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In this paper, some fundamental analysis and results are introduced for the accessibility of
impulsive control systems (ICS). The main result is the characterization of accessibility for
nonlinear ICS based on the ‘number of impulses’ which is required. These results naturally
generalize and correct some earlier results obtained for linear ICS. The theory developed is
applied to an impulsive model of the dynamics of human immunodeficiency virus (HIV)
subject to medication. It is shown that HIV system fulfills the accessibility criterion. Finally,
an impulsive control strategy is designed based on exact linearization to improve the
response immune system of a patient of HIV.
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1. Introduction

This paper tackles impulsive nonlinear control systems and introduces some basic properties like controllability, reach-
ability, and accessibility for this class of systems.

Such problems arise naturally from a wide variety of applications, such as spacecraft [1], ecosystems management [2],
pharmacokinetics [3], and chaotic systems [4]. In contrast with continuous control systems, where there already is a signif-
icant body of literature, impulsive control systems is attracting an increasing number of researchers.

The basic mathematical tools for studying impulsive control systems is the theory of impulsive differential equations [5].
The theory of linear ICS has been developed during this last decade through the investigation of fundamental properties such
as stability and controllability [6]. The results available for the class of nonlinear ICS are much less advanced, even for the
characterization of controllability/accessibility. Actually, accessibility is the structural property that in the nonlinear case
plays a role similar to that of controllability in the linear case. Instead of that, many researchers have studied this property
in continuous systems and they have given useful criteria to characterize it (see for instance [7,8]), in nonlinear impulsive
control systems, this subject is a field to explore.

As regard to the design of feedback control laws for ICS, several control problems (like pole placement problem, optimal
control, and the others) have been fully developed for linear impulsive systems. In [6], a feedback control strategy is ex-
plained in detail for nonlinear ICS based on comparison methods. Here, the problem of exact linearization via feedback is
attacked for single-input single-output nonlinear ICS. It is shown that under specific conditions related to the notion of
relative degree (see [8]), a nonlinear ICS can be locally transformed into a linear one, by an impulsive state feedback control
at each control instant sk, where the impulse is applied, and by a nonlinear state transformation.
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Mathematical modeling has made a substantial impact on our thinking and understanding of HIV-1 infection. A large
number of deterministic models have been developed to describe the immune system and its interaction with HIV-1 as well
as the effects of drug therapy (see [9–13] and their references). In most cases, their mathematical expression are based in
relatively complex systems of non-linear differential equations. Population models are the most commonly used.

Using these models, therapeutic strategies can be simulated with the purpose of reducing the viral load. Also, different
control problems can be posed and solved when the dynamics is known. Control theory have already been used to develop
anti-HIV treatment strategies based on the efficiency of the drugs. However, the resulting strategies are quite hard to put into
practice since drug efficiency is typically not expressed in terms of prescribed drug amounts (see [11,14–16]). To circumvent
this drawback, pharmacokinetics and pharmacodynamics models have been included in the model in order to relate
efficiency with drug dosage [17,11].

Here, a pragmatic point of view for the control of the HIV dynamics will be considered, subject to a standard therapy. The
intake of drugs twice a day can be interpreted as an impulse input (as it is observed in [3]), with a time interval of 12 h. The
absorption time is neglected as regards this time interval and the time characteristics of pharmacokinetics are much smaller
as well [17]. As a consequence, it is appropriate to develop the analysis and control of the HIV dynamics in the framework of
ICS.

The contribution of this paper is twofold. First, a new theoretical setting is introduced for nonlinear ICS, where accessi-
bility is defined and characterized in terms of the number of required control impulses. Second, a novel feedback control law
based on exact linearization for nonlinear ICS is designed and applied to HIV dynamics in a more realistic way than existing
control strategies [18,11,15].

The paper is organized as follows: the state of art and problem statement are given in Section 2. Also, it is shown by a
counter example that a statement on the controllability property of linear ICS in [19] is not correct and the correction is in-
cluded. The theoretical framework and the main results for nonlinear ICS are developed in Section 3. A new control algorithm
is introduced and its results are illustrated in Section 4. Those results are applied to the analysis of the HIV dynamics in Sec-
tion 5. Finally, the last Section is devoted to conclusions and perspectives.

2. Preliminaries

A plant is an impulsive control system when there is a set of control instants T ¼ fskg; sk 2 R; sk < skþ1, and a set of in-
puts Uk 2 Rn; k ¼ 1;2; . . ., such that the state x 2 Rn at each sk is changed impulsively by xðsþk Þ ¼ xðskÞ þ Uðk; xÞ. Note that the
control instants are not necessarily equidistant and the control Uðk; xÞ yields a discontinuity of x at instant sk.

The class of dynamic systems of interest basically consists of objects defined by a set of impulsive first-order differential
equations of the form
_xðtÞ ¼ f ðxðtÞÞ; t – sk;

DxðskÞ ¼ gðxðskÞÞuðskÞ; k 2 N;

xðtþ0 Þ ¼ xðt0Þ ¼ x0;

8><
>: ð1Þ
where the independent variable t 2 R denotes time, the state x 2 M � Rn, and the input uðskÞ ¼ uk 2 Rm; 1 6 m < n. The
functions f ðxÞ 2 Rn and gðxÞ 2 Rn�m are analytic vector fields and— M is an analytic manifold.

Definition 1. System (1) is said to be impulsively controllable if for all vectors x0; �x 2M, and tf > t0 2 R, there are real
numbers sk 2 ½t0; tf �; t0 < s1 < s2 � � � < sp ¼ tf , and vectors uk 2 Rm; k ¼ 1; . . . ; p <1 such that (1) has a solution
xðtÞ ¼ xðt; x0;ukÞ existing on ½t0; tf � satisfying xðtþf Þ ¼ �x.

For the special case of impulsive linear systems [6], a criterion of controllability has been established in [19]:

Theorem 1. If f ðxÞ ¼ Ax and gðxÞ ¼ B, where A; B are constant matrices, then system (1) is impulsively controllable if and only if
Rank B;AB;A2B; . . . ;An�1B
h i

¼ n: ð2Þ

The proof of the Theorem 1 can be found in [19]. It is claimed in [19] that the maximum number of impulses required to

reach any desired final state for a controllable linear ICS is p ¼ n
m

� �
, where dze denotes the smallest integer greater than or

equal to z. The following linear example is developed as an illustration of this theorem.
Example. Consider the linear ICS:
_x1ðtÞ ¼ x2ðtÞ;
_x2ðtÞ ¼ 0; t – sk;

Dx2ðskÞ ¼ uðskÞ; k 2 N;

8><
>: ð3Þ
System (3) is controllable from Theorem 1. The maximum number of required impulses to reach any final states (�x1; �x2) is
p ¼ 2 according to the statement in [19]. In addition, applying the control sequence uðskÞ ¼ fuðs1Þ ¼ �x1

s2
; uðs2Þ ¼

�x2 � uðs1Þg is enough for reaching these final states.
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Actually, this number of impulses p is correct when m equals 1. For a multi-input system, this statement is not true in
general, as it is shown in the following counter example:

Example.
_x1ðtÞ ¼ x2ðtÞ;
_x2ðtÞ ¼ x3ðtÞ;
..
.

_x9ðtÞ ¼ x10ðtÞ; t – sk;

_x10ðtÞ ¼ 0;
_x11ðtÞ ¼ 0;
Dx10ðskÞ ¼ u1ðskÞ; k 2 N;

Dx11ðskÞ ¼ u2ðskÞ;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð4Þ
where n ¼ 11, and m ¼ 2. From Theorem 1, system (4) is controllable. Thus, in [19], six impulses (p ¼ 6) are claimed to be
required to steer the system (4) from x0 to any final state �x. However, the input u2 only has influence on x11. Accordingly, the
number of required impulses to achieve any �x for the system (4) is at least p ¼ 10. The standard notion of controllability indi-
ces of the pair ðA;BÞ describes the number of required impulses (see [8,7]). The controllability indices associated to system
(4) are f1;10g.

For the class of nonlinear ICS, to the best of our knowledge, there is no available result equivalent to Theorem 1. Next
section introduces a theoretical setting which allows to define accessibility and generalize the accessibility criterion.

3. Accessibility of impulsive single-input systems

Two basic notions in control systems theory are that of reachable states and controllability. Controllability is about the
possibility of steering the system from a state x1 to another state x2. For linear systems, controllability is a structural property
(which is described for linear ICS in the first section, and in [19]). Any linear system can be split into a controllable subsystem
and an autonomous one. The structural property that in the nonlinear case plays a role similar to that of controllability in the
linear case and can be given a similar characterization is the accessibility property. For its definition, we will start with the
notion of an impulsively reachable state.

Definition 2. For system (1), xðt1Þ ¼ x1 is said to be impulsively reachable from the initial state x0 if there is a finite set of
control instants T ¼ skf g s1 < s2 � � � < sk ¼ t1, and a finite control sequence U ¼ fuðskÞg, so that xðx0;U; tþ1 Þ ¼ x1.

Accessibility is now characterized through the notion of autonomous elements [7,8]. From a technical point of view, the
notion impulse relative degree of a given function of the state is defined at first place. After that, a relationship between this
notion an autonomous elements will be established. For simplicity, single-input systems will be considered, i.e the dimen-
sion of u in system (1) will be equal to 1.

Given system (1), consider a scalar function yðtÞ ¼ hðxðtÞÞ; y 2 Q � R of the state xðtÞ. This function can be thought as an
output of the system. Let y0 ¼ hðx0Þ. Let _y, and yðiÞ denote the first and i-th derivative of y with respect to time, respectively.
Let Y1 denote the set of points in R, which can be reached by y from hðx0Þ with one single impulse control at time s1. More
generally, let Yk denote the set of points in Rk, which can be reached by y; _y; . . . ; yðk�1Þ� �

from hðx0Þ; Lf hðx0Þ; . . . ; Lk�1
f hðx0Þ

� �
with k control impulses at times s1 < s2 < � � � < sk.

Example. Consider the following linear system
_x1ðtÞ ¼ x2ðtÞ;
_x2ðtÞ ¼ x3ðtÞ; t – sk;

_x3ðtÞ ¼ 0;
Dx3ðskÞ ¼ uðskÞ; k 2 N:

8>>><
>>>:

ð5Þ
From Theorem 1, at least 3 impulses are required to reach any point of R3. In order to describe the set of points Y3, the output
y ¼ x1 is taken into account. Then, at control instant s1, when the first impulse is applied, we have
yðsþ1 Þ ¼ x1ð0Þ þ x2ð0Þs1 þ x3ð0Þ
s2

1

2
;

_yðsþ1 Þ ¼ x2ð0Þ þ x3ð0Þs1;

yð2Þðsþ1 Þ ¼ x3ð0Þ þ u1:

ð6Þ
The space reachable by ðy; _y; yð2ÞÞ with a single impulse is a line in R3, i.e dimfY3g ¼ 1. At s2, the second impulse is applied,
then
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yðsþ2 Þ ¼ x1ð0Þ þ x2ð0Þs2 þ x3ð0Þ
s2

2 þ s2
1

2
þ ðs2 � s1Þ2

2
u1;

_yðsþ2 Þ ¼ x2ð0Þ þ x3ð0Þs2 þ ðs2 � s1Þu1;

yð2Þðsþ2 Þ ¼ x3ð0Þ þ u1 þ u2:

ð7Þ
Now, the set of points that can be reached by y; _y; yð2Þ
� �

with two impulses Y3 is a plane in R3. At t ¼ s3, the third impulse is
applied and the output and its derivatives are
yðsþ3 Þ ¼ x1ð0Þ þ x2ð0Þs3 þ x3ð0Þ
s2

1 þ s2
3

2
þ ðs3 � s1Þ2

2
u1 þ

ðs3 � s2Þ2

2
u2;

_yðsþ3 Þ ¼ x2ð0Þ þ x3ð0Þs3 þ ðs3 � s1Þu1 þ ðs3 � s2Þu2;

yð2Þðsþ3 Þ ¼ x3ð0Þ þ u1 þ u2 þ u3:

ð8Þ
The space reachable by y; _y; yð2Þ
� �

with three impulses is Y3 ¼ R3 since the system (5) is linear and controllable.
From these notations, the impulse relative degree can now be defined.

Definition 3. Given system (1), and the scalar function yðtÞ ¼ hðxÞ; y 2 Q � R. The impulse relative degree d0ðyÞ of y is
defined to be the smallest number r of impulses required so that Yr contains a locally dense subset of Rr . If for any r 2 N, this
dense subset does not exist, then set d0ðyÞ ¼ 1.

Note that in general, the impulse relative degree depends on the initial state x0. For a linear ICS, it is defined indepen-
dently of x0, and if d0ðyÞ ¼ r then dimfYrg ¼ Rank½B;AB; . . . ;Ar�1B� ¼ r.

Example. Consider the linear ICS (4), if y ¼ xi for some i with 1 6 i 6 10, then the impulse relative degree d0ðyÞ is 11� i.
Example. Given the following nonlinear ICS,
_x1ðtÞ ¼ x2
2ðtÞ;

_x2ðtÞ ¼ 0; t – sk;

Dx2ðskÞ ¼ x2ðskÞuðskÞ; k 2 N;

8><
>: ð9Þ
and the scalar function y ¼ x1ðtÞ, it is easy check that d0ðyÞ ¼ 2 for any x2ð0Þ – 0. When x2ð0Þ ¼ 0, then d0ðyÞ ¼ 1. The con-
clusion is that two impulses are required to reach any final states x1ðs2Þ ¼ �x1, and x2ðs2Þ ¼ �x2 from ðx1ð0Þ; x2ð0ÞÞ, provided
that �x1 P ðx2

2ð0Þs1 þ x1ð0ÞÞ. That sequence of controls can be computed as
uðs1Þ ¼
x2ðsþ1 Þ � x2ð0Þ

x2ð0Þ
; x2ðsþ1 Þ ¼

�x1 � ðx2
2ð0Þs1 þ x1ð0ÞÞ
s2 � s1

� 	1
2

; ð10Þ

uðs2Þ ¼
�x2 � x2ðs2Þ

x2ðs2Þ
: ð11Þ
Based on the arguments described above, the accessible space for system (9) is drawn in Fig. 1. Note that the reachable set is
not dense everywhere in R2.

Now, two useful differential operations will be introduced for describing the impulse relative degree (see [7] for more
details). The first operation involves a real-valued function k :M! R and a vector field f :M!M, where M is a subset
of Rn. From these, a new smooth real-valued function is defined, whose value at each x 2 M is equal to the inner product
hdkðxÞ; f ðxÞi ¼ @k
@x

f ðxÞ ¼
Xn

i¼1

@k
@xi

fiðxÞ ¼ Lf kðxÞ; ð12Þ
where dkðxÞ ¼ @k
@x ¼ ð @k@x1

; @k
@x2
; . . . ; @k

@xn
Þ. This function is called the derivative of k along f and is denoted Lf kðxÞ.

It is possible to repeat this operation. For instance, by taking the derivative of k first along a vector field f and then along a
vector field g one defines the function
LgLf kðxÞ ¼
@ðLf kÞ
@x

gðxÞ ¼ hdLf kðxÞ; gðxÞi; ð13Þ
If k is differentiated k times along f, the function Lk
f kðxÞ satisfies the recursion
Lk
f kðxÞ ¼

@ðLk�1
f kÞ
@x

f ðxÞ ¼ hdLk�1
f kðxÞ; f ðxÞi; ð14Þ
with L0
f kðxÞ ¼ kðxÞ. Some practical properties are described in [7]. The second operation involves two vector fields f ; g and is

called the Lie bracket of f and g. It is defined as
½f ; g�ðxÞ ¼ @g
@x

f ðxÞ � @f
@x

gðxÞ; ð15Þ



Fig. 1. Accessibility characterization for system (9).
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at each x 2M, where @g
@x and @f

@x denote the Jacobian matrices of the mappings g and f, respectively. The repetition of this oper-
ation yields the following recursion
adk
f gðxÞ ¼ ½f ; adk�1

f g�ðxÞ; ð16Þ
for any k P 1, setting ad0
f gðxÞ ¼ gðxÞ.

The following Proposition will provide a simple way to compute the impulse relative degree for nonlinear ICS and a scalar
function y ¼ hðxÞ, namely.

Proposition 1. The three following statements are equivalent

(i) d0 ¼minfr 2 Njy is differentiable; i:e: yðr�1Þ existsg,
(ii) d0 ¼minfr 2 NjhdLr�1

f hðxÞ; gðxÞi– 0g, and
(iii) d0 is the impulse relative degree according to Definition 3.

In particular, y has finite impulse relative degree if d0 belongs to N and y has infinite impulse relative degree if d0 ¼ 1.

Sketch of proof: In order to illustrate the equivalence, consider the system (1), which can be written alternatively as
_xðtÞ ¼ f ðxðtÞÞ þ gðxðtÞÞudðt � skÞ. Denote the state xð0Þ ¼ x0 and the initial output yð0Þ ¼ hðx0Þ.

Case d0 ¼ 1. (i)) (ii). Assume that at some control instant time sp > 0, the system has evolved to state xðsþp Þ ¼ xp. We
wish to compute the value of the output yðtÞ and its time derivatives yðrÞ, for r ¼ 1;2; . . ., around at fixed time t ¼ sp.

If d0ðyÞ ¼ 1, and by using the theorem of existence and uniqueness of solutions of impulsive differential systems (see [5,6]
for details), we can write
_y ¼ dy
dt
¼ @h
@x

dx
dt
¼ Lf hðxðtÞÞ þ LghðxðtÞÞudðt � spÞ:
If hdhðxÞ; gðxÞi ¼ LghðxÞ – 0, it is easy check that y is no longer differentiable at sp for any nonzero u.
(ii)) (iii). Now, we wish to determine the number of impulses for reaching a dense subset in R, as a matter of fact that

d0ðyÞ ¼ 1. In the interval ½0; s1½, where s1 is a control instant and 0 < s1 < s2, no impulse control is applied and yðtÞ ¼ hðxðtÞÞ
is the free response. At t ¼ s1, an impulse is applied and the output becomes yðsþ1 Þ ¼ hðxðs1ÞÞ þ Lghðxðs1ÞÞu1. As the ampli-
tude of u1 is free, then only one impulse is required so that Y1 contains a locally dense set of values in R.

Case d0 ¼ 2. (i)) (ii). At t ¼ sp, As d0 ¼ 2, then hdhðxÞ; gðxÞi ¼ 0, and the first and second time derivatives of y are

_y ¼ dy

dt
¼ Lf hðxðtÞÞ; ð17Þ

yð2Þ ¼ dð2Þy
dtð2Þ

¼ @Lf h
@x

dx
dt
¼ @Lf h

@x
ðf ðxðtÞÞ þ gðxðtÞÞudðt � spÞÞ; ð18Þ

¼ L2
f hðxðtÞÞ þ LgLf hðxðtÞÞudðt � spÞ: ð19Þ
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If hdLf hðxÞ; gðxÞi ¼ LgLf hðxÞ– 0, then y is not differentiable at sp. Otherwise, y is again differentiable, and we can conclude
that d0ðyÞ > 2.

(ii)) (iii). Consider the intervals ½0; s1½ and ½s1; s2½ in order to find the number of impulses required so that Y2 contains a
dense subset in R2. In the first interval, we get
y ¼ hðxðtÞÞ; _y ¼ Lf hðxðtÞÞ; yð2Þ ¼ L2
f hðxðtÞÞ: ð20Þ
At t ¼ s1, the impulse u1 is applied and the output y and its first time derivative _y are
yðsþ1 Þ ¼ hðxðs1ÞÞ; ð21Þ
_yðsþ1 Þ ¼ Lf hðxðs1ÞÞ þ LgLf hðxðs1ÞÞu1: ð22Þ
Since the output y is not affected by u1, so just one impulse is not enough to reach a locally dense set in R2. In the next inter-
val ½s1; s2½, we get
yðtÞ ¼ hðxðs1ÞÞ þ LgLf hðxðs1ÞÞu1ðt � s1Þ; ð23Þ
_yðtÞ ¼ Lf hðxðs1ÞÞ þ LgLf hðxðs1ÞÞu1; ð24Þ
yð2ÞðtÞ ¼ L2

f hðxðtÞÞ: ð25Þ
At t ¼ s2, a second impulse is applied and
yðsþ2 Þ ¼ hðxðs2ÞÞ þ LgLf hðxðs1ÞÞu1ðs2 � s1Þ; ð26Þ
_yðsþ2 Þ ¼ Lf hðxðs2ÞÞ þ LgLf hðxðs1ÞÞu1 þ LgLf hðxðs2ÞÞu2: ð27Þ
From Eqs. (26) and (27), we can conclude that it is just required to apply only two impulses so that Y2 contains a locally
dense set of values in R2.

Case d0 ¼ r. (i)) (ii). Continuing in this way, at some control instant t ¼ sp, when we set d0 ¼ r, then y is differentiable r
times (i.e. yðr�1Þ exits), and hdLr�1

f hðxÞ; gðxÞi– 0.
(ii)) (iii). For sr 6 t < srþ1, and r ¼minfj j LgLj�1

f – 0g, at t ¼ sr , when r impulses have been already applied, it is possible
to find r equations for the r unknowns ur in the space spanned by fy; _y; . . . ; yðr�1Þg, namely
yðr�1Þðsþr Þ ¼ Lr�1
f hðxðsrÞÞ þ LgLr�1

f hðxðs1ÞÞu1 þ � � � þ LgLr�1
f hðxðsrÞÞur;

yðr�2Þðsþr Þ ¼ Lr�2
f hðxðsrÞÞ þ LgLr�1

f hðxðs1ÞÞðsr � s1Þu1 þ � � � þ LgLr�1
f hðxðsr�1ÞÞðsr � sr�1Þur�1;

..

.

yð1Þðsþr Þ ¼ Lf hðxðsrÞÞ þ LgLr�1
f hðxðs1ÞÞ

ðsr � s1Þr�2

r � 2
u1 þ � � � þ LgLr�1

f hðxðsr�1ÞÞ
ðsr � sr�1Þr�2

ðr � 2Þ! ur�1;

yðsþr Þ ¼ hðxðsrÞÞ þ LgLr�1
f hðxðs1ÞÞ

ðsr � s1Þr�1

ðr � 1Þ! u1 þ � � � þ LgLr�1
f hðxðsr�1ÞÞ

ðsr � sr�1Þr�1

ðr � 1Þ! ur�1:

ð28Þ
In other words, if Eqs. (28) are seen as a linear algebraic system Au ¼ B, where u ¼ ðu1;u2; . . . ;urÞ0, then the matrix A
A ¼

LgLr�1
f hðs1Þ � � � LgLr�1

f hðsr�1Þ LgLr�1
f hðsrÞ

LgLr�1
f hðs1Þðsr � s1Þ � � � LgLr�1

f hðs1Þðsr � sr�1Þ 0

..

. . .
. ..

. ..
.

LgLr�1
f hðs1Þ ðsr�s1Þr�2

ðr�2Þ! � � � LgLr�1
f hðs1Þ ðsr�sr�1Þr�2

ðr�2Þ! 0

LgLr�1
f hðs1Þ ðsr�s1Þr�1

ðr�1Þ! � � � LgLr�1
f hðsr�1Þ ðsr�sr�1Þr�1

ðr�1Þ! 0

0
BBBBBBBBB@

1
CCCCCCCCCA
has determinant
detA ¼ ð�1ÞrQr�1
i¼1 i!

Yr

j¼1

LgLr�1
f hðxðsjÞÞ

Yr

k¼jþ1

ðsj � skÞ
" #

ð29Þ
different from zero. As a result, the number of impulses required so that Yr contains a locally dense subset of Rr is equal to r.
In particular, if for any r 2 N; hdLr�1

f hðxÞ; gðxÞi always is identically zero then we will say that the impulsively relative de-
gree will be d0 ¼ 1 and a locally dense subset of Rr does not exist. h

Note that if LgLk
f hðxÞ ¼ 0; 8 k P 0 then the output of the system is not affected by the input for all t. As a matter of fact, the

previous calculations show that at the point t ¼ sp, the output has the form yðtÞ �
P1

i¼1ðL
i
f hðxð0ÞÞ ti

i!Þ, i.e the output is a func-
tion depending only on the initial state and not on the input.
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Lemma 1. If d0ðyÞ ¼ r <1, then dimfdh; dLf h; . . . ; dLr�1
f hg ¼ r 6 n.
Proof. If dimfdh;dLf h; . . . ;dLr�1
f hg < r, then 9j j dLj

f h ¼
Pj�1

i¼0aidLi
f h, and 8k P j dLk

f h ¼
Pj�1

i¼0
~aidLi

f h. By item ðiiÞ of the Propo-
sition 1, the inner product hdLi

f hðxÞ; gðxÞi ¼ 0 for all i ¼ 1; . . . ; j� 1, and 8k P 0 we get that hdLk
f hðxÞ; gðxÞi ¼ 0. As a result, the

impulsively relative degree d0ðyÞ is infinite, which stands in contradiction. Now, as the dimension of the matrix
½dh;dLf h; . . . ;dLr�1

f h�0 ¼ n� r, then dimfdh;dLf h; . . . ;dLr�1
f hg 6 n. h
Lemma 2. If the impulse relative degree d0ðyÞ > r then dh is orthogonal to the involutive closure of fg; adf g; . . . ; adr�1
f gg.
Proof. From Proposition 1, when d0ðyÞ > 1, we get that hdh; gi ¼ 0, then dh is orthogonal to g. Now, 8y such that d0ðyÞ > 2,
hdLf h; gi ¼ hLf dh; gi; ð30Þ
by the Leibniz’s rule property [7]
hLf dh; gi ¼ Lf hdh; gi � hdh; adf gi: ð31Þ
Since d0
> 2, the last equation becomes hdh; adf gi ¼ �hLf dh; gðxÞi ¼ 0. As a consequence, dh is orthogonal to adf g. Since dh is

an exact differential then dy is orthogonal to the involutive closure of fg; adf gg (see [7] for more details).
Again, for any y ¼ hðxÞ such that d0ðyÞ > 3, applying the Leibniz’s rule property in the following inner product, we get
hdL2
f h; gi ¼ hLf dLf h; gi ¼ �hdLf h; adf gi þ Lf hdLf h; gi: ð32Þ
Since hdLf h; gi ¼ 0 and once more using the Leibniz’s rule property in the left-hand side of the last equation
hdL2
f h; gi ¼ �Lf hdh; adf gi þ hdh; ad2

f gi; ð33Þ
and by the fact that hdL2
f h; gi, and dh; adf g


 �
are zero, dh is orthogonal to ad2

f g. As dh is an exact differential, then dh is orthog-

onal to the involutive closure of fg; adf g; ad2
f gg.

Continuing in this way, it is easy to show that for any y ¼ hðxÞ such that d0ðyÞ > r; dh is orthogonal to the involutive

closure fg; adf g; . . . ; adr�1
f gg. h

So far, a fully description of the impulse relative degree has been developed. Summarizing, if system (1) has impulse rel-
ative degree d0ðyÞ equal to r, then the output y is affected by the single-input after at least the r-th impulse.

Definition 4. The function y is said to be an autonomous element of system (1) if d0 ¼ 1.
Definition 5. The system (1) is said impulsively accessible if there is no autonomous element.
Based on the notions explained above, a useful criterion for characterizing the accessibility property in ICS can be claimed,

namely.

Theorem 2. The system (1) satisfies the accessibility condition if
dimfg; adf g; . . . ; adn�1
f gg ¼ n: ð34Þ
Proof. It follows from Lemma 1 and Lemma 2. h
4. Impulsive linearizing control

One of the main purposes of checking accessibility is the analysis and the design of a impulsive feedback control law for
nonlinear ICS. The objective of this section is to show how an accessible single input–output nonlinear ICS can be trans-
formed into a linear system at control instants t ¼ sk; k ¼ 1;2; . . . :; p by means of a suitable change of coordinates in the
state space, and an impulsive state feedback. Specific tools are developed for the class of nonlinear ICS.

Problem Statement. Given system (1), m ¼ 1, and a controllable pair ðA;BÞ find if possible, a diffeomorphism z ¼ UðxÞ and
an impulsive state feedback uðskÞ ¼ aðxðskÞÞ þ bðxðskÞÞvðskÞ, where vð�Þ 2 R, and k 2 N, so that the trajectory zðtÞ of the
closed-loop system coincides with the trajectory pðtÞ of the linear ICS
_pðtÞ ¼ ApðtÞ; t – sk;

DpðskÞ ¼ BvðskÞ; k 2 N;

�
ð35Þ
at each t ¼ sk; 8 k 2 N.

Theorem 3. The impulsive state space linearization via feedback at each t ¼ sk problem is solvable if and only if the following
conditions are satisfied
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(i) the distribution fg; adf g; . . . ; adn�2
f gg has dimension n� 1, and

(ii) the distribution ðg; adf g; . . . ; adn�1
f gÞ has dimension n.
Proof. Necessity: from (35), the necessary condition (ii) is fulfilled as accessibility is unchanged under feedback, then from

Theorem 2, the dimension of the distribution ðg; adf g; . . . ; adn�1
f gÞ is n. On the other hand, dU1ðxÞ is orthogonal to

fg; adf g; . . . ; adn�2
f gg, thus dimfg; adf g; . . . ; adn�2

f gg 6 n� 1. From (35), we get
dU1ðxÞ ? fg; adf g; . . . ; adn�2
f gg ð36Þ

dU2ðxÞ ? fg; adf g; . . . ; adn�3
f gg ð37Þ

..

.
ð38Þ

dUn�1ðxÞ ? fgg: ð39Þ
As the following sequence of involutive distributions
fgg � fg; adf gg � � � � � fg; adf g; . . . ; adn�2
f gg ð40Þ
increases its dimension of one unit only, then condition (i) is satisfied.
Sufficiency: Conversely, suppose that conditions (i) and (ii) are satisfied, then pick dh orthogonal to fg; adf g; . . . ; adn�2

f gg,
and set y ¼ hðxÞ. Thus, from item (i), d0ðyÞ ¼ n. Now, define UiðxÞ ¼ Li�1

f hðxÞ, with L0
f hðxÞ ¼ hðxÞ; i ¼ 1; . . . ;n, the dynamics of

ziðtÞ follows easily,
_z ¼ dz1

dt
¼ z2ðtÞ; _zn�1 ¼

dzn�1

dt
¼ znðtÞ: ð41Þ
Notice that zi coincides with pi with the exception of the last component zn. Its dynamics turned to one more physically real-
izable form is
_zn ¼ Ln
f hðxðtÞÞ þ LgLn�1

f hðxðtÞÞUðskÞ: ð42Þ�

with UðskÞ ¼

0; t – sk

uðskÞ; t ¼ sk
.

For any t 2�sk; skþ1½; _zn ¼ Ln
f hðxðtÞÞ is still nonlinear, but at each sk,
_znðskÞ ¼ Ln
f hðxðskÞÞ þ LgLn�1

f hðxðskÞÞuðskÞ ð43Þ
can be transformed into a linear form. If on the right-hand side of Eq. (43), xðskÞ is replaced by xðskÞ ¼ U�1ðpðskÞÞ, and the
following impulsive state feedback control law is chosen
uðskÞ ¼
1

aðpÞ ð�bðpÞ þ vÞ ¼ 1
LgLn�1

f hðskÞ
ð�Ln

f hðskÞ þ vðskÞÞ;

aðpÞ ¼ LgLn�1
f hðU�1ðpððskÞÞÞÞ; bðpÞ ¼ Ln

f hðU�1ðpððskÞÞÞÞ;
ð44Þ
_zn becomes equal to vðskÞ. As a result, the trajectory zðtÞ of the closed-loop system coincides with the trajectory pðtÞ of the
linear ICS
_pðtÞ ¼ ApðtÞ; t – sk;

DpðskÞ ¼ BvðskÞ; k 2 N;

�
ð45Þ
0 1 0 � � � 0
0 0 1 � � � 0

0
BB

1
CC

0
0

0
BB

1
CC
where A ¼ ..
. ..

. ..
. . .

. ..
.

0 0 0 � � � 1
0 0 0 � � � 0

BB@ CCA and B ¼ ..
.

0
1

BB@ CCA, at each t ¼ sk.
From Theorem 1, the linear ICS obtained (45) is controllable. h

Notice the linear ICS (45) is a virtual system that is only useful to design a new linear feedback controls, like for an in-
stance vðskÞ ¼ KpðskÞ, with K ¼ ðk1; . . . ; knÞ chosen in order to assign a specific set of eigenvalues (see the pole-place problem
for linear ICS developed in [6]), or satisfy an optimality criterion.

5. Impulsive HIV dynamics

Several nonlinear models have been developed to describe the dynamics of HIV-1 virus which take into account the
kinetics of HIV infection with different cells populations e.g. macrophages, CTL cells, latently infected CD4 T cells as well
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the inclusion the lymphoid compartments in their models [15,14]. However, for the control and parameter estimation based
on clinical data purposes, the dynamics of the infection can be modeled by relatively simple ordinary differential equations
for the interactions of healthy CD4 + cells ðTÞ, infected CD4 + cells ðyÞ, free viruses ðzÞ [11,12].

In this paper, the ‘3D model’ (defined by T; y; z) is modified in order to incorporate the interaction of the intake of drugs
and its concentration in blood according to the notions of pharmacokinetics and pharmacodynamics described in [17,11].
Consequently, the resulting impulsive model is:
_xðtÞ ¼ �dxðtÞ � bðxðtÞ þ T0ÞzðtÞ;

_yðtÞ ¼ bðxðtÞ þ T0ÞzðtÞ � lyðtÞ; t – sk;

_zðtÞ ¼ 1� wðtÞ
wðtÞþw50

� �
kyðtÞ � czðtÞ;

_wðtÞ ¼ �KwðtÞ;

DwðskÞ ¼ uðskÞ; k 2 N;

8>>>>>>>>>><
>>>>>>>>>>:

ð46Þ
where healthy CD4 cells x ¼ T � T0 (T0 ¼ s=d is an equilibrium) are produced from the thymus at a constant rate s and die
with a half life time equal to 1

d. The healthy cells are infected by the virus at a rate that is proportional to the product of their
population and the amount of free virus particles. The proportionality constant b is an indication of the effectiveness of the
infection process. The infected CD4 + cells (y) result from the infection of healthy CD4 cells and die at a rate l. Free virus
particles (z) are produced from infected CD4 cells at a rate k and die with a half life time equal to 1

c.
The problem of drug administration is classically divided into two phases, a so-called pharmacokinetics (PK) phase that is

related to dosage, frequency and route of drug administration in the body, and a pharmacodynamics (PD) phase that is re-
lated to the concentration of drugs at the site of action to the magnitude of the effect produced (see [11] for more details).
Mathematically, these phases are modeled by _wðtÞ ¼ �KwðtÞ þ udðt � skÞ, and g ¼ wðtÞ

wðtÞþw50
, respectively. The parameter w50

represents the concentration of drug that lowers the viral load by 50%, and the parameter g is the efficacy of an anti-HIV
treatment (in general a cocktail drugs of RT and P inhibitors). However, only Zidovudine therapies will be considered.
Although available pharmacokinetics and pharmacodynamics drug parameters are usually evaluated in vitro, the in vivo
parameters for Zidovudine given in [17] are used in this work.

5.1. Accessibility characterization of HIV dynamics

In this section, the results about accessibility are applied to the impulsive HIV dynamics (46). The impulse relative degree
is calculated based on the physical output h ¼ xþ T0 þ y, and using Theorem 2, it is shown that the model (46) satisfies the
accessibility condition.

So, applying the condition (ii) of Proposition 1, we get
hdhðxÞ; gðxÞi ¼ @hðxÞ
@x

gðxÞ ¼ 1 1 0 0ð Þ 0 0 0 1ð Þ0 ¼ 0;

hdLf hðxÞ; gðxÞi ¼ LgLf hðxÞ ¼ �d �l 0 0ð Þ 0 0 0 1ð Þ0 ¼ 0;

hdL2
f hðxÞ; gðxÞi ¼ LgL2

f hðxÞ ¼

d2 þ ðd� lÞbz

l2

ðd� lÞbx

0

0
BBBBBBB@

1
CCCCCCCA

0 0

0

0

1

0
BBBBBBB@

1
CCCCCCCA
¼ 0;

hdL3
f hðxÞ; gðxÞi ¼ LgL3

f hðxÞ ¼

@L3
f hðxÞ
@x

@L3
f hðxÞ
@y

@L3
f hðxÞ
@z

@L3
f hðxÞ
@w

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

0 0 0 1ð Þ0;

hdL3
f hðxÞ; gðxÞi ¼ � bkðd� lÞðxþ T0Þw50y

ðwþw50Þ2
– 0:

ð47Þ
From Eq. (47), we can conclude that the impulse relative degree is d0ðyÞ ¼ 4, as a matter of fact hdL3
f hðxÞ; gðxÞi– 0 for any

y > 0 and d – l, i.e the impulsive input affects the output hðxÞ ¼ xþ T0 þ y after at least the 4-th impulse, therefore hðxÞ
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is not an autonomous element of system (46). However, this adds a constraint in the reachable space, which becomes the
strictly positive subspace of R4. Now, from Theorem 2, we obtain
adf g ¼ @g
@x

f � @f
@x

g ¼

0

0

0

0

0
BBBB@

1
CCCCA�

0

0
�kw50y
ðwþw50Þ2

�K

0
BBBBB@

1
CCCCCA ¼

0

0
kw50y
ðwþw50Þ2

K

0
BBBBB@

1
CCCCCA;

ad2
f g ¼ @adf g

@x
f � @f

@x
adf g ¼

bkw50ðxþT0Þy
ðwþw50Þ2

�bkw50ðxþT0Þy
ðwþw50Þ2

2kKw50wy
ðwþw50Þ3

þ kw50ððKþcÞyÞþ _yÞ
ðwþw50Þ2

K2

0
BBBBBBB@

1
CCCCCCCA
;

ad3
f g ¼

@ad2
f g

@x
f � @f

@x
ad2

f g ¼

a1ðxÞ
�a1ðxÞ
a3ðxÞ

K3

0
BBBB@

1
CCCCA;

a1ðxÞ ¼
bkw50

ðwþw50Þ2
fðdT0yþ cðT0 þ xÞyþ 2 _yÞðwþw50Þ þ ðT0 þ xÞ þ Kð5wþw50Þyg;

a3ðxÞ ¼
�6kK2w2w50y

ðwþw50Þ4
þ bk2ðT0 þ xÞw2

50y

ðwþw50Þ3
þ kw50

ðwþw50Þ2
fb _xzþ ðc2 þ cK þ K2Þy

þ ð2c þ K � lÞ _yþ bðT0 þ xÞ _zg;det g; adf g; ad2
f g; ad3

f g
� �

¼ �b2k3w3
50ðd� lÞðT0 þ xÞ2y3

ðwþw50Þ6
: ð48Þ
Eq. (48) shows that the dimension of dimfg; adf g; ad2
f g; ad3

f gg is equal to 4 for any y > 0 and d – l. As a result, the subspace
R4
þ is accessible.

5.2. Impulsive control of HIV dynamics

The aims of a standard therapy for a patient of HIV normally are [20]:

� The decrease of the viral load ðzÞ by 90% of its initial value within 2–8 weeks of treatment.
� The drop of the viral load under the undetectability level (50 copies/ml) in six months of treatment maximum.
� The increase of the CD4 cells from its initial value to a neighborhood of its healthy equilibrium value T0 ¼ s

d.

The parameters of the impulsive model of HIV dynamics and its initial conditions used in simulations are the nominal values
described in [11,12,17] and they can be seen in Table 1.
Table 1
Parameters and initial conditions used for simulations.

Parameter Nominal value

s ðcells mm�3 day�1Þ 9

d ðday�1Þ 0.009

b (mlcopies�1 day�1Þ) 4� 10�6

l ðday�1Þ 0.3

k ðcopies cells�1 mm�3 ml�1 day�1Þ 80

c ðday�1Þ 0.6

K ðday�1Þ 8.4

X50 ðmgÞ 89.6

Initial condition Value
Tð0Þ (cells mm�3) 750

yð0Þ (cells mm�3) 34

zð0Þ (copies ml�1) 2800

wð0Þ (mg) 350
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Fig. 2. Evolution of CD4 cells for the impulsive and continuous feedback control.

Fig. 3. Viral load behavior under impulsive and continuous feedback control strategies.
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The conditions (i) and (ii) of Theorem 3 are fulfilled by the impulsive model of HIV dynamics (46) as it is shown in Sub-
section 5.1, then it is possible to apply the impulsive control strategy described in Section 4. Next, the diffeomorphism UðxÞ
and the impulsive state feedback uðskÞ are computed for HIV dynamics, namely
z1ðtÞ ¼ hðxÞ ¼ xþ T0 þ y; ð49Þ
z2ðtÞ ¼ Lf hðxÞ ¼ �dx� ly; ð50Þ
z3ðtÞ ¼ L2

f hðxÞ ¼ d2xþ ðd� lÞbðxþ T0Þzþ l2y; ð51Þ
z4ðtÞ ¼ L3

f hðxÞ ¼ bðd� lÞðxþ T0Þ _zþ ðd2 þ bðd� lÞzÞ _xþ l2 _y; ð52Þ
and
aðxÞ ¼ LgL3
f hðxÞ ¼ � bkw50ðd� lÞðxþ T0Þy

ðwþw50Þ2
; ð53Þ

bðxÞ ¼ L4
f hðxÞ ¼ bkðd� lÞðxþ T0Þw50ð _yðwþ X50Þ þ KwyÞ

ðwþw50Þ2
þ�l3 _yþ _x bl2zþ bðd� lÞ _z� ðdþ bzÞðd2 þ bðd� lÞzÞ

� �
þ _zð�bðd� lÞð� _xþ ðxþ T0Þðc þ dþ lþ bzÞÞÞ: ð54Þ
For comparison purposes a continuous feedback control based on exact linearization [11] was applied using the ‘3D
model’ of HIV dynamics. In Figs. 2,3, the time evolution of the CD4 cells T and viral load z is depicted for both impul-
sive and continuous feedback therapies after suitable pole placement in both cases. Clearly, the clinical conditions of
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an anti-HIV therapy imposed before are fulfilled by both strategies, but the 3D model is far from being implemented
because of its lack of pharmacokinetics and pharmacodynamics knowledge. In the graphic inside Fig. 3, we can observe
the influence on the impulsive input exerted in the states. In spite that the viral load z remains—continuous, it is not
differentiable.

In Fig. 4, the impulsive state feedback trajectory and the evolution of drug concentration w are plotted. The medication
(uðskÞmg) is an intake twice per day. The sudden jumps in wðtÞ due to the impulsive input at each sk can be seen in the gra-
phic inside this figure. One major advantage of this control scheme is its ability to minimize the viral load by the means of a
time-varying dosage. This means that no full dosage is needed all the time.

6. Conclusions and perspectives

In this paper, the notions of impulse relative degree and accessibility for nonlinear ICS were introduced and explained in
detail. Besides, it was shown that at each control instant t ¼ sk there is a diffeomorphism depending on the states and an
impulsive feedback so that the nonlinear ICS can be transformed into a linear one. The theoretic results were applied to
the impulsive model of HIV dynamics.

The accessibility was fully characterized based on the physical interpretation of ‘the number of impulses required’ sug-
gested by [19] in linear ICS. Thus, the impulse relative degree d0ðyÞ is defined to represent this interpretation, and Proposition
1 is proposed as a simple way to compute it. After that, Lemma 1 and Lemma 2 are stated in order to establish Theorem 2
about accessibility for nonlinear ICS.

Sufficient and necessary conditions were provided to guarantee that at each control instant, a nonlinear ICS system can be
transformed into a linear one by means of a suitable impulsive feedback control law. This result is summarized in Theorem 3,
and allows the design of a realistic dosage regimen directly in mg of drug which drives the system near the healthy equilib-
rium state. This control approach is novel and represents the real situation of the control of HIV infection in a better way.

The analysis and control of nonlinear ICS remains being an open field of study. When describing basic properties of con-
trol theory such as controllability/accessibility, observability, among others for nonlinear ICS, the lack of more theoretic re-
sults is evident. About observability in ICS, there are questions such as the frequency of impulses required to identify
parameters and to estimate states need to be studied. This subject will be explore in future works.
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