this
epiphysis can be seen in contrast to Deinonychus but similar to
Velociraptor (Norell and Makovicky, 2004). The ventral side of the
diaphysis is flat and boardered by fine ridges both medially and
laterally. The distal epiphysis is gently medially oriented. The two
condyles of the distal epiphysis are separated by a shallow groove.

3.4.4. Phalanges
Numerous phalanges have been discovered in Iharkút. Among

them, three strongly curved unguals can be referred unambigu-
ously to paravian theropods. The best preserved and largest spec-
imen is considered a manual ungual (MTM V 2008.40.1., Fig. 5J)
because its dorsal edge arches higher than the dorsally highest
point of the articular facet when the latter is held vertically (Sues,
1978; Senter, 2007). It is strongly compressed lateromedially and
bears a prominent flexor tubercle with a rugose surface as it is
usually seen in dromaeosaurids. It strongly resembles the manual
unguals of Velociraptor (Norell and Makovicky, 1999:Fig. 9), that of
the digit II in Saurornitholestes (Sues, 1978:plate 5A), and those of
Deinonychus (Ostrom, 1969:Fig. 63). The latter ones, however,
possess a stronger curvature compared with the Iharkút ungual.
Deep groves can be observed both laterally and medially. The lateral
edge is flat and the dorsal edge is rounded and bears a rough
surface proximally. All of these features are also present in
a different, fragmentary ungual (MTM V 2008.40.2.) whose artic-
ular region is missing, and could be either manual or pedal ungual.
The third specimen (MTM V 2008.40.3.) is complete but shows
a slightly different morphology compared to the other unguals. It is
the smallest specimen, being not as strongly curved with the
articular region relatively higher than that of the most complete
ungual. Moreover, it does not bear a deep groove laterally and
medially as it can be observed on the strongly curved claws. The
largest specimen of these unguals suggests a much larger animal
(only 1.5 times smaller than Velociraptor) than the aforementioned,
adult scapulocoracoid referred to Pneumatoraptor, and thus indi-
cates a wide range of body size for the Iharkút paravian theropods.

Two non-ungual phalanges (MTM V 2008.42.1–2.) closely
resemble the penultimate phalanx of digit II of the manus of Sau-
rornitholestes (Sues, 1978:plate 4B/3) and that of the digit III of
Velociraptor (Norell and Makovicky, 1999:Fig. 9). One of these is
strongly compressed dorsoventrally. The other one is well-
preserved and possesses well-defined interphalangeal articulation
surfaces. The proximal articular facet is markedly divided into two
cotyles by a ridge for the precize reception of the first phalanx. The
slightly asymmetrical distal articular facet consists of two well-
developed condyles that are separated by a deep groove proximally
and ventrally. In dorsal view, the condyles are fused to form a single
bridge over the subcircular fossae. These fossae are deep on each
Fig. 6. Theropoda indet. remains from the Santonian Csehbánya Formation, Iharkút, western
E, anterior views. F, details of the surface of the ventral wall of the neural canal and the pneuma
in anterior; J, medial; K, posterior; L, lateral; M, distal views. Abbreviations: bs, bony septum;
blood vessels on the infilled sediment; il, intermuscular line; lc, lateral condyle; le, lateral e
pof, popliteal fossa; prz, prezygapophysis; rpch, right pneumatic channel; si, sulcus intercon

Please cite this article in press as: }Osi, A., et al., Non-avian theropod din
Research (2010), doi:10.1016/j.cretres.2010.01.001
D
P
R
O
O
F

side of the distal articular end. In lateral view, the condyles extend
slightly further back ventrally than dorsally.

3.4.5. Tibia
A proximal part of a left tibia (MTM V 2008.31.1.; Fig. 5M–Q) can

also be referred to paravian theropods. Its shaft is slightly bowed in
the mediolateral plane. Distally, it has a subtriangular cross-section,
and proximally it is expanded and bears a well-developed single
cnemial crest. Compared to the cnemial crest, the lateral and medial
condyles are smaller and the posterior side of the medial condyle is
slightly damaged. The distal extension of the cnemial crest is more
developed than that in Velociraptor (Norell and Makovicky,
1999:Fig. 11B). The bone can be unambiguously distinguished from
the tibia of abelisauroid theropods based on the lack of the
pronounced anterior extension of the cnemial crest (Carrano,
2007). It further differs from the tibia of basal tetanurans because
the cnemial crest does not curves laterally towards the lateral
condyle and also because the tibial shaft does not turn broader
mediolaterally than anteroposteriorly (Holtz et al., 2004). Between
the cnemial crest and the lateral condyle a developed groove is
present (Fig. 5N). In proximal view (Fig. 5Q), the proximal epiphysis
of the tibia is much wider mediolaterally than anteroposteriorly,
compared to that of Velociraptor (Norell and Makovicky, 1999) or
Achillobator (Perle et al., 1999). The fibular crest is placed proximally
and continues into a ridge towards the lateral condyle. Although
the distal part of the tibia is not preserved, the fibular crest appears
to be longer than that of Velociraptor (Norell and Makovicky,
1999:Fig. 11a).

Theropoda indet.

Referred material: fragmentary sacrum MTM V 2009.48.1., six
isolated caudals MTM V 2009.47.1–6., left distal femur MTM V
2009.49.1.

Locality: Iharkút, Bakony Mountains, western Hungary.
Age and horizon: Late Cretaceous, Santonian, Csehbánya

Formation.

3.5. Description and comparisons

3.5.1. Sacrum
Despite its fragmentary nature, the preserved anterior part of

a sacrum (MTM V 2009.48.1., Fig. 6A–F) composed by two and
a halve, completely fused vertebrae provides information on the
morphology of its pneumatic system. The neural arch is completely
missing thus the ventral wall of the neural canal can be well
observed (Fig. 6C). This surface is highly ornamented by the
impression of the fine network of blood vessels (Fig. 6F). The
anteriormost part of the sacrum is missing and thus it starts at the
posterior end of the probably first sacral. In this centrum the
posterior margin of the left pneumatic foramen can be identified
(Fig. 6A). This foramen opens into the left pneumatic canal that
extends parallel to the saggital plane (Fig. 6C). This pneumatic canal
is roughly quadragular or suboval in cross-section and it is filled by
calcified sediment (Fig. 6F). This left canal is separated by a thin
bony septum from the right one that has a similar in morphology.
Posteriorly these canals become thinner and they seem to end or
become very thin after the third or fourth centra (not completely
clear due to the fragmentary nature of the specimen). The second
Hungary. A, fragmentary sacrum in lateral; B, ventral; C, dorsal; oblique (anterolateral);
tic channels; G, distal caudal vertebra in dorsal; H, lateral views. I, fragmentary left femur
fce, fused vertebral centra; ibv, impression of blood vessels; ibvs, positive impression of
picondyle; lpch, left pneumatic channel; mc, medial condyle; pf, pneumatic foramen;
dylaris; vg, ventral groove; vwnc, ventral wall of the neural canal.
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centrum is also pierced by a pneumatic foramen on both sides,
connected as well to the pneumatic canals of the corresponding
sides (Fig. 6A, B). Similarly to birds, this pneumatic system was
probably invaded by the abdominal air-sac diverticula (O’Connor
and Claessens, 2005). The pneumatized body of the vertebral centra
in this sacrum is in contrast to the sacrum of Majungatholus atopus,
where pneumaticity is restricted only to neural arches (O’Connor
and Claessens, 2005), but similar to other theropods with pneu-
matization in the vertebral centra (Harris, 1998; O’Connor, 2006).

3.5.2. Caudals
Six isolated caudals (MTM V 2009.47.1–6.; Fig. 6G, H) can be

referred to Theropoda indet. on the basis of their following features.
They strongly elongated with

slightly amphicoelous centra. All of them possess strongly
hollow centra but no pneumatic foramen can be observed neither
on the neural arch nor on the centra. The neural arch is low with
a ridge-like neural spine. In the smaller, rod-like, more distal
vertebrae the neural spine is not present. In contrast to the paravian
vertebrae described above, these specimens do not bear a distinct
lateral ridge on their centra.

3.5.3. Femur
The distal part of a left femur (MTM V 2009.49.1., Fig. 6I–M)

represents one of the smallest theropods from Iharkút and it is
perhaps from a subadult animal. This bone retains an original,
subcircular cross-section although at the proximal end of the
preserved shaft is slightly wider lateromedially than ante-
roposteriorly. Intermuscular lines on the shaft of this specimen can
be observed (Fig. 6J–L) as frequently seen on various bird femora. In
lateral view, the shaft is slightly anteriorly bowed and it is more
slender compared to that of Velociraptor (Norell and Makovicky,
1999). Both the lateral and medial condyles are damaged and only
their medial and lateral parts can be studied, respectively. The
lateral epicondyle is present continuously along the lateral margin
of the lateral condyle. Medially from this ridge a shallow popliteal
fossa is present. The lateral condyle projects more distally than the
medial one. In distal view, the intercondylar sulcus is well devel-
oped extending anteriorly up to a transverse ridge that connects
the posterior ridge of the medial and lateral condyles.

4. Statistical analysis of the teeth

4.1. Univariate and bivariate analyses

Consistently with analyses presented previously by Smith et al.
(2005:Figs. 12–13), out of all morphometric measurements
collected from the teeth, the crown angle (CA) is the most useful to
compare the basal tetanuran teeth with those of other theropod
taxa. The mean within-taxon CA (Fig. 7) shows statistically signif-
icant variation across dinosaur genera, as indicated consistently by
both non-parametric (Kruskal-Wallis, chi-square¼292.1, p<0.0001)
and parametric (ANOVA, F¼ 199.9, p< 0.0001) tests. The Tukey’s
Studentized Range Test, which allows for pairwise comparisons of
means while controlling for the Type I experimentwise error rate,
suggests that all genera differ significantly from many other genera.
However, for most of the taxa some comparisons are insignificant
(i.e., nearly all genera have CA means similar to at least some other
genera). The fact that some genera are indistinguishable from one
another is also obvious visually.

Following Smith et al. (2005), bivariate analyses (Fig. 8) were
performed using five variables: crown height (CH), crown angle
(CA), average distal serration density (DAVG), crown basal width
(CBW), and crown basal length (CBL). In every case, the original
bivariate plots of Smith et al. (2005:GFig. 9) show a distinct gap
Please cite this article in press as: }Osi, A., et al., Non-avian theropod din
Research (2010), doi:10.1016/j.cretres.2010.01.001
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between the Allosaurus–Majungatholus and Dromaeosaurus–
Deinonychus groups. Except for the plot of CBL versus CH, the
Hungarian basal Tetanurae teeth fill this gap and plot in a well-
defined area distinct from all the other analysed theropod teeth.
The teeth of ‘Megalosaurus dunkeri’ are always close to the
Hungarian teeth, further demonstrating their similarities (Fig. 8).
The more complete theropod tooth from Austria also yield values of
the key morphometric parameters (e.g. CBL: 10 mm, CA: 60�) that
are also very similar to those measured for the Hungarian basal
tetanuran teeth (see Figs. 2, 8).

The ratios of CBW versus CBL and CH versus CBL show that the
paravian teeth from Hungary are close to the teeth of Bambiraptor
and Deinonychus (Fig. 8A, D). The ratios of DAVG versus CBL and CA
versus CBL, however, separate the Hungarian paravian teeth from
those of other groups. The high value of the number of denticles on
the distal carina is characteristic for these teeth. Comparably
numerous denticles were also observed in Richardoestesia gilmorei,
which is not included in the analysis presented here (see }Osi, 2004).

4.2. Multivariate analyses

Only four linear variables without missing values were available
for the traditional morphometric approach: CBL, CBW, CH, and AL.
Principal Component Analysis based on variance-covariance matrix
was performed for log-transformed values of those four variables
(Fig. 9A). The results are typical for what is expected for data con-
sisting of linear dimensions with substantial size variation. PC1
explains an overwhelming proportion of variance in the data
(98.2%) and all four variables are highly and positively correlated
with PC1 (r>0.98 in all four cases). This pattern indicates that PC1 is
a robust proxy for size of teeth: the high PC1 scores represent teeth
that are large (all four linear dimensions have high values when PC1
score is high). It is important to remember that PC1, when
computed from linear size-correlative dimensions, approximates
an allometric, and not an isometric, size vector (see Jolicoeur, 1963;
Kowalewski et al., 1997; and references therein). That is, it may also
contain some growth-related shape variation. The statistical
interpretation of this axis as reflecting primarily size is consistent
with the taxonomic gradient observed along PC1 (Fig. 1): teeth of
the smallest taxa (Bambiraptor–Hungarian paravian teeth) are
located to the left and teeth of increasingly larger taxa are
progressively shifted to the right end of the PC1 axis. Good sepa-
ration of teeth along PC1 is thus primarily reflecting size
differences.

The basal tetanuran teeth from Iharkút plot along PC1 between
Majungatholus–Allosaurus and Dromaeosaurus, reflecting the fact
that these Hungarian teeth are medium-sized relative to the other
analysed theropod teeth. It is noteworthy also that the Hungarian
paravian teeth plot together with those of Bambiraptor, forming
jointly a distinct cluster on the ordination plot. The non-metric
multidimensional scaling (MDS), despite the inclusion of additional
variables that could not be applied in PCA, does not result in an
improved separation of the theropod taxa (Fig. 9B). The patterns are
generally similar to those of PCA, although the distribution of taxa
along the first axis (Dim 1) is reversed relative to PC1 patterns – an
analytical artifact of different scaling algorithms commonly
observed when comparing these two types of ordinations (e.g.,
Huntley et al., 2006).

5. Palaeobiogeographical implications

Isolated remains of non-avian theropod dinosaurs indicate the
appearance of at least three different taxa (basal Tetanurae, Abeli-
sauridae, Paraves indet.) in the Santonian Iharkút ecosystem (Bak-
ony Mountains, Transdanubian Central Range, western Hungary).
osaurs from the early late cretaceous of central Europe, Cretaceous
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Fig. 7. Between-taxon comparisons of the shape variable, crown angle (CA) used in the two-way ANOVA. Dataset is composed of 20 theropod taxa taken from Smith et al.
(2005) and four new taxa (basal Tetanurae and Paraves indet. from the Santonian of Iharkút, Hungary; Megalosaurus ’dunkeri’ from the Wealden, England; and the ‘‘Austrian
tooth’’¼’Megalosaurus pannoniensis’ from the lower Campanian of Muthmannsdorf, Austria).
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a single site, has not been reported previously for the theropod
fauna at any other single Late Cretaceous locality in Europe.
However, separate occurrences of one or two of these three taxa
have been reported from Late Cretaceous units of similar age,
including sites in northern Spain (Campanian?; Pereda Suberbiola,
1999) and southern Morocco (Cenomanian; Buffetaut, 1989; Rus-
sell, 1996).

Among basal tetanurans, remains of ‘‘Megalosauridae indet.’’ are
known from the Campanian of northern Spain (Casanovas-Cla-
dellas et al., 1988; Canudo and Ruiz-Omeńaca, 2003) and from the
lower Campanian of eastern Austria (Seeley, 1881). A pedal ungual
is known from the Santonian of Belgium (Dollo, 1903), but its
systematic position is uncertain (Le Loeuff and Buffetaut, 1991).

The two fragmentary teeth from Austria (early Campanian) are
identical to the basal tetanuran teeth from Iharkút suggesting the
existence of a single basal tetanuran taxon in the northern part of
the Apulian microplate (positioned between Africa and Europe), at
least during the Santonian–early Campanian time interval (Figs. 10
and 11A). This is further supported by the vicinity of the two areas
in the time interval considered, as reconstructed on the basis of the
post-Campanian tectonic history of the region. In the Santonian, the
eastern Alps (i.e. the Muthmannsdorf area) and the Transdanubian
Central Range (i.e. the Bakony Mountains including the Iharkút
area) were much closer to each other than today, but a roughly
eastward continental movement of numerous blocks of the Alcapa
terrane starting from the late Eocene to Oligocene resulted in a 60–
Please cite this article in press as: }Osi, A., et al., Non-avian theropod din
Research (2010), doi:10.1016/j.cretres.2010.01.001
100 km divergence of this terrane (Kázmér and Kovács, 1985;
Csontos and Vörös, 2004). Later in the Miocene, as a ‘‘consequence
of the progressive termination of subduction roll-back along the
arc’’ of the Carpathians, tensional stresses in the Pannonian Basin
resulted in a south-southeastward movement of the Transdanubian
Range (Fodor et al., 1999:295), increasing the distance between the
two areas.

The great similarity of the basal tetanuran teeth from Central
Europe to the teeth of stratigraphically much older Megalosaurus
bucklandii from the Middle Jurassic (Benson et al., 2008) and ‘M.
dunkeri’ from the Lower Cretaceous of southern England is
intriguing. Indeed, the Iharkút theropods appear to be ‘‘anachro-
nistic relative to their chronostratigraphic position’’, as was noted
previously for the Late Cretaceous Hatxeg fauna located in the same
region (western Romania; Csiki and Grigorescu, 2007:8). However,
the basal tetanurans are not the only group in the Late Cretaceous of
Europe that shows close relationship with much older forms. For
example, the closest relative of the basal eusuchian crocodylian
Iharkutosuchus makadii is Hylaeochampsa vectiana from the Barre-
mian of the Isle of Wight (}Osi et al., 2007). Similarly, phylogenetic
analysis of the nodosaurid ankylosaur, Hungarosaurus tormai
(together with Struthiosaurus spp.), indicated that the European
Late Cretaceous ankylosaurs are more primitive than their Early to
mid-Cretaceous relatives from North America (Pereda-Suberbiola
and Galton, 2001; }Osi, 2005; }Osi and Makádi, 2009).

These data suggest a very early separation of numerous Euro-
pean taxa from the typical (Middle Jurassic–Early Cretaceous)
osaurs from the early late cretaceous of central Europe, Cretaceous
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Fig. 8. Plots of CBL versus CH (A), CBL versus DAVG (B), CBL versus CA (C), and CBL versus CBW (D) for the 20 theropod taxa taken from Smith et al. (2005) and four new taxa (basal
Tetanurae and Paraves indet. from the Santonian of Iharkút, Hungary; ’Megalosaurus dunkeri’ from the Wealden, England; and an ‘‘isolated tooth [Austria]’’¼’Megalosaurus pan-
noniensis’ from the lower Campanian of Muthmannsdorf, Austria).
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terranean archipelago, separated at least from the Early Cretaceous,
could have affected the evolutionary history of various (sometimes
probably locally confined) ecosystems. For example, small-bodied
taxa existed in isolated environments of Europe already in the
Cenomanian (Dalla Vecchia, 2003; Fejfar et al., 2005; Vullo et al.,
2007; Fig. 11). The Santonian Iharkút fauna, the hadrosaurids
discovered at the Adriatic–Dinaric Carbonate Platform (Dalla Vec-
chia, 2002, but see Dalla Vecchia, 2008), the early Campanian
Muthmannsdorf fauna, and the Maastrichtian ‘Hatxeg Island’ fauna
of western Romania all show primitive and endemic features
(Nopcsa, 1902, 1923; Weishampel et al., 1991; Jianu and Weish-
ampel, 1999; Csiki and Grigorescu, 2007; Fig. 11). All these data
suggest also that, at some point in time, this area may have further
fragmented into isolated island habitats (but see Jianu and
Boekschoten, 1999), which may have functioned as refugia in the
Late Cretaceous Mediterranean archipelago.

Besides the primitive and probably endemic characters of at
least some archosaurian taxa in the Late Cretaceous Mediterranean
Please cite this article in press as: }Osi, A., et al., Non-avian theropod din
Research (2010), doi:10.1016/j.cretres.2010.01.001
archipelago, the presence of some Gondwana-related faunal
elements (e.g. bothremydid turtles, abelisauroids) in Europe (Allain
and Pereda Suberbiola, 2003; Buffetaut, 1989; Buffetaut and Le
Loeuff, 1991; Le Loeuff, 1991; Le Loeuff and Buffetaut, 1991) is
further supported by the Hungarian theropod record. Abelisauroids
have been described from the Albian of France (Genusaurus sister-
onensis Accarie et al., 1995, but see Carrano and Sampson, 2008),
from the Santonian of Hungary (in this paper), and Campano–
Maastrichtian sediments of France (Buffetaut et al., 1988; Buffetaut,
1989; Le Loeuff and Buffetaut, 1991; Allain and Pereda Suberbiola,
2003) and Spain (Astibia et al., 1990) (Fig. 10).

In addition to the abelisaurid material, remains of the sebeco-
suchian crocodylian, Doratodon (}Osi and Rabi, 2006; Rabi, 2009),
also of Gondwanan origin, were reported from Muthmannsdorf
(Buffetaut, 1979), the Hatxeg Basin (Grigorescu et al., 1999), and
Spain (Company et al., 2005). These taxa further strengthen the
paleobiogeographic argument that besides Euramerican taxa (e.g.
eusuchian crocodylians, nodosaurid ankylosaurs, dromaeosaurid
theropods), the Mediterranean archipelago was also inhabited by
osaurs from the early late cretaceous of central Europe, Cretaceous



E
P
R
O
O
F

Fig. 9. Results of multivariate analyses. A, Principal component ordination of teeth plotted in the coordinate systems of PC1 and PC2 with symbols indicating taxonomic identity
of teeth. Data restricted to log-transformed values of four linear dimensions. B, Non-metric multidimensional scaling ordination of teeth plotted in the coordinate systems of
dim1 and dim2 with symbols indicating taxonomic identity of teeth. Data includes all morphological variables and all specimens (see text and supplementary data for additional
details).
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Gondwanan forms. The age of the Iharkút locality indicates that
these taxa existed in the region certainly already by the Santonian.
Carcharodontosaurids (but also titanosaurs and rebbachisaurids),
however, coexisted with Euramerican forms in Europe (or at least in
Iberia) already from the Aptian (Canudo and Ruiz-Omeńaca, 2003)
to the Cenomanian (Vullo et al., 2007; Figs. 10, 11). This would
indicate two interchange events between Africa and Europe, as was
suggested by Le Loeuff (1991). However, the dispersal of different
faunal elements among the larger landmasses (Africa, Ibero-
Armorican landmass) and islands could have been much more
complex spatially and temporally, and our recent interpretations
are hampered by the generally poor fossil record of the early Late
Cretaceous time interval in Europe, as was already suggested by
Wilson and Sereno (1998). In addition, Buffetaut (1989) noted that
the occurrence of Gondwanan faunal elements in the Late Creta-
ceous of Europe does not need to record interchange events during
the Late Cretaceous. Indeed, except for some very poorly preserved
material, almost nothing is known about the terrestrial fauna of the
European archipelago from the Turonian–Coniacian time intervals
U
N
C
O

Fig. 10. Stratigraphical distribution of different non-avian theropod taxa during the
Late Cretaceous in Europe (with black) and in northern Africa (with grey). Data are
based on the references listed in Fig. 11.
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(Fig. 11). Thus, for example, abelisauroids (similarly to dromaeo-
saurids and troodontids) may have been present in this region
throughout the entire Cretaceous (or at least from the Albian, based
on Genusaurus sisteronensis Accarie et al., 1995, but see Carrano and
Sampson, 2008). It is noteworthy here that the Gondwanan faunal
elements are known from northern Africa from both the Cen-
omanian and the Maastrichtian sedimentary rocks (Russell, 1996;
Buffetaut, 2005; Figs. 10, 11); the absence of those taxa in the
unrepresented time intervals of both Africa and Europe may simply
suggest that they have not been unearthed yet. If faunal inter-
change events really existed between Africa and southern Europe
during the Late Cretaceous then these events should have
happened via crossing seaways and/or by island hopping because
paleogeographic data do not indicate any direct land connection
between the two areas. Taking this into account, at least three
possible dispersal routes can be suggested (Fig. 11): (1) between
northwestern Africa and Iberia (Buffetaut, 1989), (2) across the
Apulian microplate via island hopping (Gheerbrant, 1987), and/or
(3) from northeastern Africa towards the islands of the subduction
zone of the Tethys Ocean along the southwestern Asiatic margin.
The latter may have formed elevated arches (land bridges) that
supported the faunal dispersal routes from eastwards used by
hadrosaurids, as suggested by Dalla Vecchia (2002). As of today,
however, the fossil record of terrestrial vertebrates from the Late
Cretaceous of Africa and Europe is too scarce to provide conclusive
answer as to the importance of dispersal events and vicariance as
possible scenarios determining the faunal composition of the
Mediterranen region during the Cretaceous.

Nevertheless, remains of basal tetanurans, abelisaurids, and
paravians in the Santonian Iharkút vertebrate assemblage clearly
indicate the presence of these groups in the Apulian archipelago
well before the Campano-Maastrichtian theropod faunas docu-
mented in the most important European localities of France, Spain,
Romania, and Austria. Similar to the fauna documented from these
geochronologically younger sites, the theropod groups from Ihar-
kút also represent a complex ecosystem with mixed Gondwanan
and Euramerican faunal elements, reflecting a biogeographical
status quo that may have persisted throughout the entire Late
Cretaceous.
osaurs from the early late cretaceous of central Europe, Cretaceous
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Fig. 11. Late Cretaceus non-avian theropod localites in Europe and northern Africa. A, map showing the location of the main Late Cretaceous non-avian theropod dinosaur localities
in Europe and northern Africa with the discovered groups indicated by symbols: France: 1, Charentes (Vullo et al., 2007); 2, Le Haute-Garonne (Laurent et al., 1999, 2002); 3, Aude
Valley (Laurent et al., 2001); 4, Villeveyrac, Cruzy (Buffetaut et al., 1986, 1999, Buffetaut and Le Loeuff, 1991); 5, Serviers, Champ-Garimond (Buffetaut et al., 1986); 6, Roques-Hautes
(Le Loeuff et al., 1992; Le Loeuff and Buffetaut, 1998; Allain and Taquet, 2000); 7, Beausset Syncline (Le Loeuff and Buffetaut, 1991); 8, Fox Amphoux (Le Loeuff et al., 1992). Spain: 9,
Laño (Pereda Suberbiola, 1999, Pereda-Suberbiola et al., 2000); 10, Arén (Torices et al., 2004, Weishampel et al., 2004); 11, Tremp (Casanovas-Cladellas et al., 1988, López-Martinez
et al., 2001). Portugal: 12–13, Viso, Aveiro, Taveiro (Antunes and Sigogneau-Russell, 1991, Antunes and Mateus, 2003). Netherlands and Belgium: 14, Dutch and Belgian Limburg
(Buffetaut and Le Loeuff, 1991). Austria: 15, Muthmannsdorf (Seeley, 1881). Hungary: 16, Iharkút (in this paper). Slovenia: 17, Kozina (Debeljak et al., 1999). Romania: 18, Borod
(Nagybáród) (Csiki and Grigorescu, 1998); 19, Hatxeg Basin (Csiki and Grigorescu, 1998, 2003). Morocco: 20, Ouled Abdoun Basin (Buffetaut, 2005); 21, Kem Kem region (Sereno et al.,
1996); 22, Tafilalt (Kem Kem region) (Buffetaut, 1989, Russell, 1996). Egypt: 23, Baharyia Oasis (Rauhut, 1995). B, Paleogeographic map of the Mediterranean region during the Late
Cretaceous with the suggested position of non-avian theropod localities. Paleogeographic map is based on the paleogeographic map made by Ron Blakey (http://jan.ucc.nau.edu).
Arrows refer to possible routes of faunal interchange between Africa and Europe during the Cretaceous. Black box indicates that part of Europe shown in detail on Fig. 6A. Lands
marked in light brown, shallow seas in light blue and deep seas in dark blue.
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2001. New dinosaur sites correlated with upper Maastrichtian pelagic deposits
in the Spanish Pyrenees: implications for the dinosaur extinction pattern in
Europe. Cretaceous Research 22, 41–61.
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}Osi, A., Mindszenty, A., 2009. Iharkút, Dinosaur-bearing alluvial complex of the Cseh-
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und Paläontologie, Abhandlungen 200, 387–404.
U
N
C
O
R
R
E
C
T
E

Please cite this article in press as: }Osi, A., et al., Non-avian theropod din
Research (2010), doi:10.1016/j.cretres.2010.01.001
Weishampel, D.B., Grigorescu, D., Norman, D.B., 1991. The dinosaurs of Transylvania.
National Geographic Research and Exploration, 196–215.

Weishampel, D.B., Barrett, P.M., Coria, R.A., Le Loeuff, J., Xu, X., Zhao, X., Sahni, A.,
Gomani, E.M., Noto, C.R., 2004. Dinosaur distribution. In: Weishampel, D.B.,
Dodson, P., Osmólska, H. (Eds.), The Dinosauria. University of California Press,
Berkeley, California, pp. 517–606.

Wilson, J.A., Sereno, P.C., 1998. Early evolution and higher-level phylogeny of the
sauropod dinosaurs. Memoir Society of Vertebrate Paleontology 5, 1–68.

Xu, X., Wang, X.-L., Wu, X.-C., 1999. A dromaeosaurid dinosaur with a filamentous
integument from the Yixian Formation of China. Nature 401, 262–266.

Zelditch, M.L., Swiderski, D.L., Sheets, H.D., Fink, W.L., 2004. Geometric Morpho-
metrics for Biologists: A Primer. Elsevier Academic Press, San Diego, p. 441.
F

Appendix. Supplementary data

Supplementary data associated with this article can be found in the online
version at doi: 10.1016/j.cretres.2010.01.001.
D
P
R
O
O

osaurs from the early late cretaceous of central Europe, Cretaceous

http://dx.doi.org/doi:10.1016/j.cretres.2010.01.001

	Non-avian theropod dinosaurs from the early late cretaceous of central Europe
	Introduction
	Material and methods
	Analytical methods

	Systematic paleontology
	Description and comparisons
	Rostral teeth
	Posterior teeth

	Description and comparisons
	Description and comparisons
	Scapulocoracoid

	Description and comparisons
	Teeth
	Caudal vertebrae
	Metacarpal
	Phalanges
	Tibia

	Description and comparisons
	Sacrum
	Caudals
	Femur


	Statistical analysis of the teeth
	Univariate and bivariate analyses
	Multivariate analyses

	Palaeobiogeographical implications
	Acknowledgments
	References
	Supplementary data




