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The diameter distribution of nanometric particles is estimated from multiangle
dynamic light scattering (MDLS) measurements by solving an ill-conditioned
nonlinear inverse problem through Tikhonov and Bayesian methods. For both
methods, the data inputs are the angle-dependent average diameters of the
particle size distribution (PSD), which are in turn calculated from the measured
autocorrelation functions of the light intensity scattered by a dilute sample of
particles. The performances of both methods were tested on the basis of: (i) two
simulated polymer latexes that involved PSDs of different shapes, widths and
diameter ranges; and (ii) two real polystyrene latexes obtained by mixing two
well-characterized standards of narrow PSDs (of known nominal diameters and
standard deviations). For PSDs exhibiting highly asymmetric modes, or modes of
quite different relative concentrations, the Bayesian method produced PSD
estimates better than those obtained through Tikhonov regularization.

Keywords: dynamic light scattering; inverse problem; Bayesian method;
Tikhonov regularization method; particle size distribution

Nomenclature

B – burn-in period (in the Metropolis-Hasting sampling method)
CI – Mie scattering coefficient
c1, c2 – cognitive and social accelerations in a PSO algorithm
�DDLS nm DLS average particle diameter
�DG nm mean diameter of a Gaussian PSD
�Dg nm geometric mean diameter of a log-normal PSD
Di nm i-th particle diameter (in the diameter axis of a discrete PSD)
Dmin nm minimum diameter (in the diameter axis of a discrete PSD)
Dmax nm maximum diameter (in the diameter axis of a discrete PSD)
�D nm (R� 1) vector containing the DLS average particle diameters (at all �r’s)
d1, d2 nm nominal diameters of each mode (in latexes L1 and L2)
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fj – ( j¼ a, b, 1, 2, L1, L2) discrete number-PSD

f – (N� 1) vector containing the ordinates of a discrete number-PSD
Fj – ( j¼ 1, 2, L1, L2) discrete weight-PSD
G – best position reached by the entire ‘particle’ population in a PSO algorithm

Gð2Þ1,�r
– baseline of Gð2Þ�r

G
ð2Þ
�r

– second-order autocorrelation function of the scattered light (at �r)

g
ð1Þ
�r

– first-order autocorrelation function of the electric field (at �r)

g
ð2Þ
�r

– normalized second-order autocorrelation function of the scattered light (at �r)

H – (N�N) matrix corresponding to the second-derivative operator
Jf – performance index for PSD estimates [Equation (19)]
K1, K2 – constants in Equations (8)–(10)
k – iteration number in Equation (6a)
kB

kgm2

s2 K
(¼ 1.38� 10–23) Boltzmann constant

M – number of points of the autocorrelation functions
N – number of points of the PSD
nm – refractive index of the non-absorbing medium
np – refractive index of the particles
Q – jumping distribution
R – number of measurement angles
R1, R2 – random numbers in the range (0, 1) [Equation (6a)]
T K absolute temperature
Vi – velocity of the i-th ‘particle’ in a PSO algorithm
w – inertia function in a PSO algorithm
Xi – i-th ‘particle’ in a PSO algorithm
x1, x2 – number-fractions for the modes of latex L2

� – regularization parameter
� – instrumental parameter for DLS measurements [Equation (2)]
�0 nm/s DLS constant [Equation (4)]
� – smoothing parameter [Equation (9)]
DD nm diameter interval (in the diameter axis of a discrete PSD)
" – Gaussian random sequence (mean¼ 0; variance¼ 1) [Equation (18)]
� kg

m s medium viscosity
�r

� detection angle in MDLS
� nm in vacuo laser wavelength
� – probability density
	L – standard deviation of a log-normal distribution
	G nm standard deviation of a Gaussian distribution

 nm decay constant of a decreasing exponential function

j s discrete time delay of Gð2Þ�r

Special symbols

^ estimated value
~ contaminated with noise
* convolution product
T transposed vector

1. Introduction

The particle size distribution (PSD) is an important physical characteristic of several
particulate systems, such as aerosols, emulsions, suspensions, dispersions and powders.
The PSD can strongly influence the rheological behaviour and the stability of
heterogeneous fluids, the coagulation or film formation processes of latexes, the magnetic
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and optical properties of dispersions, the taste and texture of foods, the coverage
properties of paints, the burning rate of fuels and explosives, the quality properties of inks
and toners, etc. [1].

Dynamic light scattering (DLS) [2], elastic light scattering [3] and turbidity [4] are fast
and reliable optical techniques frequently used for determining average diameters of dilute
systems that contain particles in the sub-micrometric range. When the PSD is estimated
from light scattering and/or turbidity measurements, then the estimation procedure consists
in inverting the mathematical model that describes the light extinction (scatteringþ
absorption) suffered by light rays traversing a highly dilute sample of the particulate
system. Typically, the Mie theory [5] is used for describing the light extinction under single
scattering regime (i.e. in the absence of multiple scattering). The estimation procedure
normally involves the solution of a linear ill-conditioned inverse problem (ICIP).
Unfortunately, optical measurements contain a relatively small amount of information
on the PSD; and for this reason only low-resolution PSDs can be estimated. The
combination of two or more independent sets of measurements allows increasing the
information content and can improve the quality of the PSD estimate. Previous works have
combined turbidity and elastic light scattering measurements [6], DLS measurements taken
at several angles (or multi-angle DLS measurements) [7,8] and turbidity and multi-angle
DLS measurements [8]. In some cases, the combination of independent measurements can
lead to the necessity of solving a non-linear ICIP.

Classical approaches for solving linear and non-linear ICIPs are based on Tikhonov
regularization techniques [9,10], which have been applied to estimate PSDs [1,2,6,7]. On the
other hand, statistical methods based on Bayesian inference [11,12] have scarcely been
applied to sizing nanoparticles. For example, a Bayesian method was applied to solve the
linear ICIP of estimating the PSD of ferrofluids from magnetization measurements, for
particle diameters lower than 20 nm [13,14]. Bayesian methods have also been used for
solving other linear and non-linear ICIPs [12,15], but as far as the authors are aware, no
application of Bayesian inference to the estimation of PSDs from optical techniques has yet
been published.

In what follows, we will restrict our analysis to the case of DLS. In a DLS experiment, a
dilute sample is irradiated with a monochromatic laser light, and the light scattered at
different angles fluctuates due to the Brownian particle motion. In single-angleDLS, a digital
correlator calculates the (discrete) second-order autocorrelation function ~G

ð2Þ
�r

j
� �

of the
fluctuating scattered light collected at a given angle, �r, where 
j ( j¼ 1, 2, . . . ,M) represents
the time delay. In multi-angle DLS (MDLS), a set of R measurements is obtained by
collecting ~G

ð2Þ
�r

j
� �

at theR different �r. From suchmeasurements,R angle-dependent average
particle diameters, ~�DDLS �rð Þ, can be estimated through the cumulants method [16]. Therefore,
~�DDLS �rð Þ can be considered as a set of R indirect measurements of the average diameters.

Typically, the discrete number-PSD is denoted by f (Di), where the ordinates of f (Di)
represent the number-fractions of particles contained in the diameter intervals [Di, Diþ1],
with i¼ 1, . . . ,N. All the Di values are spaced at regular intervals DD along the diameter
range [Dmin, Dmax]; thus, Di¼Dminþ (i – 1) DD, with DD¼ (Dmax – Dmin)/(N – 1). It can be
proven that f (Di) is theoretically related to the (noise-free) average diameters �DDLS �rð Þ
through the following non-linear expression [1,7]:

�DDLS �rð Þ ¼

PN
i¼1 CI �r,Dið Þ f ðDiÞPN

i¼1
CI �r,Dið Þ f ðDiÞ

Di

, ði ¼ 1, . . . ,NÞ, ðr ¼ 1, . . . ,RÞ, ð1Þ

Inverse Problems in Science and Engineering 975
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where CIð�r,DiÞ is the light scattered at the angle �r by a particle of diameter Di, and can be

calculated by the Mie scattering theory [5]. Then, the estimation of the PSD f (Di) from the

indirect measurements ~�DDLS �rð Þ consists in inverting the non-linear Equation (1) for

known values of the CI �r,Dið Þ coefficients.
The ill-conditioning characteristic of the inverse problem can be evidenced in Figure 1.

Two quite different PSDs ( fa: bimodal, and fb: unimodal) were defined (Figure 1a). To

simulate the MDLS measurements, the following procedure is used. Each (noise-free)

G
ð2Þ
�r
ð
j Þ is related to its corresponding (first-order and normalized) autocorrelation

function of the electric field, g
ð1Þ
�r
ð
j Þ, through [7]:

G
ð2Þ
�r
ð
j Þ ¼ G

ð2Þ
1,�r

1þ � g
ð1Þ
�r
ð
j Þ

� �2� �
, ð j ¼ 1, . . . ,MÞ, ðr ¼ 1, . . . ,RÞ ð2Þ

where G
ð2Þ
1,�r

is the measured baseline, � (51) is an instrumental parameter and M is the

number of points of each autocorrelation function. At each �r, g
ð1Þ
�r
ð
j Þ is related to f (Di) as

follows [7]:

g
ð1Þ
�r
ð
j Þ ¼ k�r

XN
i¼1

e
�

�0ð�r Þ 
j
Di CIð�r,DiÞ f Dið Þ, ð j ¼ 1, . . . ,MÞ, ðr ¼ 1, . . . ,RÞ ð3Þ

with

�0ð�rÞ ¼
16�

3

nm
�

� �2 kBT
�

sin2ð�r=2Þ, ðr ¼ 1, . . . ,RÞ ð4Þ

Figure 1. The ill-conditioned problem. (a) Two arbitrary PSDs. (b) Mie coefficients corresponding
to nanometric particles (at 5 angles). (c) Normalized autocorrelation measurements. (d) Derived
DLS average diameters.
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where k�r are normalization factors that insure g
ð1Þ
�r

0ð Þ ¼ 1 [7] and adopt different values at

different �r, � is the in vacuo wavelength of the incident laser light, nm is the refractive

index of the non-absorbing medium (pure water), kB is the Boltzmann constant, T is the

absolute temperature and � is the medium viscosity at T.
The coefficients CI in Equations (1) and (3) also depend on the particle refractive index

(np), �, and the laser light polarization, and can be calculated on the basis of the Mie

scattering theory [5]. For �¼ 632.8 nm, np¼ 1.5729, and a vertically polarized laser, the

CI coefficients are represented at five different angles (30�, 60�, 90�, 120� and 150�) in

Figure 1(b). For Di5 100 nm, all CI coefficients are practically independent of �r (i.e. the
light is scattered according to the Rayleigh regime [5]), and therefore no additional

information on the PSD could be extracted by measuring at several angles. The noise-free

autocorrelation measurements were calculated from Equations (2) to (4), and then

normalized according to g
ð2Þ
�r
ð
j Þ ¼ ½G

ð2Þ
�r
ð
j Þ � G

ð2Þ
1,�r
�=½Gð2Þ�r ð0Þ � G

ð2Þ
1,�r
� (see Figure 1(c)). At

any selected angle, the measurements corresponding to both PSDs are practically

overlapped. The application of the cumulants method [16] on the G
ð2Þ
�r
ð
j Þ produces the

average diameters �DDLS,að�rÞ and �DDLS,bð�rÞ indicated in Figure 1(d), where the symbols

correspond to the five selected angles, and the curves represent the theoretical continuous

measurements at all angles. Note that both PSDs practically produce the same derived

average diameters. As a consequence, the involved inverse problem is ill-conditioned.

Although normalized autocorrelations g
ð2Þ
�r,a

and g
ð2Þ
�r,b

(Figure 1c) are almost identical, their

original G
ð2Þ
�r
ð
j Þ exhibit small differences that cause the differences between �DDLS,að�rÞ and

�DDLS,bð�rÞ (Figure 1d).
In this work, a Tikhonov regularization technique and a Bayesian method are used for

estimating PSDs of particulate systems on the basis of the average DLS diameters derived

from MDLS measurements of highly diluted samples that ensure a single scattering

regime. The performances of both inversion strategies are compared on the basis of

simulated and experimental examples that involve PSDs of different shapes, widths and

diameter ranges. Figure 2 summarizes the utilized calculation paths. In simulated

examples, the PSD is assumed to be known, Equations (2) to (4) are used to calculate the

noise-free measurements G
ð2Þ
�r
ð
j Þ, and a random noise " is then added to obtain the noisy

measurements ~G
ð2Þ
�r
ð
j Þ. In experimental examples, the DLS equipment directly produces

~G
ð2Þ
�r
ð
j Þ. In all examples, the cumulants method [16] is applied to estimate the indirect

measurements, ~�DDLS �rð Þ. Finally, both inversion methods are used to estimate the PSDs by

solving the nonlinear ICIP of Equation (1). Sections 2 and 3 explain the inversion

methods. Sections 4 and 5 show some simulated and experimental examples that were used

to assess and compare the two inversion strategies. Finally, some conclusions are given in

section 6.

Figure 2. PSD estimation from MDLS measurements: schematic data treatment paths.
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2. Estimation of the PSD through a Tikhonov Regularization Method

Let us call f ¼ f ðD1Þ, . . . , f ðDNÞ½ �
T and �D ¼ �DDLSð�1Þ, . . . , �DDLSð�RÞ

� 	T
the vectors

containing the ordinates of the (unknown) PSD and the measured average diameters,

respectively. For solving the non-linear ICIP, a Tikhonov regularization method (stated as

an optimization problem) is proposed as follows [10]:

Min
f

�D� �̂DðfÞ
h iT

W�1 �D� �̂DðfÞ
h i

þ �2 Hfk k2

 �

; subject to f � 0 ð5Þ

where �̂DðfÞ (R� 1) contains the average diameters corresponding to the estimated PSD,

f̂ Dið Þ, which are directly calculated by injecting f̂ Dið Þ into Equation (1), W (R�R) is the

covariance matrix of the measurement errors, � is a regularization parameter,H (N�N) is

a regularization matrix and �k k represents the 2-norm of a vector. We will assume that the

measurement errors are uncorrelated and normally distributed with mean zero and

standard deviation 	r (r¼ 1, . . . ,R), then W¼ diag(	1
2, . . . , 	R

2). Concerning the penalty

term in Equation (5), the parameter � will be calculated through the L-curve method [17];

and the matrix H will be implemented as a discrete second derivative operator to ensure

high smoothness in the estimated PSD, as normally expected in practical applications.
As a first attempt to solve Equation (5), a sequential quadratic programming algorithm

was applied on several simulated examples; but the PSD estimates resulted highly

dependent of the chosen initial guess, thus revealing the existence of local minima.

Therefore, a more effective optimization algorithm able to find the global minimum was

required. Particle swarm optimization (PSO) algorithms proved to be powerful tools for

solving linear and nonlinear optimization problems, in continuous as well as in discrete

domains [18]. Here, a PSO algorithm in the form of a linearly decreasing inertia weight

PSO (LDW-PSO) is used [19].
In a PSO algorithm, the search is performed by using a large population of ‘particles’.

(To avoid confusions, the term ‘particle’ corresponding to the PSO algorithm is here

indicated between apostrophes.) Then, in the context of a PSO algorithm, a ‘particle’

corresponds to an individual; i.e. each ‘particle’ is a candidate PSD to represent the sought

solution to the optimization problem.
During the execution of a PSO algorithm, each ‘particle’ continuously moves through

the search space until some relatively stable state is reached [18]. A PSO algorithm

combines an ‘exclusively social model’ (which suggests that individuals ignore their own

experience and adjust their knowledge according to the success of other individuals in the

neighborhood), with an ‘exclusively cognitive model’ (which treats individuals as isolated

beings). A ‘particle’ changes its position according to these two models.
The i-th ‘particle’ Xi is a point in a N-dimensional space, i.e. Xi¼ (xi,1, . . . , xi,N). The

best position reached by Xi corresponds to the minimum value of the cost function

[Equation (5)], and is represented by Pi¼ (pi,1, . . . , pi,N). The best position reached by the

entire ‘particle’ population is represented by G¼ (g1, . . . , gN). The position change rate (or

velocity) of Xi is represented by Vi¼ (vi,1, . . . , vi,N). The ‘particles’ are manipulated

according to the following model:

vi,jðkþ 1Þ ¼ wvi,jðkÞ þ c1R1½ pi,j � xi,jðkÞ� þ c2R2½ gj � xi,jðkÞ� ð6aÞ

xi,jðkþ 1Þ ¼ xi,jðkÞ þ vi,jðkþ 1Þ ð6bÞ

978 L.A. Clementi et al.
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where k stands for the iteration number, c1 and c2 are two positive constants, R1 and

R2 are two random numbers in the range (0, 1) [19] and w is the inertial weight [19].

Equation (6a) is used to calculate the updated ‘particle’ velocity, vi,j(kþ 1), according to (i)

its previous velocity, vi,j(k), (ii) its current location distance to its best historical position,

[pi,j – xi,j (k)], and (iii) its current location distance to the best position found within the

group, [gj – xi,j (k)]. Then, the ‘particle’ moves from its old position, xi,j (k), to its new

position, xi,j (kþ 1), according to Equation (6b). This process is iteratively repeated until

reaching the algorithm convergence, which is assumed to occur when G does not exhibit

significant changes.

3. Estimation of the PSD Through a Bayesian Inference Method

Let us consider f and �D as random vectors. Then, the Bayes theorem can be stated as [11]

�posterior fð Þ ¼ � fj �D
� �

¼
� fð Þ� �Djf

� �
� �D
� � ð7Þ

where �posterior fð Þ is the posterior probability density, i.e. the conditional probability of f

given the measurements �D, �ðfj �DÞ; � fð Þ is the prior probability density, i.e. a statistical

model for the information about the unknown parameters prior to the measurements;

�ð �DjfÞ is the likelihood function, which gives the relative probability density of different

measurements outcomes �D corresponding to a fixed f and �ð �DÞ is the marginal probability

density of the measurements, which plays the role of a normalizing constant.
Since the random measurement noise is assumed independent, additive and Gaussian,

then the likelihood function can be stated as [11,13,15]:

� �Djf
� �

¼ K1e
�1

2
�D� �̂DðfÞ
� 	T

W�1 �D� �̂DðfÞ
� 	n o

ð8Þ

where K1 is a known constant that depends on the covariance matrix of the measurement

errors, W.
The prior probability density function should include all a priori information available

on the PSD. In practice, the PSD is generally accepted to be a smooth non-negative

function; and among several possible smoothness conditions, we here particularly adopt

that the PSD exhibit bounded second derivatives. Then, the maximum entropy principle

[13] enables us to write:

� fð Þ ¼ K2e
�
1

2
�2fTHTHf


 �
; for f � 0;

0; otherwise

8><
>: ð9Þ

where K2 is a constant (strictly unnecessary for implementing the estimation procedure),

and � is a smoothing parameter that can also be obtained by the L-curve method [17]. By

substituting Equations (8) and (9) into Equation (7), we obtain:

� fj �D
� �

¼
K1K2

� �Dð Þ
e
�1

2
�D� �̂DðfÞ
� 	T

W�1 �D� �̂DðfÞ
� 	

þ�2fTHTHf

n o
; for f � 0;

0; otherwise

8<
: ð10Þ
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In a statistical sense, the most likely solution of the estimation problem is the so-called
maximum a posteriori (MAP), i.e. that f which maximizes Equation (10). Maximization of
�ðfj �DÞ can be obtained by minimizing the exponent of Equation (10), i.e.

Min
f

�D� �̂DðfÞ
h iT

W�1 �D� �̂DðfÞ
h i

þ �2fTHTHf


 �
; subject to f � 0 ð11Þ

The minimization of the quadratic problem in Equation (11) is similar to the Tikhonov
regularization of Equation (5). As a consequence, the MAP solution will coincide with the
Tikhonov estimate. In this context, the Tikhonov inversion method may be considered as a
particular case of a (more general) Bayesian inference method.

An alternative PSD estimate can be obtained by evaluating the mean of �ðfj �DÞ instead
of its maximum, i.e.

f̂ ¼ mean � fj �D
� �� 	

ð12Þ

It is important to note that if �ðfj �DÞ were a Gaussian distribution, then the maximum of
Equation (10) would coincide with its mean, and therefore the PSD estimates obtained
through Equations (11) and (12) would become identical. However, since �ðfj �DÞ is not a
Gaussian distribution [see Equation (10)], then the solutions obtained through Equations
(11) and (12) will be different.

Unfortunately, the PSD estimation through Equation (12) would require solving high-
dimension integrations for evaluating �ð �DÞ in Equation (10), and the numerical procedure
would be extremely time-consuming. To overcome such problem, a Markov Chain Monte
Carlo (MCMC) method is usually proposed for sampling Equation (10), and inference on
�ðfj �DÞ can be obtained from inference on the samples. Here a MCMC method
implemented in the form of the Metropolis–Hasting algorithm [11,15] was used for
sampling �ðfj �DÞ. The reason for using the Metropolis–Hasting algorithm is due to its
simplicity for drawing samples from �ðfj �DÞ.

3.1. Metropolis–Hasting algorithm

The Metropolis–Hasting algorithm is used to draw a sequence of samples from �ðfj �DÞ. The
algorithm can be summarized in the following steps [11,15]:

(1) Start with any initial distribution f1 that satisfies �ðf1j �DÞ � 0. Set k¼ 1.
(2) Use the current f k to obtain a new candidate f*, from some jumping distribution

q(f k, f*), which is the probability of returning f* given f k.
(3) Given the candidates f k and f*, calculate the acceptance factor:

� ¼ min 1,
�ðf�j �DÞqðf�, fkÞ

�ðfkj �DÞqðfk, f�Þ

� �
¼ min 1,

�ðf�Þ�ð �Djf�Þqðf�, fkÞ

�ðfkÞ�ð �DjfkÞqðfk, f�Þ

� �
ð13Þ

(4) Choose a random value U from a uniform distribution on (0,1). If U	 �, set
f kþ1¼ f*; otherwise, f kþ1¼ f k.

(5) Set k¼ kþ 1 and return to step 2 to generate the sequence {f1, . . . , f k}.

After a total number of K iterations, the iterative procedure generates a Markov chain
{f1, . . . , fK}, provided that the transition probabilities from f k to f kþ1 depend only on f k
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and not on {f1, . . . , f k-1}. After a sufficiently large burn-in period (of B iterations), the

chain approaches an stationary state, and samples from the set {fBþ1, . . . , fK} are samples

from �ðfj �DÞ. More details concerning MCMC and the Metropolis–Hasting algorithm can

be consulted in [11,15].
Once the Markov chain is obtained, the estimated PSD, f̂, can be calculated from

Equation (12), i.e.

f̂ ¼ mean � fj �D
� �� 	

¼

PK
i¼Bþ1 f

i

K� Bð Þ
ð14Þ

In what follows, we will refer to ‘Tikhonov inversion’ (TI) as the classical inversion

method carried out to solve Equation (5), which also produces the MAP solution of

Equation (10). Also, we will refer to ‘mean-based Bayesian inference’ (m-BI) as the method

for solving the estimation problem through Equation (14).

4. Simulated Examples

The proposed inversion methods were first tested through simulated examples, because in

these cases the solutions are a priori known, and therefore the performance of the

algorithms can be adequately evaluated and compared. Two PSDs corresponding to

hypothetical polystyrene (PS) latexes with spherical particles of diameters in the range

200–550 nm were considered. In all cases, the discrete diameters were spaced at regular

intervals of DD¼ 1 nm. Both PSDs exhibited different shapes, widths and diameter

ranges; and were selected to evaluate the ability of the proposed methods to deal with

different kind of PSDs. All testing cases were defined on the basis of discrete number-

PSDs, f (Di).
The first PSD, f1(Di), was an asymmetric exponentially modified Gaussian (EMG),

obtained by convoluting a Gaussian (of mean diameter �DG¼ 340 nm, and standard

deviation 	G¼ 10 nm), with a decreasing exponential function (of decay constant


¼ 20 nm), i.e.

f1ðDiÞ ¼
DDffiffiffiffiffiffi
2�
p

	G
exp �

ðDi � �DGÞ
2

2	2G

� �
�
exp �Di=
ð Þ


=DD
ð15Þ

where ‘*’ represents the convolution product.
The second PSD, f2(Di), was the weighted sum of two normal-logarithmic distribu-

tions, as follows:

f2ðDiÞ ¼ 0:95f2,1ðDiÞ þ 0:05f2,2ðDiÞ ð16Þ

were each mode f2,j is obtained through

f2,j Dið Þ ¼
DD

Di	L,j
ffiffiffiffiffiffi
2�
p exp �

lnðDi= �Dg,jÞ
� 	2

2	2L,j

" #
; ð j ¼ 1, 2Þ ð17Þ

with the following parameters: { �Dg,1¼ 350 nm, 	L,1¼ 0.05}, for f2,1(Di), and { �Dg,2¼ 450 nm,

	L,2¼ 0.05}, for f2,2(Di). Therefore, f2(Di) is a bimodal PSD with asymmetric modes.
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The light source was a vertically polarized He–Ne laser of wavelength �¼ 632.8 nm.
At such wavelength, the refractive indexes are np¼ 1.5729, for the PS particles, and
nm¼ 1.3319, for the dispersion medium (pure water). Measurement angles were selected to
vary from 30� to 140�, at regular intervals of 10�. The above-detailed optical parameters
were used to evaluate CI(�r,Di) [5], and are required to simulate the noise-free
measurements G

ð2Þ
�r
ð
j Þ through Equations (2) to (4). In addition, each G

ð2Þ
�r
ð
j Þ was

contaminated with additive and uncorrelated noises (similar to those observed in typical
experiments), to obtain the noisy measurements ~G

ð2Þ
�r
ð
j Þ, i.e.

~G
ð2Þ
�r
ð
j Þ ¼ G

ð2Þ
�r
ð
j Þ þ 0:001Gð2Þ1,�r

" ð18Þ

where " is a Gaussian random sequence of mean zero and variance one. From ~G
ð2Þ
�r
ð
j Þ,

the noisy first-order autocorrelation function of the electric field, ~g
ð1Þ
�r
ð
j Þ, was calcu-

lated through Equation (2), and the noisy derived measurements ~�DDLS �rð Þ were obtained
through the cumulants method [16].

From the ~�DDLS �rð Þ (r ¼ 1, . . . , R), the TI and m-BI methods were applied for
estimating f1 and f2. In all estimation procedures, a diameter axis in the range 100–
1100 nm, with N¼ 101 points regularly spaced each 10 nm, was selected. In order to
estimate W, hundreds of simulations were implemented on many PSDs, for different noise
realizations in Equation (18). For each PSD, the standard deviation of the resulting
~�DDLS �rð Þ, 	r, were calculated at each angle �r. Independently of the PSD, it was observed
that 	r are adequately approximated through: 	r ¼ 0.0025mean{ ~�DDLS �rð Þ}. This expres-
sion is particularly appropriate in experimental cases where only a few measurements can
be carried out at each angle, which would avoid a reasonable estimation of 	r. Then, the
covariance matrix was built as W¼ diag(	1

2, . . . , 	R
2).

For solving the ICIP through the TI method, a LDW-PSO algorithm with 25 ‘particles’
was implemented. The usual parameters c1¼ c2¼ 2 were directly adopted from literature
[19]. The PSO algorithm was initialized by assigning to each ‘particle’ a random PSD of
components sampled from a uniform distribution. Both simulated PSDs were used as
testing examples, for adjusting the inertia function as well as the criterion for stopping the
algorithm. The inertia function was selected as a linear function that decreased from
w¼ 0.5 (for the first iteration) to w¼ 0.1 (for the iteration 10,000). After several runs,
10,000 iterations were adopted as a reliable criterion for stopping the optimization
procedure.

For solving the ICIP through the m-BI method, the Metropolis–Hasting algorithm
was initialized with positive random values (f1) selected from a uniform distribution.
A Gaussian jumping distribution [q(f k, f*)] with zero mean and standard deviation of 0.001
was utilized. From q(f k, f*) a new sample f

* is derived from f
k by modifying the i-th

component of f k, where i is randomly selected from a uniform distribution. Again, both
simulated PSDs were used as testing examples. The Markov chain length was adopted
after many trial-and-error simulations. First, it was observed that short chain lengths
produced noisy and non-repetitive estimates. Then, the chain length was gradually
increased and more repetitive PSD estimates were obtained. Very long chain lengths (e.g.
41,000,000) importantly increased the computing time but did not produce meaningful
changes in the PSD estimates. Therefore, a Markov chain length of 500,000 was finally
selected as a trade-off between a reasonable PSD estimate and an excessive computing
time. Moreover, with a Markov chain length of 500,000, a reasonable repeatability for
different MCMC realizations was verified in each example. For the simulated PSDs, the
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evolution of �ðfj �DÞ revealed that the Markov chain reaches equilibrium in a burn-in period
B¼ 15,000 states.

The regularization parameter, �, was selected according to the L-curve method [17], as
follows: (1) Equation (5) was solved for a large set of � values, (2) for each �, the
corresponding PSD estimate f̂ was used to evaluate the two terms of Equation (5):

T1¼ ½ �D� �̂Dð̂fÞ�TW�1 ½ �D� �̂Dð̂fÞ� and T2¼kH f̂k2, (3) a cubic spline was used to fit T1 vs.
T2, which produced an L-shaped curve when plotted in a log–log scale, (4) the final � was
chosen as that value corresponding to the maximum curvature point of the L-curve. In
spite of the non-linearity of Equation (5), the characteristics of the L-curve method [17]
were reproduced. A similar procedure should be implemented for selecting the smoothness
parameter, �, from Equation (11). However, Equations (5) and (11) are equivalents, and
therefore � ¼ � was directly selected in each example.

To evaluate the quality of the estimations, the following performance indexes were
defined:

Jf ¼

PN
i¼1 f ðDiÞ � f̂ ðDiÞ

h i2
PN

i¼1 ½ f ðDiÞ�
2

0
B@

1
CA

0:5

ð19Þ

JD ¼
1

R

XR
r¼1

1�
�̂DDLSð�rÞ

~�DDLSð�rÞ

" #2
0
@

1
A

0:5

ð20Þ

where �̂DDLSð�rÞ were obtained by injecting each estimated PSD, f̂ ðDiÞ, into Equation (1).
The index Jf evaluates the ability of each inversion method to estimate the ‘true’ PSD,
f ðDiÞ, and the index JD quantifies the errors in the recuperation of the noisy
measurements, ~�DDLSð�rÞ, from the estimated PSD. Note that in a real measurement, it
would be impossible to calculate Jf because f ðDiÞ is unknown; however, this criterion was
adopted for the simulated examples to investigate the limitations of the proposed
methodology.

Each example was simulated 25 times to investigate the effect of the artificial random
noise " added to the measurements [Equation (18)] on the final results. For each example,
Table 1 shows the final average performance indexes [ �Jf, �JD] and their corresponding
standard deviations [	f, 	D]. The maximum and minimum values of Jf and JD [Jf,max,
Jf, min, JD, max, JD, min] are also indicated. In the case of the bimodal PSD, f2, the results
corresponding to Jf and 	f are indicated for each mode. In all cases, the m-BI method
produced better PSD estimates as suggested by the lower values of �Jf, Jf, max and Jf, min. In
addition, the lower values of 	f produced by the m-BI method indicate a more reduced
sensitivity of the PSD estimates to the measurement noise, when compared to the results
obtained from the TI method. In contrast, the TI method produced better recuperations of
the measurements, as indicated by the smaller values of �JD, JD, max and JD,min. These results
can be justified by the fact that the m-BI method does not aim at minimizing the
measurement errors, and therefore larger values of �JD are obtained.

Figures 3 and 4 present the results corresponding to a particular realization of the

examples 1 and 2, respectively. From the simulated ~�DDLS �rð Þ measurements indicated in
Figures 3(a) and 4(a), the proposed inversion methods produced the PSD estimates of
Figures 3(b, c) and 4(b, c). In all figures, the ordinates are Fj(Di)¼ fj(Di) Di

3 [instead of
fj(Di)] to highlight the estimation errors at large diameters. Note that Fj(Di) represents a
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weight-PSD; i.e. the ordinates of Fj(Di) represent the weight-fractions corresponding to the

discrete diameters. The estimated mean diameters, �̂DDLSð�rÞ, are shown in Figures 3(a)

and 4(a). In all figures, subscripts T and B added to the estimated variables stand for TI

and m-BI, respectively.

Figure 3. Simulated example for the PSD f1. (a) Average diameters i) calculated from the ‘noisy’
MDLS measurements (dots), and ii) simulated with the estimated PSDs. (b, c) The simulated PSD
and its estimates from the TI method (b) and m-BI method (c). (d) Estimated PSD obtained from the
m-BI method and the standard deviations calculated from the samples obtained through the
Metropolis–Hasting algorithm.

Table 1. Simulated examples.

f̂1 f̂2,1=f̂2,2

m-BI TI m-BI TI

101� �Jf (–) 1.56 2.14 0.87/2.62 1.19/9.91
101� 	f (–) 0.32 0.34 0.24/0.64 0.37/2.03
101� Jf, max (–) 2.41 2.86 1.47/4.16 1.98/12.89
101� Jf, min (–) 1.00 1.60 0.47/1.35 0.65/5.15
103� �JD (–) 1.86 1.31 1.81 1.34
103� 	D (–) 0.45 0.49 0.33 0.44
103� JD,max (–) 3.37 3.03 2.56 2.28
103� JD,min (–) 1.25 0.71 1.27 0.62

Note: Performance indexes corresponding to 25 simulations of each analysed example.
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Figures 3(b) show that the Tikhonov regularization produced an erroneous mode
around 450 nm, when estimating f1. Such a spurious mode is due to the presence of
measurement noises. Complete compensation of the erroneous mode was impossible even
after applying a stronger regularization. On the other hand, m-BI technique seems to be
less influenced by measurement noises, and produced an acceptable unimodal estimate
(Figure 3c). In addition, while the TI method was unable to acceptably estimate the
asymmetry in f1, the m-BI method produced an accurate estimate. In the case of the
bimodal PSD, f2, both methods predicted the two modes, but the m-BI technique
produced an estimate closer to the true PSD. In Figure 4, the mode corresponding to
larger diameters was estimated through the TI method as a narrower mode of higher mean
diameter (Figure 4b). In contrast, the m-BI approach produced a wider estimate that
almost coincides with the true PSD (Figure 4c).

A statistical analysis of the set {fBþ1, . . . , fK} was conducted to get information on
the precision of the PSD estimate obtained on the basis of the m-BI method. Figures 3(d)
and 4(d) show the estimates of f1 and f2, and the confidence bands defined by their
corresponding standard deviations, 	f, calculated from the Markov chains. Uncertainties
resulted larger at the asymmetric zone of the unimodal PSD f1, and for the mode of higher
diameters of the bimodal PSD f2.

Even though not shown, for unimodal PSDs with small asymmetries, for relatively
broad PSDs, for bimodal PSDs with modes of similar concentrations, and/or for PSDs of
higher diameters, both inversion methods produce accurate and similar estimates. In
contrast, for PSDs with particles of small sizes (5150 nm), both inversion methods predict
unreal spike distributions. These deteriorated predictions are quite reasonable because the

Figure 4. Simulated example for the PSD f2. (Legends as in Figure 3).
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shape of PSDs with particles of small diameters slightly contributes to modify the average

diameters measured at the different angles, and therefore the measurements have low

information content on the true PSD. All predicted spikes can be eliminated by increasing

the regularization parameters, but excessively broad PSDs will be produced.

5. Experimental Examples

TI and m-BI inversion methods were also applied to evaluate experimental examples. Two

latexes (L1 and L2) of bimodal PSDs were obtained by mixing two narrow and unimodal

standards of PS (from Polysciences), of nominal diameters 300 and 1000 nm. The number

fraction of the secondary mode (with particles of 1000 nm) was gravimetrically determined,

yielding: xL1,2
 1.05% for latex L1, and xL2,2
 2.10% for latex L2.
MDLS measurements were carried out at 30�C and nine detection angles: [30� 40� 50�

60� 70� 80� 90� 110� 130�], with a general-purpose laser light-scattering photometer

(Brookhaven Instruments, Inc.) fitted with a vertically polarized He–Ne laser

(�¼ 632.8 nm), and a digital correlator (model BI-2000 AT). The total measurement

times ranged from 200 to 500 s. All latexes were well diluted in distilled, filtered and

deionized water, yielding mean intensities lower than 200,000 counts/s at each detection

angle, as recommended for avoiding multiple scattering [7].
The average diameters, ~�DDLSð�rÞ, were calculated by applying the quadratic cumulants

method [16] onto the measured ~G
ð2Þ
�r
ð
j Þ; and are indicated by dots in Figures 5(a) and 6(a).

These values were fed into the proposed inversion methods for estimating the PSDs

indicated in Figures 5(b, c) and 6(b, c). In both experimental examples, the same discrete

diameter axis adopted for the simulated examples was utilized. The components of the W,

	r, were estimated from the expression described in the previous section, but simplified to

the present case where only a single DLS measurement was available at each angle:

	r¼ 0.0025 ~�DDLSð�rÞ. The regularization parameter � was selected through the L-curve

method. As in the case of the simulated examples, � ¼ � was adopted. Since the

experimental data involved diameter and measurement vectors of dimensions close to

those of the simulated examples, then the Markov chain length and the burn-in period

were kept unchanged (i.e. 500,000 and 15,000, respectively). These last values were also

checked to be appropriate after several PSD estimations with higher and lower values.
For evaluating the performance of the numeric inversion methods, ‘true’ PSDs must be

adopted for latexes L1 and L2. These PSDs were defined on the basis of the nominal

diameter and the standard deviation of each standard, which were reported by the

manufacturer after characterization through disk centrifuge (DC) [1]. The reported mean

diameters and standard deviations were DPS1¼ 306 nm and 	PS1¼ 8 nm, for the first

standard; and DPS2¼ 974 nm and 	PS2¼ 10 nm, for the second standard. Then, the ‘true’

PSDs were represented by bimodal distributions, with Gaussian modes centred at the

diameters DPS1 and DPS2, with standard deviations 	PS1 and 	PS2, and with number

fractions xL1,1¼ 98.95% and xL1,2¼ 1.05%, respectively, for the first and second mode of

latex L1; and xL2,1¼ 97.90% and xL2,2¼ 2.10%, respectively, for the first and second

mode of latex L2.
Table 2 shows the nominal diameters, number fractions and performance indexes

calculated for the ‘true’ and the estimated PSDs. Note that Jf is discriminated for each

main mode of L1 and L2.
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Figure 5. Experimental example for latex L1. (a) Average diameters i) calculated through the
cumulants method [16] (dots), and ii) simulated with the estimated PSDs. (b, c) Comparison of the
‘true’ PSD with its estimates from the TI method (b) and m-BI method (c). (d) Estimated PSD
obtained from the m-BI method and the standard deviations calculated from the samples obtained
through the Metropolis–Hasting algorithm.

Figure 6. Experimental example for latex L2. (Legends as in Figure 5).
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From Table 2 and Figures 5 and 6, the m-BI method produced better PSD estimates,
except for the smallest mode of L2, where the TI method showed a slightly better
performance. Although the TI method produced acceptable estimation of the main modes
of L1 and L2, it also estimated erroneous intermediate modes. On the other hand, the m-BI
method produced bimodal PSDs that practically coincided with the ‘true’ PSDs, and it was
able to adequately estimate the average diameter and number fraction of each mode of L1

and L2.
Figures 5(d) and 6(d) show the confidence bands for the PSD estimates obtained

through the m-BI method. In both figures, the abscissa axes were conveniently expanded
for a better visualization of the high diameter modes, where larger uncertainties were again
observed.

6. Conclusions

A Tikhonov regularization technique and a mean-based Bayesian inference method were
analysed as feasible numerical tools for solving the non-linear and ill-conditioned inverse
problem that arises when the PSD of nanometric particles is estimated from MDLS
measurements. The algorithms were implemented and fairly compared on the basis of
simulated and experimental examples corresponding to PSDs of polystyrene latexes.

In general, the m-BI method produced improved PSDs with respect to the TI
technique. The m-BI approach seems to be more efficient to deal with noisy measurements,
without predicting the spurious intermediate modes observed with the TI methods. This
can be justified by analysing the JD index. In fact, the TI method tends to overweight the
measurement noises and therefore yields lower JD indexes than the m-BI method. Major
differences between m-BI and TI predictions were observed for (i) highly asymmetric
unimodal PSDs; and (ii) bimodal PSDs including modes of highly different concentra-
tions. In case (i), the TI method normally predicts a spurious mode; and in case (ii), the m-
BI method produces a better estimation of the low concentration mode.

All data processing was made in a standard PC with a Pentium(R) Dual-Core (2GHz)
processor and a RAM memory of 3 GB. Once the regularization parameter was chosen,
the m-BI method required around 90 s to complete the 500,000 Markov chains plus the
15,000 burn-in periods; while the TI method required around 30 s to reach the optimum
of Equation (5). Although the TI method reached the solution three times faster than the

Table 2. Experimental examples.

‘true’, fL1

f̂L1

‘true’, fL2

f̂L2

m-BI TI m-BI TI

D̂PS1 (nm) 306 315 315 306 320 320
D̂PS2 (nm) 974 971 965 974 965 963
x̂1 (%) 98.95 99.00 97.40 97.90 98.10 96.80
x̂2 (%) 1.05 1.00 1.50 2.10 1.90 2.20
101� Jf (–) – 7.7/7.4 7.7/20.7 – 9.8/8.6 9.5/14.6
103� JD (–) – 8.0 7.4 – 4.5 3.5
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m-BI method, this advantage becomes almost negligible when it is compared to the global
time required to obtain a PSD estimate. In fact, such a typical global time may reach 2–3 h,
involving the sample preparation, the room conditioning, the equipment stabilization, the
measurements at several angles (normally 200–500 s per angle), and the data processing.
Thus, the advantages of m-BI method rely on its improved ability for estimating an
accurate PSD in a global computing time similar to that of the TI method.
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