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Disordered hyperuniform materials with vanishing long-wavelength density fluctuations are

attracting attention due to their unique physical properties. In these systems, the large-scale

density fluctuations are strongly suppressed as in a perfect crystal, even though the system

can be disordered like a liquid. Yet, hyperuniformity can be affected by the different types of

quenched disorder unavoidably present in the host medium where constituents are nucle-

ated. Here, we use vortex matter in superconductors as a model elastic system to study how

planar correlated disorder impacts the otherwise hyperuniform structure nucleated in sam-

ples with weak point disorder. Planes of defects suppress hyperuniformity in an anisotropic

fashion: while in the transverse direction to defects the long-wavelength density fluctuations

are non-vanishing, in the longitudinal direction they are smaller and the system can even-

tually recover hyperuniformity for sufficiently thick samples. Our findings stress the need of

considering the nature of disorder and thickness-dependent dimensional crossovers in the

search for novel hyperuniform materials.
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A great number of disordered physical and biological sys-
tems are endowed with a universal hidden order char-
acterized by a macroscopically uniform density of

constituents1,2. This hidden order is the structural property of
hyperuniformity, characterized by an anomalous suppression of
large-scale density fluctuations in the system. This property is
naturally expected in a crystal, but it is also observed in a wide
variety of disordered systems, such as two-dimensional material
structures3–8, jammed particles9,10, bubbles in foam11, vortex
matter in type-II superconductors12,13, patterns of photoreceptors
in avian retinas14, biological tissues15, and even the distribution of
the density fluctuations in the early Universe16. Hyperuniform
systems present a vanishing structure factor in the infinite-
wavelength or small wavenumber q limit, namely S(q)→ 0 as
q→ 01,2. This magnitude can be directly measured via different
diffraction techniques and provides information on the fluctua-
tions of the density of constituents of the system at different
wavenumbers. Since hyperuniformity is a property defined in an
asymptotic limit, strict hyperuniformity is difficult to ascertain in
experimental as well as computer-simulated systems. Then, most
works show that the systems are effectively hyperuniform17.

This exceptional but ubiquitous state of matter presents a
phenomenology that goes against the conventional wisdom on
the effect of disorder in the physical properties of systems of
interacting objects2–4. For instance, the disorder typically lowers
the electrical conductivity of metallic materials. However, a recent
work reports that disordered hyperuniform systems present a
closing of bandgaps resulting in an enhanced conductivity5. Also,
periodic or quasiperiodic order was assumed as a prerequisite for
a material to present photonic bandgap properties. Strikingly,
disordered hyperuniform-engineered materials possess complete
photonic bandgaps blocking all directions and polarizations for
short wavelengths3,18,19. In addition, hyperuniform patterns can
be very useful in practical technological applications. For exam-
ple, hyperuniform patterns of defects can pin with high efficiency
the vortex structure nucleated in superconductors, avoiding
the undesirable dissipation that can occur in superconducting
devices20,21.

Theoretically, due to the fluctuation-compressibility theorem,
hyperuniformity may naturally emerge at thermal equilibrium in
incompressible systems with long-range repulsive interactions
between the constituents2. Nevertheless, a hyperuniform point
pattern within a higher dimensional system presenting only
short-range interactions or gradient terms at equilibrium may
also exist. Indeed, a three-dimensional vortex lattice model with
short-range repulsions and local elasticity may present hyper-
uniform two-dimensional point patterns at every plane perpen-
dicular to the vortex lines12. In general terms, this road to
hyperuniformity results from bulk-mediated effective long-range
interactions between the points in the hyperuniform pattern.

Vortex matter in superconductors is a model system to study
the occurrence of hyperuniformity in media with different types
of disorder. Vortices are elastic objects that nucleate in type-II
superconductors when applying a magnetic field. They are string-
like zones of the material that concentrate a quantized amount of
magnetic flux and interact repulsively between each other. The
competition between this repulsion and the pressure exerted by
the field results in vortices forming a structure with lattice spacing
a∝ B−1/2. The vortex structure stabilizes in solid, glassy and
liquid phases, depending on temperature, applied field, the par-
ticular material and the nature of the disorder in the
samples22–34. The nucleation of quasi-ordered and disordered
hyperuniform vortex structures has first been reported experi-
mentally in samples of the high-Tc Bi2Sr2CaCu2O8+δ with
respectively weak point and strong columnar disorder12. Later,
disordered hyperuniform vortex structures have been observed at

high fields in several superconductors presenting weak and strong
point disorder13. Hyperuniform vortex structures are theoretically
expected for media with weak point disorder since in this case the
effective interaction between vortex tips at the sample surface is
long ranged. Theoretically, a suppression of hyperuniformity is
expected for media with columnar correlated disorder12. How-
ever, in the latter case an algebraic decay of S(q) in the q→ 0
limit is detected experimentally. This apparent discrepancy
between theory and experiment is quite likely due to the viscous
freezing of the system when field-cooling from the hyperuniform
vortex liquid phase towards the low-temperature glassy vortex
phase12. In contrast, in the case of a type-II superconductor with
planar correlated defects, strong fluctuations of the vortex density
have been proposed as the fingerprint of a disordered gel of
vortices35. Thus, the nature of the disorder in the host medium
plays a determinant role on the magnitude of density fluctuations,
and thus their effect on the nucleation of hyperuniform materials
deserves further investigation.

Here we address the question of whether planar correlated
quenched disorder, even if present in a reduced region of the
sample, can ultimately affect the hyperuniform hidden order. We
use vortex matter in two different high-Tc superconductors as
model systems. In order to be reliable, these studies on long-range
vortex density fluctuations require high-resolution direct imaging
of individual vortices in extended fields-of-view with thousands of
vortices or more. Our experimental data with such a resolution
and extension are contrasted with numerical simulations of a
system of interacting elastic strings nucleated in media with the
planar disorder. We show that planes of crystal defects running
all the way through the sample thickness produce a suppression
of hyperuniformity in an anisotropic fashion. Furthermore, we
discuss how finite size effects are relevant for these observations
and how its removal in a sufficiently-thick sample can produce a
recovery of the hyperuniform hidden order in the direction
longitudinal to planar defects.

Results
Density fluctuations on large length scales in media with pla-
nar defects. A practical way to image vortex density fluctuations
on large length scales is to apply the magnetic decoration tech-
nique to take snapshots of thousands of vortices at the sample
surface. The magnetic decoration consists in producing
nanometer-size Fe clusters that are attracted towards the local
field gradient entailed by vortices on the surface of the sample36.
We decorate vortex positions at 4.2 K after field-cooling; then the
sample is warmed up to room temperature and the Fe clusters are
imaged by means of scanning electron microscopy. We investi-
gate Bi2Sr2CaCu2O8+δ and YBa2Cu3O7 high-Tc superconducting
samples as model media with planar correlated quenched dis-
order, namely domains with enhanced pinning. In the first case
we study samples with few and many planar defects separating
zones of the sample with slightly different orientations of their
c-axis37,38; in the second case we consider samples with twin-
boundaries that act as planar defects. For comparison, we study
samples of both materials with point disorder only, namely with
no planar defects as revealed by means of magnetic decoration.
See Methods for further details on the experimental techniques
and sample characterization.

Figure 1 shows images of the vortex structures nucleated in some
of the studied samples. In the case of point disorder the structure is
hexagonal whereas the planar defects induce the formation of vortex
rows oriented along the direction of defects s∥, or correspondingly q∥
in reciprocal space. These vortex rows have generally a larger density
than the average, in agreement with evidence from different imaging
and dynamic techniques37–40 that indicate that planar defects in
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both materials act as strong pinning centers for vortices. In
Bi2Sr2CaCu2O8+δ samples with few planar defects, vortex rows are
observed in a micron-sized region, and the hexagonal structure is
recovered elsewhere, see Fig. 1(b). The sample with many planar
defects was specially chosen since most vortices are aligned in vortex
rows in the whole crystal, see Fig. 1(c, d). In this sample, as also
reported in samples with few planar defects38,40, the alignment of
the rows is not altered by surface steps resulting from cleaving,
indicating the defects extend towards the bulk of the crystals. In the
case of YBa2Cu3O7, the structure is hexagonal in the untwinned
sample and vortex rows are also observed in a heavily twinned
sample, see Fig. 1(e, f).

In order to characterize the vortex density fluctuations on
extended fields-of-view, we analyze the structure factor S(q)≡
S(qx, qy) from snapshots of the vortex arrangements taken at the
surface of these samples. Figure 2 shows SðqÞ ¼ jρ̂ðqx; qy; z ¼ 0Þj2,
with ρ̂ the Fourier transform of the local vortex density
modulation at the surface of the studied samples with typical
thickness t ~ 5–30 μm41. A strong anisotropy is evident for
samples with planar defects: Fig. 2(b), (c) and (e) show lines of
local maxima in S(q) extended along the q⊥ direction (angle θ= 0)
corresponding to vortex density fluctuations transversal to planar
defects. At first sight, the intensity seems to faint on going towards
q→ 0. In the case of media with point disorder, S(q) decays
algebraically when q→ 0, as reported previously12,35, and also
shown in Fig. 3(a, b). We wonder whether in samples with planar
defects this fainting is produced by an algebraic decay in the q→ 0
limit as expected for disordered hyperuniform systems.

Figure 3 shows one of the main findings of this paper: The
suppression of effective hyperuniformity induced by the addition
of correlated planar disorder to the host medium. In samples with
planar defects, the angularly-averaged structure factor 〈S(q)〉 for
q→ 0 is larger than that for samples with point defects (for
definition of this magnitude, see Fig. 2(f) and Methods). More
significantly, 〈S(q)〉 tends to saturate in the low-q limit. This
phenomenology is observed for the two studied compounds and
for crystals presenting few or many planar defects. In contrast, in
samples of the same compounds but with point disorder,

〈S(q)〉 ~ qβ with β ≈ 1.2 when q→ 0, a signature of effective
disordered hyperuniformity.

Anisotropy in the density fluctuations on large length scales in
samples with planar defects. Here we show that in samples with
planar defects the suppression of hyperuniformity is anisotropic,
with vortex density fluctuations of greater magnitude in the q⊥
than the q∥ direction. First, we show that the saturation of the
structure factor in the q→ 0 limit is anisotropic for vortices
nucleated in samples with planar defects. Figure 3(c, d) show data
of the angular structure factor Sθ(q), for different reciprocal space
directions. Curves with black (white with black edge) points
correspond to Sθ(q) data in the transverse direction q⊥ (parallel
direction q∥), whereas color points are data for intermediate
angles. Irrespective of the direction, at low q all curves tend to
saturate, but while the color and white points form a pack of data
around ~0.02−0.03, the black curves corresponding to the
transverse modes Sθ=0(q) stand out and saturate at a value
between 2 and 10 times larger. This is better depicted in the
inserts to Fig. 3(c, d). In addition, the peaks in Sθ(q) are detected
at smaller q for θ= 0 than for 90 degree, indicating that the
average vortex spacing is smaller in the longitudinal than in the
transverse direction to planar defects.

Second, in order to better characterize this anisotropy, we
consider the one-dimensional structure factor of individual vortex
rows that is sensitive to vortex density fluctuations along the
direction of planar defects. In order to compute this magnitude,
the experimental positions of vortices in individual rows are
mapped in a straight line such that adjacent vortices are spaced a
distance ai and the coordinate of vortex i+ 1 is sik, see the
schematic representation of Fig. 4(a). The one-dimensional
structure factor of a given row is then computed as jρ̂1ðqkÞj2,
with ρ̂1 the Fourier transform of the vortex density modulation
along the line. Then, for each vortex row we calculate the average
lattice spacing in a row, a∥ ≡ 〈ai〉, and the wavenumber q∥ is
normalized by q0 ∥ ≡ 2π/a∥. Finally, we average the one-
dimensional structure factor over many rows to obtain the

Fig. 1 Magnetic decoration imaging of vortices in samples with point and planar defects. Vortices (white dots) nucleated at 30 G in Bi2Sr2CaCu2O8+δ

(a–d) and YBa2Cu3O7 (e, f) samples with point (a, e) and planar (b, c, d, f) disorder. Vortices nucleated on planar defects are seen as vortex rows with a
density in general larger than the average. Results in Bi2Sr2CaCu2O8+δ samples presenting few (b) and many (c, d) planar defects in millimeter-sized
crystals. (c) Illustration on how the planar defects extend on the bulk of the sample: The vortex rows continue in the same in-plane direction in the vicinity
of a micron-height step generated by cleaving. The s∥-s⊥ coordinate system oriented along and perpendicular to the planar defects (PD), and the
corresponding wave vectors q∥ and q⊥, are shown in some images. White scale bars correspond to 10 μm and labels indicating the dominant disorder are
shown in each case.

COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-022-00250-6 ARTICLE

COMMUNICATIONS MATERIALS |            (2022) 3:32 | https://doi.org/10.1038/s43246-022-00250-6 | www.nature.com/commsmat 3

www.nature.com/commsmat
www.nature.com/commsmat


S1(q∥) data shown in Fig. 4(b). In the q→ 0 limit the tendency to
saturation is evident: A fit of S1ðqkÞ � qβk yields β ≈ 0 within the
error for the two studied compounds.

Third, we analyze the distance-evolution of the one-
dimensional displacement correlator computed along and
perpendicular to the direction of defects, W(s∥) and W(s⊥).
These magnitudes quantify the average over the disorder of the
displacement of vortices in the s∥ or s⊥ directions with respect to
the sites of perfect chains oriented in the same directions. The
lattice spacing of the perfect chains, either a∥ or a⊥, are obtained
by averaging the separation of vortices along the considered
direction in a given row/lane of vortices, see the schematics in the
inserts to Fig. 4(c, d). In practice, we compute W(s)= 〈[u(s)
−u(0)]2〉− 〈[u(s)−u(0)]〉2, where 〈. . . 〉 is the average when
considering every vortex as the origin. u is the displacement of the
i-th vortex located at s∥(s⊥) from the i-th site of a perfect chain of
vortices with lattice spacing a∥ (a⊥) averaged in a given row(lane).

For disordered elastic systems, the displacement correlator
typically grows with distance with a roughness exponent 2ζ given
by the universality-class of the system along the considered

direction42. Figure 4(c) shows the dependence of W with s∥
averaged over tens of vortex rows and panel (d) shows the
evolution with s⊥ averaged along tens of vortex lanes. For the two
studied compounds, the data are reasonably well fitted with an
algebraic growth with exponent 2ζ ≈ 1 in both directions, at odds
with expectations for a hyperuniform system. The fits yield a
multiplicative factor A roughly three and a half times larger for
the s⊥ than for the s∥ direction. This is another proof that from
experimental evidence vortex density fluctuations are anisotropic
in media with planar defects.

Simulations of a structure of interacting elastic vortex lines in
media with planar defects. Here we gain insight on the origin of
the anisotropic vortex density fluctuations in media with planar
defects by means of Langevin dynamics simulations of vortex
lines in three dimensions with an applied field in the z-direction.
We consider a media with randomly-spaced parallel planar
defects oriented with their normal pointing along the s⊥-axis in
an orthogonal coordinate system (s⊥, s∥, z). We model Nv vortices
as elastic lines discretized in the z-direction, such that
ri(z)≡ (s⊥,i(z), s∥,i(z)) describe the two-dimensional coordinate of
vortex i at the layer z= 1, . . . , Lz with Lz the total number of
layers. Periodic boundary conditions are taken in all directions in
a system of size L⊥ × L∥ × Lz. The total energy per unit length of
the structure of elastic lines is E[{ri(z)}]= Ev+ Evv+ EPD. Each
line has an elastic tension energy given by Hook couplings of
strength k

Ev½friðzÞg� ¼ ∑
Nv

i¼1
∑
Lz

z¼1

k
2
jriðz þ 1Þ � riðzÞj2; ð1Þ

with k ¼ ϵ0=λ
2
ab a local harmonic approximation for the single

vortex elastic tension, ϵ0 � ϕ20=ð8π2λ2abÞ the interaction energy-
scale per unit length, and λab the in-plane penetration length. The
repulsive interaction energy between three-dimensional vortex-
lines derived from the London model23 is

Evv½friðzÞg� ¼ ∑
Nv

i≠j
∑
Lz

z¼1
ϵ0K0

jrjðzÞ � riðzÞj
λab

� �
; ð2Þ

with Kn(x) the nth-order modified Bessel function of the second
kind. The pinning energy due to Nd defects is modeled as
Gaussian-well channels

EPD½friðzÞg� ¼ �Apin ∑
Nd

n¼1
∑
Nv

i¼1
∑
Lz

z¼1
e
�ðs?;i ðzÞ�Xn Þ2

2ξ2
ab ð3Þ

where ξab is the in-plane coherence length, Apin the pinning
strength of the planar defects, and Xn the random positions of the
planar defects uniformly sampled along L⊥. Finite-temperature
Langevin dynamics simulations of the system are performed to
obtain equilibrated low-temperature configurations (see Meth-
ods). A snapshot of a configuration is shown in Fig. 5(a).

Figure 5(a, b) show the main results of the simulations that are
in accordance with experimental observations: (i) The Sθ(q) is
anisotropic and displays similar density fluctuations for all θ ≠ 0
directions; (ii) fluctuations in the q⊥ (θ= 0) transverse direction
are orders of magnitude larger, particularly at low q. The peak in
the transverse direction is detected at a smaller wavenumber than
in other directions, and a⊥ > a∥ is also found in the simulations.
Thus, this model of a structure of interacting elastic vortex lines
nucleated in planar defects that are in controlled positions allow
us to ascertain that the pinning generated by defects is strong
enough as to increase the vortex density inside defects above the
average. Furthermore, this model reveals that the anisotropic
suppression of hyperuniformity has origin in the interactions
allowing important vortex density fluctuations at large wave-
lengths for vortices caged in defects but also allowing for a

Bi2Sr2CaCu2O8+δδ YBaYBa22CuCu33OO77
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Fig. 2 Structure factor of vortices nucleated in type-II superconducting
samples with point and planar disorder. Data in Bi2Sr2CaCu2O8+δ samples
with (a) point disorder, (b) few and (c) many planar defects (9,200, 2,000
and 35,000 vortices). Data in YBa2Cu3O7 samples with (d) point disorder
and (e) many twin boundaries (2,300 and 4,000 vortices). The color-scale
is cuadratic (see bar) and wavenumbers are normalized by the Bragg
wavenumber q0= 2π/a with a the average distance between first-neighbor
vortices. f Schematics of the computation of the angularly-averaged 〈S(q)〉
and angular Sθ(q) structure factors: Pixels considered to obtain these
magnitudes are highlighted as a donut and an angular section, respectively.
Shown are the wave-vector q, angle θ, and the reciprocal-space directions
q∥ and q⊥.
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rarefied distribution of vortices in between defects. As discussed
in detail in the next section, by performing simulations and
analytical calculations of a simplified version of the model of Eqs.
(1), (2) and (3) we can go further in the comparison between
experiments and theory, and show that the number of layers Lz
(proportional to the sample thickness), plays a very relevant role
in assessing hyperuniformity.

Discussion
The suppression of disordered hyperuniformity in media with
planar defects can be discussed in a broader context than that of
its implications for the synthesis of hyperuniform materials. This
issue is connected to the related problem of the structural phases
stabilized in media with different types of disorder. In the case of
planar defects oriented in the direction of the magnetic flux as we
study here, the stabilization of a robust planar-glass phase is
expected43,44. In this phase, the positional correlation function is
expected to decay exponentially43,44, implying both, a displace-
ment correlator function W ~ s⊥, and a structure factor behaving
as Sθ¼0ðq ! 0Þ ¼ const≠ 0. These theoretical implications are
consistent with our experimental and theoretical findings on the
suppression of hyperuniformity in the direction transverse to
planar defects. Nevertheless, these theoretical works do not study
the vortex density fluctuations in the direction longitudinal to
planar defects nor the experimentally relevant size effects. The
saturation at a finite value in the longitudinal direction
Sθ=90(q→ 0), appreciably smaller than Sθ=0(q→ 0), is a subtle
issue. Indeed, we argue below that at low densities, the vortex
structure confined in a planar defect can be disordered hyper-
uniform provided the sample is thick enough and the confine-
ment is strong.

In order to sustain these claims, we start by highlighting some
relevant findings. First, both in experiments and simulations, the
vortex structure in samples with planar defects presents well-

defined vortex rows. Simulations also show that at low tem-
peratures most of vortex rows are parallel to planar defects.
Second, the average vortex spacing along a row is appreciably
smaller than in between rows, for instance a∥ ~ 0.7a⊥ in the
experiments. This indicates that intra-row vortex-vortex inter-
actions are stronger than inter-row ones, motivating a single-row-
based mean-field-like phenomenological approach.

Then, to further sustain our claims based in an analytical
insight of the problem, we now consider a simplified model that
captures the essential physical ingredients of the problem. We
neglect the interaction between vortex rows as well as transverse
vortex fluctuations, and model the system as a non-interacting
collection of single vortex rows with strongly localized vortices
inside a planar defect. We also neglect for the moment the effect
of quenched point disorder since it is expected to be weaker than
the planar defect pinning. The thermally-equilibrated configura-
tion of the elastic system can then be obtained analytically in the
elastic approximation by using the displacement field u1(s∥, z).
This field describes the mismatch of the planar vortex row with
respect to a perfectly periodic chain of straight vortices aligned in
the s∥-direction, see Fig. 5(c). Within this simple model, as
detailed in Methods, the large-wavelength density fluctuations at
a single layer z give a structure factor

S1ðqkÞ � q2khjû1ðqk; zÞj2i �
n0kBTffiffiffiffiffiffiffiffi
c11c44

p qk qk >
2π
lFS

n0kBT
c11t

qk <
2π
lFS

8<
: ð4Þ

where û1ðqk; zÞ is the Fourier transform of the displacement field,
c11 and c44 are the compression and tilt elastic modulii of the
planar vortex system, t is the sample thickness, and lFS is a
relevant crossover length. Assuming translation symmetry along
z, Eq. (4) implies that in real space the displacement correlator in
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shown in the main panels). Error bars represent the standard deviation of data when averaging at a given q.
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the longitudinal direction to planar defects scales as

WðskÞ �
logðskÞ sk < lFS
sk sk > lFS;

(
ð5Þ

see Methods for further details. The result of a logðskÞ roughness
is not a surprise since the system is essentially a thermally-
fluctuating two-dimensional elastic lattice. The novelty here is
that to explain the experimental observations it is necessary to
consider the finite-thickness induced crossover distance

lFS �
t
2π

ffiffiffiffiffiffi
c11
c44

r
: ð6Þ

This crossover behaviour in S1(q∥) and W(s∥) is also confirmed
in numerical simulations of a single vortex row confined in a
planar defect for different thicknesses, see Fig. 5(d). Furthermore,
the top-left insert of this figure shows that all S1(q∥)t vs. q∥t curves
collapse into a master-curve, confirming quantitatively that
lFS∝ t, Eq. (6). According to Eq. (4), in the thermodynamic limit
lFS→∞, and the vortex row at a constant-z cross section is class
II hyperuniform since S1ðqkÞ � qαk with α= 12. This hyper-
uniformity class contrasts with more ordered class I hyperuni-
form systems where α > 12. However, in systems with finite
thickness, Eq. (4) predicts a crossover towards a non-
hyperuniform behaviour for s∥ > lFS. This corresponds to a
dimensional crossover from a two-dimensional to an effective
one-dimensional elastic system equivalent to an elastic chain
composed by rigid vortices. Interestingly, this phenomenology is

closely related to the crossover predicted for Luttinger liquids at a
characteristic thermal length45.

A caveat in our model might be that we ignore that real
samples have weak point disorder. However, as shown in Meth-
ods, if this disorder is considered, the main results of Eqs. (4), (5)
and (6) remain qualitatively valid. Namely, for s∥ >
lFSS1ðqk ! 0Þ ¼ const and W(s∥→∞) ~ s∥ while for s∥ < lFS, the
structure is disordered hyperuniform but class III (α < 1) instead
of class II (α= 1)2.

Finally, we argue that a finite size effect is a plausible explanation
for the suppression of hyperuniformity observed in experiments and
simulations. Considering the vortex-vortex interaction potential per
unit length U(x) ≈ ϵ0K0(x/λ), with ϵl ~ ϵ0 the single vortex elastic
tension, the elastic constants of the planar vortex system can be
estimated as c11 ≈ aU″(a) and c44≈ ϵl/a46. Thus, using these
approximations in Eq. (6), the crossover length can be estimated by
considering only the sample thickness since we get
lFS � ðt=2πÞða=λÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK0ða=λÞ þ K2ða=λÞÞ=2

p
. Provided a ~ 3λ in

the experiments, lFS shortens with either decreasing t or 1/a. In the
studied samples with t ~ 5−30 μm41, lFS ≈ t/10 ~ a, and then this
dimensional crossover is quite likely at the origin of the observation
of a nonvanishing structure factor for large wavelengths. For thick
enough samples and/or smaller a such that lFS≳ 10 a, the crossover
to disordered hyperuniform vortex density fluctuations might be
observed experimentally. This would be a state with directional
hyperuniformity47. In other words, vortex matter nucleated in thin
samples with a dense distribution of planar defects effectively behave
as a collection of one-dimensional elastic manifolds. The suppression
of hyperuniformity in elastic structures nucleated in media with the
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Fig. 4 Anisotropy in the large-scale vortex density fluctuations in samples with planar defects. a Left: Detail of the digitalized vortex positions (black
dots) in a region of the Bi2Sr2CaCu2O8+δ sample with many planar defects. Vortices highlighted in red or green belong to the same vortex row; non-
highlighted vortices are presumably interstitial to the vortex rows. Right: Zoom-in of the structure in the black-framed region. In a given row, vortices are
labeled and ai is the distance between vortices i and i+ 1. Then the vortex row is mapped in a straight line where adjacent vortices are spaced in ai and the
coordinate of vortex i+ 1 is sik. b After performing this mapping of vortex positions in a straight line, the average one-dimensional structure factor along the
direction of defects, S1(q∥) is computed (see text for details) averaging data coming from ~ 50 (12) rows containing 9,000 (1,300) vortices in
Bi2Sr2CaCu2O8+δ (YBa2Cu3O7). Fits considering an algebraic decay of S1(q∥) for q∥→ 0 yield β= 0 within the error, for both materials. c Displacement
correlator W=a2k calculated along the s∥ direction of vortex rows (statistics for 1,500 vortices in Bi2Sr2CaCu2O8+δ and 1,300 in YBa2Cu3O7). Insert:
Schematic representation of the magnitudes considered for the calculation of W: u(s∥)= s∥− i ⋅ a∥ is the displacement of the i-th vortex from the site of a
perfect vortex chain with lattice spacing a∥= 〈ai〉, the average in a row. d Displacement correlator W=a2? calculated along the transversal direction s⊥
(statistics for 1,300 vortices in Bi2Sr2CaCu2O8+δ and 1,200 in YBa2Cu3O7). Insert: Schematic representation on the magnitudes considered for the
computation of W with a⊥= 〈aj〉, the average in a line. Fits of the displacement correlators with algebraic functions A ⋅ x2ζ (full lines) yield the roughening
exponents 2ζ and factors A indicated in the legends. Error bars represent the standard deviation of data when averaging at a given q.
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planar disorder as identified in this work may be also observed in a
broad spectrum of systems with a control parameter tuning the
dimensional crossover. In addition, a direct mapping between the
thickness of a classical system and the temperature in quantum
systems can be made, signposting the conditions for disordered
hyperuniformity to persist in planarly-confined quantum systems
such as optical traps. These results are rather important on the
search for novel disordered hyperuniform classic and quantum
materials presenting exotic physical properties.

Methods
Sample preparation and characterization. We studied Bi2Sr2CaCu2O8+δ and
YBa2Cu3O7 samples grown and characterized by means of X-ray diffraction,
transport and magnetometry techniques. The Bi2Sr2CaCu2O8+δ samples with point
disorder and few planar defects were grown by means of the flux method and have
a Tc ~ 90 K; further details on the crystallographic and superconducting properties
of these samples can be found in Ref. 48. The Bi2Sr2CaCu2O8+δ samples with many
planar defects were grown following the travelling-solvent-floating-zone method
using an image furnace with two ellipsoidal mirrors and has a critical temperature
of ~ 87 K. The YBa2Cu3O7 single crystals were obtained following a growth from
the melt technique and are fully oxygenated with Tc ~ 92 K, see Ref. 49 for further
details on the growing method.

Vortex imaging by means of magnetic decoration experiments. We image
individual vortex positions at the sample surface in large fields-of-view ranging
from 1000 to 35,000 vortices by means of magnetic decoration experiments50. For
all the data presented here, the magnetic field is applied above Tc and the sample is
cooled down to 4.2 K. At this temperature Fe particles are evaporated in a pressure-
controlled helium chamber and clusters of these particles land on the sample
surface decorating the positions of vortices. Even though the snapshots of the
structure are taken at 4.2 K, during the field-cooling process the vortex structure
gets frozen, at length-scales of the lattice parameter a0, at a temperature Tfreez ~ Tirr,

the irreversibility temperature at which pinning (sample disorder) sets in51. On
further cooling down to 4.2 K, vortices can move but in length scales of the order of
coherence length, 200 times smaller than the typical size of a vortex as detected by
magnetic decoration. Therefore the structure imaged by magnetic decoration at 4.2
K corresponds to the equilibrium one at Tfreez.

Structure factors. In order to calculate the structure factors we start considering
the vortex density modulation

ρðx; y; zÞ ¼ 1
t
Σ
Nv

j¼1
δðx � xjðzÞÞδðy � yjðzÞÞ � ρ0: ð7Þ

where ρ0 is the average density and Nv the number of vortices. In magnetic dec-
oration experiments we have access to the vortex structure at the surface, namely
ρ(x, y, z= 0). The structure factor is obtained from the two-dimensional Fourier
transform of the density, ρ̂, as

SðqÞ ¼ jρ̂ðqx ; qy ; z ¼ 0Þj2: ð8Þ

In the same token, the one-dimensional structure factor in a vortex row, S1 is
obtained from the vortex density modulation along a line ρ̂1. The angular structure
factor Sθ(q) is the polar-coordinate representation of S(qx, qy), see Fig. 2(f) for
schematics.

The angularly-averaged 〈S(q)〉 has to be calculated carefully when studying the
low-q density modes. Due to finite size effects, the borders and shape of the
experimental field-of-view hinder the study of S(q) in the low-q range due to the
annoying windowing effect. In rectangular fields-of-view as we study here, this
artifact produces an excess in S(qx, qy) in a cross-shaped region centered at
qx= qy= 0. When analyzing our experimental data, in order to get rid of this effect
we neglect the contribution from this cross. In simulations, this effect is avoided
considering in-plane periodic boundary conditions.
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Fig. 5 Simulations of a structure of interacting elastic vortex lines in samples with planar defects. a Snapshot of a quenched configuration obtained from
three dimensional Langevin dynamics simulations of interacting vortices (red lines) in presence of parallel randomly-located PD (gray planes). Circles
highlight vortex tips at the sample surface. The coordinate system and the thickness are indicated. b Angular structure factor Sθ(q) of the vortex positions
at the sample surface for different angles θ indicated in the legend. The insert shows the S(qx, qy) data considered to calculate the curves in the main panel.
c Schematics of the planar vortex row model indicating the displacement field u1(s∥, z), the average spacing a∥ for a perfect row with the same vortex
density, and the characteristic thickness-dependent crossover length lFS. d Results for the configurations of the planar vortex row at the surface of the
sample (z= 0) for different sample thicknesses proportional to the number of layers in the simulation Lz. Main panel: S1(q∥) structure factor for different
sample thicknesses. The dashed black line is a linear function. Arrows indicate the crossover behavior at q/q0 ~ 1/lFS. Bottom-right insert: Displacement
correlator as a function of the distance along the row s∥. The full line is a linear function that reasonably describes the data in the large wavelength limit of
thin samples whereas the dashed line is a logarithmic growth that follows the data at short wavelengths for thick enough samples. Top-left insert: Structure
factor data S1(q∥)t vs. q∥t showing a scaling collapse and the two regimes separated by the crossover wavevector, 2π/lFS∝ 2π/t.
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Computer simulation details. The numerical simulations performed here con-
sider an overdamped Langevin dynamics at a temperature T

η∂τriðzÞ ¼ � δE
δriðzÞ

þ ξðriðzÞ; τÞ ð9Þ

hξðri; τÞξðr0; τ0Þi ¼ 2ηkBTδijδðτ � τ0Þ ð10Þ
where τ is the time and η is the Bardeen-Stephen friction. In order to emulate the
experimental conditions we have simulated systems with densities such that
a= 3λab. The values of the pinning strength of planar defects, Apin, and the number
of planar defects, Nd, were tuned such that the vortex system displays at the surface
of the simulated sample a structure qualitatively similar to the one observed in
magnetic decoration experiments. We have used Lz= 64, Nv= 40 and a0= 3λab,
Apin= 0.2ϵ0, k ¼ ϵ0=λ

2
ab, Nd= 38, L∥= 60λab, L? ¼ Lk

ffiffiffi
3

p
=2. In order to mimic the

experiments we start the simulation at T= 0.5ϵ0λab/kB, reduce T slowly, and
equilibrate the system at T= 0.001ϵ0/kB. When the averaged structure factor
appears to be stationary, we analyze different properties of the final configuration
and average them over several realizations of the same protocol.

Planar elastic vortex array model: Analytical details. The simple model of a
planar elastic vortex array considered in the discussion is described in the con-
tinuum by the scalar longitudinal displacement field u1(s∥, z) with hamiltonian

H �
Z

dqzdqkjû1ðqk; qzÞj2½c11ðqk; qzÞq2x þ c44ðqk; qzÞq2z �; ð11Þ

where û1ðqk; qzÞ is the Fourier transform of u1(s∥, z) and c11(q∥, qz) and c44(q∥, qz)
are the dispersive compression and tilt elastic modulii. At thermal equilibrium

hjû1ðqk; qzÞj2i ¼
kBT

c11ðqk; qzÞq2k þ c44ðqk; qzÞq2z
: ð12Þ

The modulation of the coarse-grained vortex density at long wavelengths is

δnðsk; zÞ � �n0∂sku1ðsk; zÞ; ð13Þ
where n0 is the average number of vortices per unit length along the vortex row of
the planar vortex array. Then, for small q∥,

n0S1ðqk; qzÞ � hjδn̂ðqk; qzÞj2i � n0q
2
khjû1ðqk; qzÞj2i: ð14Þ

By assuming translational invariance along z and evaluating the elastic constants at
qz= 2π/t, the correlation function

S1ðqk; z1 � z2Þ ¼ n�1
0 hδn̂ðqk; z1Þδn̂�ðqk; z2Þi

� n0kBTe
�jz1�z2 j=ξk ðqk Þ

c11ðqk ;2π=tÞξkðqkÞ ;
ð15Þ

with

ξkðqkÞ ¼ q�1
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c44ðqk; 2π=tÞ=c11ðqk; 2π=tÞ

q
ð16Þ

the correlation length along the z-direction. Neglecting surface effects52, the
structure factor at the sample surface is S1(q∥)≡ S1(q∥, z1− z2= 0). Then, for
ξ∥(q∥) < t we get Eq. (4). Finite-size effects appear when ξ∥(2π/lFS)= t, obtaining the
crossover length lFS of Eq. (6).

When weak point disorder is added, the dimensional crossover still exists and
the effective rigid-vortex chain regime for q∥ < 2π/lFS is equivalent to an elastic
interface in a random-periodic type of disorder. In this case, at equilibrium53

hjû1ðqkÞj2i � q
�ð1þ2ζkÞ
k ð17Þ

with ζ∥= 1/2. Since S1ðqkÞ ¼ q2khjû1ðqkÞj2i, the second regime of Eqs. (4) and (5) is
obtained for q∥ < 2π/lFS or s∥ > lFS. The correlations in the infinite-thickness limit
can be tackled analytically by mapping to the Cardy-Ostlund model46. In this case
W displays subtle additive log2ðskÞ corrections to the logðskÞ growth46, implying

S1ðqk ! 0Þ � �qk logðqkÞ ! 0: ð18Þ
Then, in this limit the system is class III hyperuniform in contrast with the class II
hyperuniformity found in the clean case.

Once the corresponding formulas for S1(q∥) are known, the displacement
correlator of Eq. (5) of the main text can be obtained considering that

W ¼ h u1ðsk; zÞ � u1ð0; zÞ
� �2i � h½u1ðsk; zÞ � u1ð0; zÞ�i2

� R
dqk q�2

k S1ðqkÞð1� cosðqkskÞÞ:
ð19Þ

Data availability
All relevant data are available from the authors upon request.

Code availability
All relevant code for simulations are available from the authors upon request.

Received: 11 October 2021; Accepted: 1 April 2022;

References
1. Torquato, S. & Stillinger, F. H. Local density fluctuations, hyperuniformity,

and order metrics. Phys. Rev. E 68, 041113 (2003).
2. Torquato, S. Hyperuniform states of matter. Phys. Rep. 745, 1–95 (2018).
3. Man, W. et al. Isotropic band gaps and freeform waveguides observed in

hyperuniform disordered photonic solids. Proc. Natl. Acad. Sci. USA 110,
15886–15891 (2013).

4. Chen, D. & Torquato, S. Designing disordered hyperuniform two-phase
materials with novel physical properties. Acta Materialia 142, 152–161 (2018).

5. Zheng, Y. et al. Disordered hyperuniformity in two-dimensional amorphous
silica. Sci. Adv. 6, eaba0826 (2020).

6. Salvalaglio, M. et al. Hyperuniform monocrystalline structures by spinodal
solid-state dewetting. Phys. Rev. Lett. 125, 126101 (2020).

7. Chen, D. et al. Nearly hyperuniform, nonhyperuniform, and
antihyperuniform density fluctuations in two-dimensional transition metal
dichalcogenides with defects. Phys. Rev. B 103, 224102 (2021).

8. Chen, D. et al. Stone–wales defects preserve hyperuniformity in amorphous
two-dimensional networks. Proc. Natl. Acad. Sci. USA 118, e2016862118
(2021).

9. Zachary, C. E., Jiao, Y. & Torquato, S. Hyperuniform long-range correlations
are a signature of disordered jammed hard-particle packings. Phys. Rev. Lett.
106, 178001 (2011).

10. Dreyfus, R. et al. Diagnosing hyperuniformity in two-dimensional, disordered,
jammed packings of soft spheres. Phys. Rev. E 91, 012302 (2015).

11. Chieco, A. T. & Durian, D. J. Quantifying the long-range structure of foams
and other cellular patterns with hyperuniformity disorder length spectroscopy.
Phys. Rev. E 103, 062609 (2021).

12. Rumi, G. et al. Hyperuniform vortex patterns at the surface of type-ii
superconductors. Phys. Rev. Res. 1, 033057 (2019).

13. Llorens, J. B. et al. Disordered hyperuniformity in superconducting vortex
lattices. Phys. Rev. Res. 2, 033133 (2020).

14. Jiao, Y. et al. Avian photoreceptor patterns represent a disordered
hyperuniform solution to a multiscale packing problem. Phys. Rev. E 89,
022721 (2014).

15. Zheng, Y., Li, Y.-W. & Ciamarra, M. P. Hyperuniformity and density
fluctuations at a rigidity transition in a model of biological tissues. Soft Matter
16, 5942–5950 (2020).

16. Gabrielli, A. et al. Generation of primordial cosmological perturbations from
statistical mechanical models. Phys. Rev. D 67, 043506 (2003).

17. Klatt, M. A. et al. Universal hidden order in amorphous cellular geometries.
Nature Comm. 10, 811 (2019).

18. Florescu, M., Torquato, S. & Steinhardt, P. J. Designer disordered materials
with large, complete photonic band gaps. Proc. Nat. Acad. Sci. USA 106,
20658–20663 (2009).

19. Froufe-Pérez, L. S. et al. Role of short-range order and hyperuniformity in the
formation of band gaps in disordered photonic materials. Phys. Rev. Lett. 117,
053902 (2016).

20. Le Thien, Q., McDermott, D., Reichhardt, C. J. O. & Reichhardt, C. Enhanced
pinning for vortices in hyperuniform pinning arrays and emergent
hyperuniform vortex configurations with quenched disorder. Phys. Rev. B 96,
094516 (2017).

21. Sadovskyy, I. A., Koshelev, A. E., Kwok, W.-K., Welp, U. & Glatz, A. Targeted
evolution of pinning landscapes for large superconducting critical currents.
Proc. Nat. Acad. Sci. USA 116, 10291–10296 (2019).

22. Cubitt, R. et al. Direct observation of magnetic flux lattice melting and
decomposition in the high-tc superconductor bi2.15sr1.95cacu2o8+x. Nature
365, 407–411 (1993).

23. Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V.
M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66,
1125–1388 (1994).

24. Pardo, F., de la Cruz, F., Gammel, P. L., Bucher, E. & Bishop, D. J. Observation
of smectic and moving-bragg-glass phases in flowing vortex lattices. Nature
396, 348–350 (1998).

25. Klein, T. et al. A bragg glass phase in the vortex lattice of a type ii
superconductor. Nature 413, 404–406 (2001).

26. Menghini, M., Fasano, Y. & de la Cruz, F. Critical current and topology of the
supercooled vortex state in nbse2. Phys. Rev. B 65, 064510 (2002).

27. Pautrat, A. et al. Persistence of an ordered flux line lattice above the second
peak in bi2sr2Cacu2o8+δ. Phys. Rev. B 75, 224512 (2007).

28. Petrović, A. P. et al. Real-space vortex glass imaging and the vortex phase
diagram of snmo6s8. Phys. Rev. Lett. 103, 257001 (2009).

ARTICLE COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-022-00250-6

8 COMMUNICATIONS MATERIALS |            (2022) 3:32 | https://doi.org/10.1038/s43246-022-00250-6 | www.nature.com/commsmat

www.nature.com/commsmat


29. Suderow, H., Guillamón, I., Rodrigo, J. G. & Vieira, S. Imaging
superconducting vortex cores and lattices with a scanning tunneling
microscope. Supercond. Sci. Technol. 27, 063001 (2014).

30. Marziali Bermúdez, M. et al. Dynamic reorganization of vortex matter into
partially disordered lattices. Phys. Rev. Lett. 115, 067001 (2015).

31. Zehetmayer, M. How the vortex lattice of a superconductor becomes
disordered: a study by scanning tunneling spectroscopy. Sci. Rep. 5, 9244
(2015).

32. Chandra Ganguli, S. et al. Disordering of the vortex lattice through successive
destruction of positional and orientational order in a weakly pinned
co0.0075nbse2 single crystal. Sci. Rep. 5, 10613 (2015).

33. Toft-Petersen, R., Abrahamsen, A. B., Balog, S., Porcar, L. & Laver, M.
Decomposing the bragg glass and the peak effect in a type-ii superconductor.
Nature Communications 9, 901 (2018).

34. Aragón Sánchez, J. et al. Unveiling the vortex glass phase in the surface and
volume of a type-ii superconductor. Comm. Phys. Nat. 2, 143 (2019).

35. Llorens, J. B. et al. Observation of a gel of quantum vortices in a
superconductor at very low magnetic fields. Phys. Rev. Res. 2, 013329 (2020).

36. Fasano, Y. & Menghini, M. Magnetic-decoration imaging of structural
transitions induced in vortex matter. Supercond. Sci. Tech. 21, 023001 (2008).

37. Koblischka, M. R. et al. Study of flux behavior in bi2sr2cacu2o8 single crystal in
external magnetic fields up to 1 t. Phys. C 249, 339 (1995).

38. Herbsommer, J., Correa, V., Nieva, G., Pastoriza, H. & Luzuriaga, J. Vortex
dynamics in bi2sr2cacu2o8+d single crystals with planar defects. Solid State
Comm. 120, 59–63 (2001).

39. Maggio-Aprile, I., Renner, C., Erb, A., Walker, E. & Fischer, Ø. Critical
currents approaching the depairing limit at a twin boundary in yba2cu3o7-δ.
Nature 390, 487–490 (1997).

40. Fasano, Y., Herbsommer, J. & de la Cruz, F. Superficial periodic pinning
induced by bitter decoration applied to the study of vortex structure
nucleation and growth. Phys. Stat. Sol. (b) 215, 563 (1999).

41. Fasano, Y., De Seta, M., Menghini, M., Pastoriza, H. & De la Cruz, F. Imaging
the structure of the interface between symmetries interconnected by a
discontinuous transition. Solid State Commun. 128, 51 (2003).

42. Barabasi, A. L., Stanley, H. E. & Sander, L. M. Fractal concepts in surface
growth. Phys. Today 48, 68–69 (1995).

43. Emig, T. & Nattermann, T. Effect of planar defects on the stability of the bragg
glass phase of type-ii superconductors. Phys. Rev. Lett. 97, 177002 (2006).

44. Petković, A., Emig, T. & Nattermann, T. Pinning of flux lines by planar
defects. Phys. Rev. B 79, 224512 (2009).

45. Giamarchi, T. Quantum physics in one dimension. (Clarendon Press, Oxford,
2004).

46. Nattermann, T. & Scheidl, S. Vortex-glass phases in type-ii superconductors.
Adv. in Phys. 49, 607–704 (2000).

47. Torquato, S. Hyperuniformity and its generalizations. Phys. Rev. E 94, 022122
(2016).

48. Correa, V. F., Kaul, E. E. & Nieva, G. Overdoping effects in bi2sr2cacu2o8+δ: from
electromagnetic to josephson interlayer coupling. Phys. Rev. B 63, 172505 (2001).

49. de la Cruz, F., López, D. & Nieva, G. Thermally induced change in the vortex
dimensionality of yba2cu3o7 single crystals. Philos. Mag. B 70, 773–786 (1994).

50. Fasano, Y., De Seta, M., Menghini, M., Pastoriza, H. & de la Cruz, F.
Commensurability and stability in nonperiodic systems. Proc. Nat. Acad. Sci.
USA 102, 3898–3902 (2005).

51. Bolecek, N. R. C. et al. Vortex matter freezing in bi2sr2cacu2o8 samples
with a very dense distribution of columnar defects. Phys. Rev. B 93, 054505
(2016).

52. Marchetti, M. C. & Nelson, D. R. Translational correlations in the vortex array at
the surface of a type-ii superconductor. Phys. Rev. B 47, 12214–12223 (1993).

53. Bustingorry, S., Kolton, A. B. & Giamarchi, T. Random-manifold to random-
periodic depinning of an elastic interface. Phys. Rev. B 82, 094202 (2010).

Acknowledgements
We thank Thierry Giamarchi for stimulating discussions. This work was supported by
the Argentinean National Science Foundation (ANPCyT) under Grants PICT 2017-2182
and PICT 2018-1533; by the Universidad Nacional de Cuyo research grants 06/C566 and
06/C575; and by Graduate Research fellowships from CONICET for J.R.P., F.E., J.A.S.,
R.C.M., G.R. and N.R.C.B.

Author contributions
Y.F. and A.B.K. designed research and discussed the general method to analyze the data,
Y.F. and R.C.M. performed measurements, G.N. and P.P. grew samples, F.E. and A.B.K.
performed simulations and theoretical calculations, J.R.P., F.E., J.A.S., G.R., A.B.K., and
Y.F. analyzed data; all authors discussed the data analysis and interpretation; Y.F. and
A.B.K. wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s43246-022-00250-6.

Correspondence and requests for materials should be addressed to Yanina Fasano.

Peer review information Communications Materials thanks Yang Jiao and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work. Primary
Handling Editor: Aldo Isidori. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-022-00250-6 ARTICLE

COMMUNICATIONS MATERIALS |            (2022) 3:32 | https://doi.org/10.1038/s43246-022-00250-6 | www.nature.com/commsmat 9

https://doi.org/10.1038/s43246-022-00250-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsmat
www.nature.com/commsmat

	Anisotropic suppression of hyperuniformity of elastic systems in media with planar disorder
	Results
	Density fluctuations on large length scales in media with planar defects
	Anisotropy in the density fluctuations on large length scales in samples with planar defects
	Simulations of a structure of interacting elastic vortex lines in media with planar defects

	Discussion
	Methods
	Sample preparation and characterization
	Vortex imaging by means of magnetic decoration experiments
	Structure factors
	Computer simulation details
	Planar elastic vortex array model: Analytical details

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




