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We derive an induced Abelian Chern-Simons (CS) term in 2þ 1 dimensions, by dimensional reduction
from the finite-temperature theory of a Dirac field with both vector and axial-vector couplings to two
Abelian gauge fields, in 3þ 1 dimensions. In our construction, the CS term emerges for the lowest
Matsubara mode of the vector Abelian field, by integrating the fermionic field, under the assumption that
the axial-vector field is in a “vacuum” configuration. This configuration is characterized by a single
number, which in turn determines the coefficient of the induced CS term for the Abelian vector field.
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I. INTRODUCTION

Quantum field theories in 2þ 1 dimensions have some
features that make them an important subject of research,
with great relevance both in theoretical developments and
phenomenological applications. Among the latter, besides
the celebrated condensed matter models involving planar
systems, we should also mention the dimensional reduction
at high temperatures in some high energy physics systems,
typically, Yang-Mills theories [1], in the context of
hot QCD.
Among the most characteristic properties of these

theories, one of them shows up when considering gauge
invariant systems, since they allow for the construction of a
local, topological, and gauge-invariant functional of the
gauge field, which breaks parity: the Chern-Simons (CS)
term.1 Unlike what happens in 3þ 1 dimensions, parity is
understood, in the 2þ 1 dimensional context, to corre-
spond to the reflection of just one of the two spatial
coordinates (changing both coordinates has unit determi-
nant: it is a rotation in π).
It has been realized some time ago that the CS term may

appear in a system as a relic of the integration of matter
degrees of freedom which break parity explicitly; indeed,
this was first realized when evaluating the effective action
for a massive Dirac field coupled to a gauge field [3], since
the mass term in 2þ 1 dimensions breaks parity. One of the

terms appearing in the effective action for the gauge field is
parity breaking and becomes a CS term when the mass of
the fermion tends to infinity. It has moreover been realized
that an explicit breaking is not required, since a quantum
breaking is unavoidable, leading to a properly called parity
anomaly [4–6]. The induced CS term and related objects
have been subsequently studied in many different contexts
[7] and from novel standpoints [8–11].
As originally pointed out in a well-honored work by

Deser, Jackiw, and Templeton [3], one of the motivations to
study the d ¼ 3 dimensional Chern-Simons (CS) action is
that it leads to a topological mass term for the gauge field,
which could possibly be connected with the high-temper-
ature limit of a d ¼ 4 quantum field theory. This could
result in a mass generation for the resulting effective
Halmiltonian, as analyzed by Weinberg [12].
A recent work Pisarski [13] comes back to the possibility

that the topological CS mass term may in fact provide the
correct infrared regulation at high temperatures exposing
doubts concerning the possibility that a theta term θF̃F in a
d ¼ 4 high-temperature gauge theory could be at the origin
of such phenomenon.
In the present work, we follow a different strategy to

connect the Chern-Simons action in 2þ 1 spacetime dimen-
sions by dimensional reduction from a finite-temperature
3þ 1 dimensional theory, namely, Dirac field theory with
vector and axial-vector couplings to two external Abelian
gauge fields, in 3þ 1 dimensions.
The dimensional reduction is implemented here under two

assumptions about the gauge fields: the axial field is assumed
to be in a vacuum state, while the vector one belongs to the
lowest, zero Matsubara frequency configuration.
The structure of this paper is as follows: in Sec. II, we

introduce a 3þ 1 dimensional theory and the assumptions
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we make before evaluating its effective action. Then, in
Sec. III, we evaluate the imaginary part: the induced CS
term. The real part of the effective action is briefly
discussed in Sec. IV. In Sec. V, we present our conclusions.

II. THE SYSTEM

We consider a massless Dirac field in 3þ 1 dimensions,
at a finite temperature T, endowed with vector and axial-
vector couplings to external Abelian gauge fields Aμ and
Bμ, respectively. These fields are assumed to belong to
some specific classes below, but we first introduce them as
if they were arbitrary, for the sake of clarity. With this in
mind, the Euclidean action S of the system, in the
Matsubara formalism, is given by the expression

Sðψ̄ ;ψ ;A;BÞ¼
Z

β

0

dτ
Z

d3xψ̄ðτ;xÞð∂þ i=Aþ iBγ5Þψðτ;xÞ;

ð1Þ

where τ is the Euclidean time, and we use conventions
whereby the Boltzmann constant kB ≡ 1, so that β ¼ 1

T.
Spacetime coordinates are denoted by xμ, μ ¼ 0, 1, 2, 3,
such that x0 ≡ τ, and x≡ ðx1; x2; x3Þ, where xi (i ¼ 1, 2, 3)
are the spatial Cartesian coordinates.2 On the other hand,
Dirac’s matrices γμ are Hermitian and satisfy the relations
fγμ; γνg ¼ 2δμν, while γ5 is given by γ5 ¼ γ0γ1γ2γ3 ¼ γ†5.
We are interested in extracting the parity-breaking part of

the effective action ΓðA; BÞ due to the Dirac field quantum
fluctuations,

e−ΓðA;BÞ ¼
Z

DψDψ̄e−Sðψ̄ ;ψ ;A;BÞ: ð2Þ

In the Matsubara formalism, the fermionic fields are
antiperiodic in the imaginary time interval, namely,

ψðτ þ β; xÞ ¼ −ψðτ; xÞ; ψ̄ðτ þ β; xÞ ¼ −ψ̄ðτ; xÞ; ð3Þ

while bosonic ones, in particular, the gauge fields, are
periodic,

Aμðτ þ β; xÞ ¼ Aμðτ; xÞ; Bμðτ þ β; xÞ ¼ Bμðτ; xÞ: ð4Þ

As a consequence, when considering the set of allowed
vector and axial-vector gauge transformations,

ψðτ; xÞ→ e−iΩAðτ;xÞψðτ; xÞ; ψ̄ðτ; xÞ→ eiΩAðτ;xÞψ̄ðτ; xÞ;
Aμðτ; xÞ→ Aμðτ; xÞ þ ∂μΩAðτ; xÞ ð5Þ

and

ψðτ;xÞ→e−iΩBðτ;xÞγ5ψðτ;xÞ; ψ̄ðτ;xÞ→ ψ̄ðτ;xÞe−iΩBðτ;xÞγ5

Bμðτ;xÞ→Bμðτ;xÞþ∂μΩBðτ;xÞ; ð6Þ

respectively, the functions ΩA;B must be required to satisfy

ΩA;Bðβ; xÞ ¼ ΩA;Bð0; xÞ þ 2πnA;B; ð7Þ

where nA and nB are integers, which label the respective
winding numbers of the large gauge transformations.
To date, no restriction about the gauge-field configura-

tions has been implemented; let us now make them more
explicit. First, since we have in mind the high-temperature
regime, and the field is periodic, we can invoke the usual
decoupling of the lowest mode. Indeed, in the Matsubara
Fourier expansion of Aμ,

Aμðτ; xÞ ¼ β−
1
2

Xþ∞

n¼−∞
e
2nπi
β AðnÞ

μ ðxÞ; ð8Þ

we keep just the n ¼ 0 mode, since the remaining ones
have masses which increase with temperature: Aμðτ; xÞ∼
AðnÞ
μ ðxÞ≡ AμðxÞ. Note that this produces four space-

dependent components; we add the further constraint of
having a space-independent A0. An alternative way of
characterizing this is to say that we only keep purely
magnetic (static) field configurations: the simplest non-
trivial one allowing for the existence of a reduced (non-
trivial) effective action. Note that the time component of Aμ

may be assumed to depend on τ, what is gauge equivalent
to a constant field.
The axial field, on the other hand, is assumed to be a

vacuum configuration (vanishing electric and magnetic
fields), since we are using it just as a seed to produce
parity breaking in the reduced theory. As mentioned in [14],
a vacuum gauge field configuration corresponds to no
spatial components and a time-dependent temporal com-
ponent. This is consistent with assuming a Maxwell action
for that field and looking for its lowest action configuration.
Therefore, the class of configurations that we consider

may be characterized as follows:

∂jA0 ¼ 0; ∂jB0 ¼ 0;

∂0Aj ¼ 0; Bj ¼ 0 ðj ¼ 1; 2; 3Þ: ð9Þ

III. IMAGINARY PART OF THE
EFFECTIVE ACTION

In this Section, we evaluate the imaginary part of Γ,
under the previous assumptions about the gauge field
configurations.

2Indices from the middle of the greek alphabet run over the
same range as μ, while those from the middle of the roman one
correspond to spatial coordinates and have the same range as i.
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Furthermore, A0 and B0 (that can only depend on τ) may
be rendered τ independent (constant) having, respectively,
the values Ã0 and B̃0,

A0ðτÞ → Ã0 ¼
1

β

Z
β

0

dτA0ðτÞ;

B0ðτÞ → B̃0 ¼
1

β

Z
β

0

dτB0ðτÞ; ð10Þ

by means of a gauge transformation of the fermions,

ψðτ;xÞ→ ei
R

τ

0
dτ0ðA0ðτ0Þ−Ã0Þeiγ5

R
τ

0
dτ0ðB0ðτ0Þ−B̃0Þγ5ψðτ;xÞ;

ψ̄ðτ;xÞ→ ψ̄ðτ;xÞe−i
R

τ

0
dτ0ðA0ðτ0Þ−Ã0Þeiγ5

R
τ

0
dτ0ðB0ðτ0Þ−B̃0Þ: ð11Þ

Note that this gauge transformation is “small”, i.e., con-
nected to the identity (its winding number vanishes). Under
this transformation, the axial part the gauge transformation
above does not produce a nontrivial Jacobian. Indeed,
denoting by ΩBðτÞ the parameter of that transformation,
ΩBðτÞ≡ R

τ
0 dτ

0ðB0ðτ0Þ − B̃0Þ, and

Kμ ¼
1

4π2
ϵμναβAν∂αAβ; ð12Þ

we note that the anomalous Jacobian J is

J ¼ e−i
R

β

0
dτ
R

d3xΩBðτÞ∂μKμðτ;xÞ ¼ e−i
R

β

0
dτ
R

d3xΩBðτÞ∂τK0ðxÞ

¼ e0 ¼ 1; ð13Þ

where we used the property that, for the configurations we
are dealing with, Kj ¼ 0 (j ¼ 1, 2, 3), plus the time
independence of the spatial components of Aμ. The
periodicity of ΩB for a “small” transformation is implicitly
assumed in the fact that the anomalous Jacobian is known
for transformations which do not change the boundary
conditions.
Therefore, we arrive to an equivalent (i.e., having

identical effective action) expression for the action

Sðψ̄ ;ψ ;A;BÞ ¼
Z

β

0

dτ
Z

d3xψ̄ðτ; xÞ

× ½∂ þ iγjAjðxÞ þ iγ0ðÃ0 þ B̃0γ5Þ�ψðτ; xÞ:
ð14Þ

In the expression above, the constant values of the temporal
components of the gauge fields can also be shifted by an
integer number of 2π

β . On the other hand, had we wanted to
completely decouple also the constant fields Ã0 and B̃0, we
should have performed a gauge transformation which, in
general, would have spoiled the boundary conditions,
namely, because 1

2π ½ΩA;Bðβ; xÞ −ΩA;Bð0; xÞ� ∉ Z.

Parity is explicitly broken by the presence of B, and since
the imaginary part of Γ coincides with its parity breaking
part, one can obtain the former as the odd part (under
parity) of the effective action. Note that a nonexplicit (i.e.,
anomalous) breaking of parity cannot be obtained by this
procedure, which is adamant to Bμ-independent contribu-
tions. To obtain the imaginary part of Γ, we begin from

Im½ΓðA;BÞ� ¼ ΓoddðA;BÞ

¼ 1

2

Z þB̃0

−B̃0

dB̃0

∂
∂B̃0

ΓðA; BÞ; ð15Þ

where A and B are implicitly assumed to belong to the class
we are considering here, namely, A0 ¼ Ã0, Aj ¼ AjðxÞ,
B0 ¼ B̃0, Bj ¼ BjðxÞ.
To proceed, we introduce an expansion in Matsubara

modes for the fermions,

ψðτ; xÞ ¼ β−
1
2

Xþ∞

n¼−∞
ψnðxÞe−iωnτ;

ψðτ; xÞ ¼ β−
1
2

Xþ∞

n¼−∞
ψ̄nðxÞeiωnτ; ð16Þ

obtaining an alternative form of the action with all the
modes decoupled,

Sðψ̄ ;ψ ;A;BÞ ¼
Xþ∞

n¼−∞

Z
d3xψ̄nðxÞDnψnðxÞ;

Dn ≡ =dþ iγ0ðωn þ Ã0 þ B̃0γ5Þ; ð17Þ

and =d denotes a Dirac operator in three Euclidean dimen-
sions, =d≡ γjð∂j þ iAjðxÞÞ, but built with 4 × 4 Dirac
matrices γj. We then see that

e−ΓðA;BÞ ¼ det½∂ þ iγjAjðxÞ þ iγ0ðÃ0 þ B̃0γ5Þ�

¼
Yþ∞

n¼−∞
det½=dþ iγ0ðωn þ Ã0 þ B̃0γ5Þ� ð18Þ

and

ΓðA;BÞ¼−
Xþ∞

n¼−∞
Tr log½=dþ iγ0ðωnþ Ã0þ B̃0γ5Þ�: ð19Þ

Therefore,
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ΓoddðA;BÞ ¼ −
1

2

Z þB̃0

−B̃0

dB̃0
0

×
Xþ∞

n¼−∞
Tr

�
iγ0γ5

1

=dþ iγ0ðωn þ Ã0 þ B̃0
0γ5Þ

�
;

ð20Þ

where “Tr” denotes trace over both spacetime arguments
and Dirac matrices’ indices (the latter be denoted by “tr”).
We can produce a more explicit expression,

ΓoddðA;BÞ ¼
1

2

Z þB̃0

−B̃0

dB̃0
0

Xþ∞

n¼−∞
QnðA;B0Þ; ð21Þ

where

QnðA;BÞ¼−i
Z
d3xtr

�
γ0γ5hxj

1

=dþiγ0ðωnþÃ0þB̃0γ5Þ
jxi

�
;

ð22Þ

and we have adopted Dirac’s bra-ket notation to denote
operator kernels.
Let us note that, up to this point, we have not made any

assumption about the magnitude of the temperature. From
now on, we assume that T ≫ jAjj, the spatial components
of the gauge field. The temporal components of A and B, on
the other hand, are gauge equivalent to the constants Ã0 and
B̃0 and therefore cannot be regarded as small just by
invoking a similar argument to the one used for the spatial
components. However, the fact that they are constants
allows us to treat them exactly. Indeed, we expand in
powers of Aj, since ωn ≫ Aj, ∀ n. The lowest nonvanish-
ing contribution toQn is of the second order in Aj, as it may
be seen from the vanishing of the Dirac traces for the
previous two orders.
Keeping just the second-order contribution, we see that

QnðA;BÞ ¼ i
Z
d3x tr½γ0γ5hxjGnγjAjGnγkAkGnjxi�; ð23Þ

where we have introduced the operator

Gn ¼
1

=d0 þ iγ0ðωn þ Ã0 þ B̃0γ5Þ
; =d0 ≡ γj∂j: ð24Þ

Although one could use any representation for the Dirac’s
matrices, it is rather convenient, in this calculation, to use
the chiral representation, built in terms of σ0 ≡ I2×2 and the
standard Pauli’s matrices σj,

γμ ¼
�

0 σ†μ

σμ 0

�
; γ5 ¼

�
I2×2 0

0 −I2×2

�
: ð25Þ

When used in (26), this leads to an equation which is
naturally decomposed into two terms, one for each chirality
component, which in turn involve traces of 2 × 2 matrices,

QnðA;BÞ ¼ QL
n ðA;BÞ þQR

n ðA; BÞ; ð26Þ

QL
n ðA;BÞ ¼ −

Z
d3x tr½hxjð=∇ − ωn − Ã0 − B̃0Þ−2γjAj

× ð=∇ − ωn − Ã0 − B̃0Þ−1γkAkjxi�;

QR
n ðA;BÞ ¼ −

Z
d3x tr½hxjð=∇þ ωn þ Ã0 − B̃0Þ−2γjAj

× ð=∇þ ωn þ Ã0 − B̃0Þ−1γkAkjxi�; ð27Þ

where =∇≡ σj∂j.
After some algebra, we find that Γodd may be

expressed as

ΓoddðA;BÞ

¼−
1

4

Xþ∞

n¼−∞

Z
d3xftr½hxjðð=∇−ωn − Ã0− B̃0Þ−1γjAjÞ2jxi�

þ tr½hxjðð=∇þωnþ Ã0− B̃0Þ−1γjAjÞ2jxi�
− tr½hxjðð=∇−ωn − Ã0þ B̃0Þ−1γjAjÞ2jxi�
− tr½hxjðð=∇þωnþ Ã0þ B̃0Þ−1γjAjÞ2jxi�g: ð28Þ

The structure of each term of the four terms inside the sum
over n is identical, except for a global factor, to the one of
the effective action for a massive Dirac field in 2þ 1
dimensions. The difference being the values one should use
for the respective masses, which depend on n, Ã0, and B̃0.
One sees that only the odd part in the fermion mass (of each
mode) is needed, after inserting the known 2þ 1 dimen-
sional result into (28).
Keeping just the leading terms in the corresponding

“masses” (we discuss the next to leading terms below), one
gets

ΓoddðA;BÞ ¼
i
8π

ξðÃ0; B̃0Þ
Z

d3xϵjklAjðxÞ∂kAlðxÞ; ð29Þ

where

ξðÃ0;B̃0Þ¼
X∞
n¼−∞

�
ωnþ Ã0− B̃0

jωnþ Ã0− B̃0j
−

ωnþ Ã0þ B̃0

jωnþ Ã0þ B̃0j

�
: ð30Þ

Thus, the odd part of the 3þ 1 dimensional effective action
looks like a Chern-Simons action with an effective coef-
ficient: the function ξ. This function is expressed as a series
in Matsubara frequencies space. A convenient way to
render it in a more appealing form without spoiling its
gauge transformation properties is by using Poisson sum-
mation or, in this context, Selberg’s trace formula [15].
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In this case, it amounts to replacing the series over
frequencies by another one where each term is (anti)-
Fourier transformed,

ξðÃ0; B̃0Þ ¼ −
2

π

X∞
k¼−∞

ð−1ÞkP
�
1

k

�
sinðkβB̃0Þ cosðkβÃ0Þ;

ð31Þ

where P denotes Cauchy’s principal value. In the present
context, its effectwould be to get rid of a possible contribution
from the k ¼ 0 term; however, that term vanishes by itself.
Besides, in the remaining terms, the principal value pre-
scription is irrelevant and can be removed. Then,

ξðÃ0; B̃0Þ ¼
4

π

X∞
k¼1

ð−1Þk−1 sinðkβB̃0Þ cosðkβÃ0Þ
k

¼ 2

π
fIm½logð1þ eiβðB̃0−Ã0ÞÞ�

þ Im½logð1þ eiβðB̃0þÃ0ÞÞ�g

¼ 2

π

�
arctan

�
tan

�
βB̃0 − βÃ0

2

��

þ arctan

�
tan

�
βB̃0 þ βÃ0

2

���
; ð32Þ

i.e.,

ξ ¼ 2

π

Z
β

0

dτB0ðτÞ: ð33Þ

Recalling the origin of this result, from the imaginary part of
logarithmic functions, we see that under large gauge trans-
formations with winding number equal to, say, n, thenR β
0 dτB0ðτÞwill follow thatwinding; it is an angular function.
Finally, we have, for Γodd,

ΓoddðA;BÞ¼
i

4π2

Z
β

0

dτB0ðτÞ
Z

d3xϵjklAjðxÞ∂kAlðxÞ; ð34Þ

which, we recall, has been obtained as the leading term in a
high-temperature expansion.
Note that the previous result may be written in terms

of a Chern-Simons (CS) action SCS, defined (in our
conventions) by

SCSðAÞ≡ 1

8π

Z
d3xϵjklAjðxÞ∂kAlðxÞ; ð35Þ

as

ΓoddðA; BÞ ¼ i
2

π

Z
β

0

dτB0ðτÞSCSðAÞ: ð36Þ

This is the main result of this paper, namely, that an induced
CS term emerges for the lowest (i.e., massless) Matsubara
mode of A, in the high-temperature limit. The coefficient of
that term is determined by a parameter which labels the
vacuum configurations of the B field. In the next section,
we propose a possible reason whereby a nontrivial value for
such a parameter may naturally emerge.
The previous equation relates the content of the B0-field

configuration to the coefficient multiplying the CS action.
We note that

R β
0 dτB0ðτÞmay be identified with π

2
N, with N

being the number of fermionic flavors, had the induced CS
proceeded from a 2þ 1 dimensional calculation.
We note that the next-to-leading term contribution to the

odd part of the effective action does contain an extra
derivative of the spatial components of the gauge field, so
that it has the structure,

Γsub
odd ¼ iχðÃ0; B̃0ÞSPCðAÞ; ð37Þ

where SPCðAÞ ¼ 1
4

R
d3xF2

jk, where χðÃ0; B̃0Þ is an odd
function under the a reflection in B̃0. Thus, this subleading
contribution is indeed odd (and imaginary), although it
does not contribute to the induced CS term, as it should be.

IV. REAL PART OF THE EFFECTIVE ACTION

The axial gauge field configuration has been assumed to
be in a vacuum configuration, from the point of view of its
corresponding action. Note, however, that the real part of its
effective action, for the same kind of configuration as
before, will receive quantum corrections. Besides, in the
same limit as the one used for the imaginary part, the space-
dependent part of Aj is suppressed. Thus, the real part of the
effective action may also be conveniently obtained by first
introducing the Matsubara modes for the fermions, as we
did for the imaginary part. Besides, it will be extensive, so it
is convenient to introduce the (real part of the) free energy
per unit volume, fðA; BÞ,

Re½ΓðA;BÞ� ¼ −
1

2

Xþ∞

n¼−∞
Tr logðD†

nDnÞ

¼ −VβfðA;BÞ; ð38Þ

with

fðA;BÞ ¼ β−1
Xþ∞

n¼−∞

Z
d3k
ð2πÞ3 flog½k

2 þ ðωn þ Ã0 þ B̃0Þ2�

þ log½k2 þ ðωn þ Ã0 − B̃0Þ2�g: ð39Þ

The sum over n can be performed using standard
complex variable techniques, leading to
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fðA;BÞ ¼ −
1

β

Z
d3k
ð2πÞ3 flog½coshðβkÞ þ cosðβÃ0 þ βB̃0Þ�

þ log½coshðβkÞ þ cosðβÃ0 − βB̃0Þ�g; ð40Þ

from which one can subtract its zero-temperature (i.e.,
vacuum) part in order to render it finite. Besides, looking
for extrema with respect to B̃0, we find the necessary
condition

0 ¼
Z

d3k
ð2πÞ3

�
sinðβÃ0 þ βB̃0Þ

coshðβkÞ þ cosðβÃ0 þ βB̃0Þ

�

−
sinðβÃ0 − βB̃0Þ

coshðβkÞ þ cosðβÃ0 − βB̃0Þ

��
; ð41Þ

which can be satisfied for
R β
0 dτB0ðτÞ ¼ π ðmod πÞ.

Coming back to the imaginary part in (36), this implies

ΓoddðA; BÞ ¼ 2iSCSðAÞ: ð42Þ

Wesee that corresponds to the standard result for the induced
CS term in 2þ 1 dimensions for two two-component
fields.

V. CONCLUSIONS

We have evaluated the dimensionally reduced effective
action due to a Dirac field in 3þ 1 dimensions, in the
presence of vector and axial-vector gauge fields. Under

some assumptions abut the system, namely, a vacuum
configuration for the axial one,and a purely magnetic one
for the vector field, an induced CS term appears for the
latter. The mechanism whereby this happens may be
understood as due to an unbalance, due to the axial field,
between the number of fermionic Matsubara modes having
positive and negative masses. Note that a related reduction
mechanism has been used in [16] to formulate the overlap
prescription for the Dirac operator for lattice fermions in an
odd number of dimensions, although without an explicit
breaking of parity by an external axial field. The parity
anomalous contribution, which as explained we do not
study here, was shown in [16] to correspond to a specific
prescription for the phase of the Dirac operator.
As a direction for future work, we note that it might be

possible for alternative physical mechanisms to produce an
induced CS term. Even at zero temperature, perfect con-
ductor boundary conditions on the boundaries of a compact
spatial coordinate [17] lead to an interesting 2þ 1 dimen-
sional structure, while for the Dirac field one could try
using bag model [18] (or related) conditions.
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