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Abstract. Given a Hecke eigenform f of weight 2 and square-free level N , by
the work of Kohnen, there is a unique weight 3/2 modular form of level 4N
mapping to f under the Shimura correspondence. Furthermore, by the work of
Waldspurger the Fourier coefficients of such a form are related to the quadratic
twists of the form f . Gross gave a construction of the half integral weight form
when N is prime, and such construction was later generalized to square-free
levels. However, in the non-square free case, the situation is more complicated
since the natural construction is vacuous. The problem being that there are
too many special points so that there is cancellation while trying to encode the
information as a linear combination of theta series.

In this paper, we concentrate in the case of level p2, for p > 2 a prime number,
and show how the set of special points can be split into subsets (indexed by
bilateral ideals for an order of reduced discriminant p2) which gives two weight
3/2 modular forms mapping to f under the Shimura correspondence. Moreover,
the splitting has a geometric interpretation which allows to prove that the forms
are indeed a linear combination of theta series associated to ternary quadratic
forms.

Once such interpretation is given, we extend the method of Gross-Zagier to
the case where the level and the discriminant are not prime to each other to
prove a Gross-type formula in this situation.

Introduction

The theory of modular forms of half-integral weight was developed by Shimura
in [11]. There he defined a map known as the “Shimura correspondence” that
associates to a modular form g of half-integral weight k/2 (k odd), level 4N and
character ψ, such that g is an eigenform for the Hecke operators, a modular form
f of weight k− 1, level 2N and character ψ2. In the same work, he noted that the
Fourier coefficients of the half-integral weight modular form have more informa-
tion than the Fourier coefficients of the integral weight modular form and raised
the question of the meaning of these Fourier coefficients. In 1981, Waldspurger
answered the question by relating the Fourier coefficients of g to the central values
of twisted L-series of f (see [14]).
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In [4], Gross gave an explicit method to construct, when f has weight 2, prime
level p and trivial character, a weight 3/2 modular form (of level 4p and trivial
character) mapping to f via the Shimura correspondence. A formula for the central
values of twists of the L-series of f by imaginary quadratic characters was proved
by Gross. His result was later generalized (by a different method) to odd square-
free levels N in [1], where the authors construct one modular form whose Fourier
coefficients are related to central values of twists of the L-series of f by imaginary
quadratic characters with discriminants satisfying 2t quadratic conditions (where
t is the number of prime factors of N).
Generalizing Gross method in a different direction, the case of level p2, for a

prime p > 2, was studied in [9]. In that work, given a modular form of weight
2 and level p2, two weight 3/2 modular forms were constructed, and a “Gross
formula” was conjectured (see [9, Conjecture 2]). Some examples as well as an
application to computing central values of twists by real quadratic characters were
presented in [8] and [12]. The main purpose of this paper is to explain the nature
of such formula and also prove it.
Let f =

∑
a(n) qn be a cusp form of weight 2 and level N . Let K be an

imaginary quadratic field of discriminant D < 0 and let OK be its ring of integers.
We denote I(OK) the class group of OK .
We define the twisted L-series

L(f,D, s) :=
∑ a(n)

ns

(
D

n

)
.

Note that L(f,D, s) as defined here may not be a primitive L-series when N and D
have a common factor. Our main result, Theorem 4.11, deals with the case N = p2,
for p > 2 an odd prime, and D = −pd (with p ∤ d) a fundamental discriminant,
but Section 1 and the appendix on Rankin’s method are more general, including
the case where N and D have a common factor as required for Section 4. Note
that the results in Section 3 assume that D is odd, but the main result in Section 4
is proved for odd and even discriminants altogether.
The proof of our formula consists of two parts. First, we need to compute

the Fourier coefficients of the half-integral weight modular forms constructed in
[9], and give an interpretation of such construction in terms of special points.
In Section 1, we give an adèlic definition of the special points of discriminant D
and in Proposition 1.4 we prove that the adèlic definition coincides with Eichler’s
original formulation. This interpretation is crucial to split the special points of
discriminant D into subsets indexed by bilateral ideals, as defined in (6).
To compute the Fourier coefficients of the weight 3/2 modular forms attached

to such splitting, we fix a quaternion algebra over Q ramified at p and ∞, and
an order Õ with reduced discriminant p2. We consider the algebra T0 of Hecke
operators with index prime to p acting on M(Õ), a vector space (over R) spanned
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by representatives of Õ-ideal classes. Since the eigenspaces of T0 do not have
multiplicity one (in general), we need to add some extra operators.

The group of bilateral Õ-ideals modulo Q×-equivalence is a dihedral group of
order 2(p + 1). The norm p bilateral Õ-ideals can be taken as representatives for

the symmetries. Each bilateral Õ-ideal defines an operator in M(Õ). The operator

Wp associated to a norm p bilateral Õ-ideal p commutes with T0 and is self-adjoint

for the natural inner product of M(Õ) (defined in (1) below), although operators

related to different norm p bilateral Õ-ideals clearly do not commute. Considering
the algebra generated by the Hecke operators and one Wp, a multiplicity one
theorem does hold (see Theorem 2.7).

We show that there is a connection between bilateral Õ-ideals of norm p and
suborders of Õ (in the sense of [9]) which associates to p the order Z + p. This
relation allows to define for each ideal p, a map

Θp : M(Õ) 7→M3/2(4p
2,κp),

where κp(n) :=
(
p
n

)
(see Section 2.4). If e is an eigenvector for the Hecke operators

such that Θp(e) 6= 0, then Wp(e) = e (see Proposition 2.17). This implies that the
only eigenvectors to be considered for Θp are those where Wp acts trivially. This
explains the orthogonality condition on the eigenvector ef,Õ needed for Conjecture
2 in [9].
In Section 3 we relate the Fourier coefficients of a modular form coming from

Rankin’s method (see Theorem A.14) to the height of special points. This allows,
given a character ϕ of the class group I(OK), to relate the central value of

Lϕ(f, s) :=
∑

A

ϕ(A)LA(f, s)

to the height of a sum of special points of discriminant D (Proposition 3.10). The
special case ϕ = 1D (the trivial character on I(OK)) relates to central values of
twists of the L-series by the factorization

L1D(f, s) = L(f, s)L(f,D, s).

The second part of the proof is the well known Rankin’s method. This part is
a little more technical hence it is left to the appendix. Following [4] and [5] we
define a Rankin convolution L-series and using Rankin’s method we compute its
central value. This is done in a very similar way than that of [5]. The difficulty
in our case comes from the fact that the level of f and the discriminant of the
imaginary quadratic field are not prime to each other. The formula for the central
value of LA(f, s) (for an ideal class A ∈ I(OK)) proved in Theorem A.14 is similar
to [5, Proposition 4.4] with the condition gcd(N,D) = 1 removed. In addition to
giving a more complete result in general, this lifts an important restriction when
N is not squarefree; for instance, when N is a perfect square, both sides in the
formula in Theorem A.14 vanish trivially for gcd(N,D) = 1.
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In the last section, we relate the heights of special points to the Fourier coeffi-
cients of ternary theta series. The key idea is to split the set of special points of
discriminant D into p+ 1 subsets, indexed by the norm p bilateral Õ-ideals. Note

that depending on whether
(

D/p
p

)
is a square or not, half of these subsets will be

empty, while the other half will have the same number of elements. By counting
the number of special points in each set, we conclude the proof of our main result.

Theorem A (Theorem 4.11). Let f be a new eigenform of weight 2, level p2 with

p > 2 an odd prime. Fix a norm p bilateral Õ-ideal p, and let ef be an eigenvector

in the f -isotypical component of M(Õ) such that Wp(ef ) = ef .
If d is an integer such that D = −pd < 0 is a fundamental discriminant, and

such that
(

d
p

)
= χ(p), then

L(f, 1)L(f,D, 1) = 4π2 〈f, f〉
〈ef , ef〉

c2d√
pd
,

where the cd are the Fourier coefficients of Θp(ef ) =
∑

d≥1 cd q
d.

This formula is the same as Conjecture 2 in [9], with the difference of a factor
of 8π2 coming from a different normalization in the Petersson inner product. The
extra factor of p

p−1
which shows up in [9], when f is the quadratic twist of a level

p form, is due to the fact that L(f,D, s) we use here is not primitive at p in this
case.
The case of odd discriminantD is proved using the results in Section 3. We avoid

the technical difficulties of the case of even discriminants by resorting to a theorem
of Waldspurger, which allows us to recover the formula for even discriminants from
the case of odd discriminants.

Acknowledgement: The first author would like to thank the Centro de Mate-
mática of the Facultad de Ciencias for its hospitality during different visits.

1. Quaternion algebras, bilateral ideals and special points

Let B be a quaternion algebra over Q, i.e. a central simple algebra of dimension
4 over Q. Given a place v of Q, let Bv := B ⊗ Qv be its completion at v. The
algebra Bv is either a division algebra or isomorphic to the algebra M2(Qv) of
2× 2 matrices with coefficients in Qv. The place v is said to be ramified if Bv is a
division algebra and split if not. The number of ramified places is finite and even.
The discriminant of B is the product of all ramified primes of Q.
We require B to be definite or ramified at∞, meaning B∞ = B⊗R is a division

algebra (the Hamilton quaternions). The discriminant of B is thus the product of
an odd number of primes.
It is well known that B has an antiautomorphism called conjugation and for

x ∈ B we denote its action by x̄ . For x ∈ B we define N x = x x̄ and Tr x = x + x̄
the reduced norm and reduced trace of x , respectively. The norm of a lattice
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a is defined as N a := gcd {N x : x ∈ a}. We equip a with the quadratic form
Na(x ) := N x/N a, which is primitive; its determinant is a square, and we denote
its positive square root by disc(a). In particular, when R ⊆ B is an order, disc(R)
is its (reduced) discriminant. The subscript p will denote localization at p, namely
ap := a⊗ Zp.
Given a lattice a in B, its right order is given by

Rr(a) := {x ∈ B : ax ⊆ a}.
The left order of a is defined similarly. If R is an order in B, we let Ĩ(R) be the set
of left R-ideals, i.e. the set of lattices a ⊆ B such that ap = Rpxp for every prime
p, with xp ∈ B×

p . Note that we do not define what an ideal in a quaternion algebra
is since we will only deal with left R-ideals; we recomend the reader to look at [13]
for such definition and the theory of ideals in general. We just want to remark
that the condition of a being locally principal is equivalent to a being a projective
R-module, which is the standard definition of an ideal for a non-maximal order
of a number field. It is clear from the definition that if a is a left R-ideal, its left
order is just R.

Let M̃(R) be the vector space over R with basis Ĩ(R). Consider the height
pairing,

(1) 〈a, b〉 := 1
2
#
{
x ∈ B× : ax = b

}
=

{
1
2
#Rr(a)

× if ax = b, x ∈ B×,

0 otherwise,

as an inner product on it. For a geometric interpretation of the height pairing see
[4, §4], where it is introduced as a pairing on the Picard group of certain curves
of genus zero. In this geometric context, special points (that will be defined in
Section 1.1) should be regarded as analogues of Heegner points on modular curves.
More generally, given R-ideals a and b, define

Hom(a, b) :=
{
u ∈ B× : au ⊂ b

}
.

Then 〈a, b〉 = 1
2
#{u ∈ Hom(a, b) : N u = N b

N a
}.

Let a ∈ Ĩ(R), and m ≥ 1 an integer. We set

Tm(a) :=
{
b ∈ Ĩ(R) : b ⊆ a, N b = m N a

}
.

The Hecke operators tm : M̃(R)→ M̃(R) are then defined by

tma :=
∑

b∈Tm(a)

b

for m ≥ 1 and a ∈ Ĩ(R), and extended by linearity to all of M̃(R). Moreover, we
have

〈a, tmb〉 =
1

2
#

{
u ∈ Hom(a, b) : N u = m

N b

N a

}
,
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and the Hecke operators are self-adjoint with respect to the height pairing [9,
Proposition 1.3].

We define an equivalence relation on the set of left R-ideals by a, b ∈ Ĩ(R) are
in the same class if a = bx , for some x ∈ B×; we write [a] for the class of a. The
set of all left R-ideal classes, which we denote by I(R), is known to be finite. If we
denote by M(R) the vector space over R with basis I(R), it has an inner product
and an action of Hecke operators by considering the quotient map

M̃(R) ։ M(R).

Note that I(R) is an orthogonal basis of M(R), and it is clear that 〈 , 〉 is positive
definite on M(R).
The Hecke operators tm with (m, disc(R)) = 1 generate a commutative algebra

T0, which is indeed generated by the tp with p ∤ disc(R) prime. Since the Hecke
operators are self-adjoint it follows, by the spectral theorem, that M(R) has an
orthogonal basis of common eigenvectors for T0.
We remark that M(R) has a natural integral structure as the free Z-module

spanned by I(R) which is quite important; the height pairing and the Hecke op-
erators are defined over Z. However, the eigenvectors may not be defined over Z,
but only over a totally real number field. For our purposes, using R as the field of
coefficients will suffice.
The left R-ideal a is bilateral if its right order is also R. The set of bilateral R-

ideals forms a group under ideal multiplication. This group contains the principal
ideals generated by non-zero rational elements, which we denote by Q×, in its
center, so we can consider bilateral R-ideals modulo Q×-equivalence, namely two
bilateral ideals a and b are Q×-equivalent if a = bx with x ∈ Q×. The group
of bilateral R-ideals modulo Q×-equivalence acts on M(R) by left multiplication
on the basis elements. We denote Wm the operator corresponding to the bilateral
R-ideal m.

Remark 1.1. Note that this action commutes with the action of T0. Furthermore,
these operators are unitary; hence, those of order 2 are self-adjoint. On the other
hand, the group of bilateral R-ideals modulo Q× needs not to be commutative (see
Section 2).

We now give an adèlic reinterpretation of the ideal theory which will allow us to

work locally. Let Ẑ =
∏

p Zp be the profinite completion of Z, and let Q̂ := Ẑ⊗Q

the ring of finite adèles of Q. Let also B̂ := B⊗ Q̂ and R̂ := R⊗ Ẑ. By the Eichler
local-global principle for lattices, we have a bijection between global lattices a in
B and collections {ap} of local lattices such that ap = Rp for all p except finitely

many. Hence, if a is a left R-ideal with ap = Rpxp, we have (xp) ∈ B̂×, and any

(xp) ∈ B̂× determines an ideal in B in that way. Furthermore, R̂× acts on B̂× by
left multiplication, and each ideal corresponds to a unique orbit for this action,
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i.e.
left R-ideals ←→ R̂×\B̂×.

Note that if a↔ (xp), its right order Rr(a) is given locally by x−1
p Rpxp. Hence,

if we set

N(R̂×) :=
{
(xp) ∈ B̂× : xpRp = Rpxp ∀p

}
,

we have the correspondence

bilateral R-ideals ←→ R̂×\N(R̂×).

Moreover, if p ∤ disc(R), we have that Rp is a maximal order in the split quaternion
algebra over Qp and its local normalizer N(R×

p ) = R×
p Q

×
p (this is just a statement

about the ring of 2 by 2 matrices with coefficients in Zp, see [3, Proposition 1]).

Hence the group of bilateral R-ideals modulo Q×-equivalence, R̂×\N(R̂×)/Q×,
equals the finite local product

∏

p|disc(R)

R×
p \N(R×

p )/Q
×
p .

1.1. Special points. Let B be a quaternion algebra (over Q) of discriminant N ,
and let K ⊂ B be a quadratic subfield of discriminant D0. We note that

• If B is definite, then D0 < 0; and

• if p | N , then
(

D0

p

)
6= 1.

These are all the local obstructions for such an embedding to exist; by Hasse’s
principle, there are no additional global obstructions, i.e. if K is an imaginary

quadratic field of discriminant D0 and for each prime number p | N ,
(

D0

p

)
6= 1

then there exists an embedding of K into B.
The situation for orders is quite different. If K embeds into B, let R be an order

in B, and let O := R ∩ K. Then O is an order in K of discriminant D = D0s
2,

for some s ∈ Z. Conversely, given an order O in K, there might be new local
obstructions for the existence of an embedding of O into R, for example:

• If R is an order of discriminant p2 (which are defined in [10] and called
“orders of level p2”), then p | D.
• If R is an order of level p2 with character sign σ (see Remark 2.14 for the

definition), then p | D and
(

D/p
p

)
= σ.

Also, there are of course global obstructions. However, if O can be locally embed-
ded in R at every place, it follows that O can be embedded in some order R′ that
is locally conjugate to R (i.e. in the same genus). From now on we fix an order R
in the quaternion algebra B.

Definition 1.2. If O is an order in K of discriminant D, a special point for O is
a pair (a, ψ), where a is a left R-ideal and ψ : K →֒ B is an embedding such that
Rr(a) ∩ ψ(K) = ψ(O).
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This means that a special point of discriminant D is an optimal embedding of
O into the right order of an ideal a. Note that this definition is slightly different
from the one given in [3]. There a special point is just a pair (ψ,R′), where R′ is
in the same genus of R and ψ is an optimal embedding of O into R′. Clearly given
two orders R1, R2 in the same genus, there exists an ideal a whose left order is R1

and whose right order is R2, but there might be more than one. The advantage of
our definition will become clear while counting classes of special points and their
adèlic description.
The group B× has a right action on special points given for α ∈ B× by (a, ψ)·α =

(aα, α−1ψα). If we fix a set of representatives I(R) = {a1, . . . ah} for the ideal
classes, any special point is equivalent to (ai, ψ), where ψ is an optimal embedding
into Rr(ai). Furthermore, (ai, ψ1) ∼ (ai, ψ2) if and only if there exists α ∈ Rr(ai)

×

such that ψ1 = α−1ψ2α. Noting that if (ai, ψ) is a special point, ψ(O)× acts
trivially, Eichler deduces the formula for the number of non-equivalent special
points of discriminant D where R is an Eichler order (see [3, Proposition 5] for
Eichler orders of square free level and [6] for the general case). IfD is a fundamental
discriminant, the formula reads

(2)
∏

p|N

(
(1−

(
D

p

))∏

p|H

(
(1 +

(
D

p

))
h(OD),

where B is the quaternion algebra with discriminant N and R is an Eichler order
of discriminant HN . The Kronecker symbols represent the condition for such an
embedding to exist.
We want to give an adèlic definition for the classes of special points. Following

the previous notation, let Ô := O ⊗ Ẑ and K̂ := K ⊗ Q̂. We will assume that

K̂ ∩ R̂ = Ô.
Denote by Ĩ(O) the set of O-(fractional) ideals and by I(O) the set of O-ideal

classes. We have the following adèlic interpretation:

R-ideals: Ĩ(R) ←→ R̂×\B̂×

R-ideals modulo scalars: Ĩ(R)/Q× ←→ R̂×\B̂×/Q×

K-points: Ĩ(R)/K× ←→ R̂×\B̂×/K×

R-classes: I(R) ←→ R̂×\B̂×/B×

O-ideals: Ĩ(O) ←→ Ô×\K̂×

O-ideals modulo scalars: Ĩ(O)/Q× ←→ Ô×\K̂×/Q×

O-classes: I(O) ←→ Ô×\K̂×/K×

Note that the height pairing defined at the beginning of this section induces an
inner product on the Z-module spanned by K-points and R-classes as well.
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Lemma 1.3. The embedding K ⊂ B induces an injective map (by right multipli-
cation)

Ĩ(O) →֒ Ĩ(R).

Proof. The inclusion K ⊆ B, composed with a projection, induces a map K̂× →
B̂× → R̂×\B̂×, and it is clear that the kernel of this composite map is K̂×∩ R̂× =

Ô×. �

This induces the following diagram:

O-ideals �
�

//

��
��

R-ideals

��
��

O-classes �
�

//

))

K-points

��
��

R-classes

where the horizontal arrows are injective, and the vertical arrows surjective. Note
that, despite the O-classes and the R-classes being independent of the embedding
K ⊂ B, the dotted map does indeed depend on the choice of embedding, as do
the two horizontal maps.

1.2. O-points. From now on, we fix an embedding i : K →֒ B. For x ∈ B̂×, we

define R̂x := x−1R̂x, Rx := B ∩ R̂x, and Ox := K ∩ R̂x. Note that Rx is an order

in B (the right order of R̂x) locally conjugate to R, and that Ox is an order in K.
Note also that Rx depends only on the class of x as an R-ideal modulo scalars,
and that Ox depends only on the class of x as a K-point.

If we set N̂O := {x ∈ B× : Ox = O}, then we define the O-points as the ele-

ments of R̂×\N̂O/K
×.

Proposition 1.4. If O is an order in K of discriminant D, then the classes of
special points for O are in one-to-one correspondence with the O-points.

Proof. Recall that we fixed an embedding i : K →֒ B. If (a, ψ) is a special point
of discriminant D, there exists α ∈ B× such that α−1ψα = i. Furthermore, α
is determined up to multiplication on the right by K×. Then the point (a, ψ) ∼
(aα, i). Since aα is a left R-ideal, there exists x ∈ B̂× such that R̂x = aα. Then

we associate to the pair (a, ψ) the O-point x . It is immediate that x is in N̂O and
that it is defined up to multiplication on the right by K× and multiplication on

the left by R̂×, i.e. it is a point in the double quotient R̂×\N̂O/K
×.

Conversely, to an element x ∈ N̂O, we associate the equivalence class of (R̂x , i).
The condition of the embedding being optimal is clear, and multiplication on

the right by R̂× give the same special point. We are left to prove that right
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multiplication by K× gives equivalent special points, but this is clear since if
k ∈ K×, conjugation by k acts trivially on i. �

1.3. Groups acting on O-points.

Proposition 1.5. (1) K̂× acts on N̂O by right multiplication, i.e. N̂OK̂
× ⊆

N̂O.
(2) Ô×\K̂× acts on R̂×\N̂×

O .
(3) The action in (2) is free.

This action induces a free action of the group of O-classes on the set of O-points,

and the space of orbits is R̂×\N̂O/K̂
×. The canonical O-orbit is the image of the

map O-classes →֒ K-points.

Proof of Proposition 1.5. (1) indeed, if a ∈ K̂×, x ∈ B̂×, then Oxa = K ∩
a−1x−1R̂xa = a−1(K ∩ x−1R̂x )a = a−1Oxa = Ox .

(2) if a ∈ Ô× = K ∩ x−1R̂x then xa ∈ R̂x and since a is a unit, R̂x = R̂ax ,

which implies that Ô× acts trivially on R̂×\N̂O.

(3) if xa ∈ R̂x , then a ∈ K̂× ∩ x−1R̂x = Ô×.
�

Recall that N(R̂×) =
{
(xp) : x−1

p Rpxp = R
}
, modulo left multiplication by R̂×,

corresponds to the group of bilateral R-ideals. It clearly acts on N̂O by left mul-
tiplication. Hence the group

G := R̂×\N(R̂×)/Q× × Ô×\K̂×/K×

(i.e. the group of bilateral ideals modulo Q×-equivalence times the class group of
O) acts on the set of O-points.

Proposition 1.6. If R is an Eichler order and O is an order in K of dis-
criminant D, the action of G on the classes of O-points is transitive. Further-
more, if gcd(disc(R), D) = 1 the action is free, while if p is a prime that divides
gcd(disc(R), D), the pair (pR, p

−1
O ) acts trivially, where pR is the bilateral R-ideal

of norm p and pO is the O-ideal of norm p (in other words, the actions of pR and
pO are the same.)

Proof. That the action is transitive is a consequence of [3, Proposition 3] in the
case where R has square free discriminant, and by the work of [6] for general levels.
Once we know that the action is transitive, the second statement follows from (2)
(which gives the number of non-equivalent O-points) and from [3, Proposition 1]
(which gives the number of bilateral ideals). �

Note that although in [3] only Eichler orders of square free level are studied,
most of the results proven there are also true for all Eichler orders by the work
of Hijikata ([6]). Furthermore, Proposition 1.6 holds also for orders of level p2M
(that will be studied in the next section), by [10, Theorem 2.7 and Theorem 4.8].
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2. Orders of level p2

Fix a prime p > 2 and let B be the quaternion algebra over Q which is ramified
at p and ∞. Let O be a maximal order in B and let Õ be the unique order of
index p in O. We note that

Õ = {x ∈ O : p | ∆ x},
where ∆ x := (Tr x )2 − 4N x is the discriminant of the characteristic polynomial
of x .
There is a quadratic character χ : Ĩ(Õ) 7→ {±1}, given on a ∈ Ĩ(Õ), by χ(a) =(
Na(x)

p

)
, where x ∈ a is any element such that p ∤ Na(x ). Furthermore, the

character depends only on the equivalence class of a, i.e. it is a character on I(Õ)
(see [10, Proposition 5.1]).

There is a T0-equivariant bilinear map in M(Õ) with values in the space M2(p
2)

of modular forms of weight 2 and level p2 defined on the basis by

φ([a], [b]) := ϑ(a−1b) =
1

2

∑

x∈a−1b

qN x/N a−1b

This map induces a correspondence between eigenvectors in M(Õ) and eigenforms
of weight 2 and level p2. For an eigenform f of weight 2 and level p2 we denote by
M(Õ)f the f -isotypical component of M(Õ), i.e. the eigenspace for the action of
T0 with the same eigenvalues as f . We have the following result due to Pizer ([10,
Theorem 8.2]) :

dimM(Õ)f =





1 if f is an oldform,

1 if f is the quadratic twist of a level p form,

0 if f is the non-quadratic twist of a level p form,

2 if f is not the twist of a level p form.

There is a natural inclusion M(O) →֒M(Õ) which is T0-equivariant (see [9, Propo-
sition 1.14]).

Definition 2.1. The space of old forms M(Õ)old is the image of M(O) under the

natural inclusion. Its orthogonal complement is denoted M(Õ)new and is called the
new space.

Proposition 2.2. The eigenvectors in M(Õ)old correspond to eigenforms in

Mold
2 (p2), and the eigenvectors in M(Õ)new correspond to eigenforms in Mnew

2 (p2).

Proof. The first assertion is clear. For the second assertion, it is clear that if
f ∈Mnew

2 (p2) and ef ∈M(Õ)f then ef is orthogonal to M(Õ)old. It might happen

that there exists e ∈ M(Õ)new such that f = φ(e, e) is old. But this is not the

case, since if f is an old form, the f -isotypical component in M(Õ) has dimension

1. Then, since M(O)f is non-empty, we have M(O)f = M(Õ)f . �
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2.1. Bilateral Õ-ideals and its action on M(Õ).

Proposition 2.3. The group of bilateral Õ-ideals modulo Q×-equivalence is iso-
morphic to the dihedral group Dp+1 of 2(p+1) elements. Furthermore the rotations

correspond to bilateral Õ-ideals of norm 1 while the symmetries correspond to bi-
lateral Õ-ideals of norm p.

Proof. See Proposition 9.26 of [10]. �

By the remark in page 6, we are interested in the operators corresponding to
bilateral Õ-ideals of order 2. By Proposition 2.3, any norm p bilateral Õ-ideal p
has order 2. There is also the one corresponding to the unique norm 1 bilateral

Õ-ideal m
Õ
of order 2, which will be denoted by W̃ . This ideal commutes with any

norm p bilateral Õ-ideal.

Proposition 2.4. The operator W̃ acts on M(Õ) as the Atkin-Lehner involution
Wp2, i.e.

φ(u, W̃v) = φ(u,v)|W
p2
.

Proof. In the basis of Õ-ideal classes we have

φ([a], W̃ [b]) = ϑ(a−1m
Õ
b) = ϑ((a−1m

Õ
a) a−1 b).

Clearly, a−1m
Õ
a is the unique norm 1 bilateral Rr(a)-ideal of order 2, and it thus

follows from [10, Theorem 9.20] applied to the orderRr(a) that ϑ((a
−1m

Õ
a)a−1 b) =

ϑ(a−1 b)|W
p2
. �

Corollary 2.5. Let f be an eigenform of level p, and let ef be a non-zero eigen-

vector in M(Õ)f . Then φ(ef , ef ) is a non-zero multiple of

f(z)− ǫp pf(pz),

where ǫp is the sign of the Atkin-Lehner involution at p, i.e. f |Wp
= ǫpf .

Proof. Since f is an old form, ef ∈ M(Õ)old. Locally, W̃ amounts to left multi-

plication by the element of order 2 in Õ
×
p \O×

p , which is clearly trivial in M(Õ)old.

Thus W̃ef = ef , and by the Proposition

φ(ef , ef )|W
p2

= φ(ef , ef ).

The statement follows from the fact that Wp2 acts on the oldspace generated by

f(z) and pf(pz) by the matrix
(

0 ǫp
ǫp 0

)
. �
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2.2. Multiplicity one. Let R,R′ be orders and a be a left R-ideal. We define

ΨR
R′(a) :=

{
b ∈ Ĩ(R′) : b ⊆ a, N b = N a

}
.

If a ∈ Ĩ(O), then the subgroup of rotations acts transitively (although not
necessarily faithfully) on the set ΨO

Õ
(a) (see Section 3.3 of [7]).

Let ρ denote a generator of the norm 1 bilateral Õ-ideals, then we have χ(ρ) =

−1 since the bilateral Õ-ideals of norm 1 are exactly ΨO

Õ
(O) and half of these

ideals have positive character while the other half have negative character. Also
Wρ2 preserves characters.

Lemma 2.6. If e ∈M(Õ) is an eigenvector for Wρ with eigenvalue ǫ = ±1, then
φ(e, e) is

(1) an oldform, if ǫ = 1;
(2) the quadratic twist of a level p form, if ǫ = −1.

Proof. Let ef be an element in M(Õ)f . Then ef can be written as

∑

[a]∈I(O)




∑

{[b]∈ΨO

Õ
(a) : χ([b])=1}/∼

n[b][b]

+
∑

{[b]∈ΨO

Õ
(a) : χ([b])=−1}/∼

n[b][b]




Since (Wρ)
2 = Wρ2 = 1 and ρ2 acts transitively on both sets of the previous sum,

we get that

ef =
∑

[a]∈I(O)
n[a]

∑
{[b]∈ΨO

Õ
(a) : χ([b])=1}/∼ [b]+

∑

[a]∈I(O)
m[a]

∑
{[b]∈ΨO

Õ
(a) : χ([b])=−1}/∼ [b].

Since χ(ρ) = −1,Wρ permutes the set on the first sum with the set on the second
one; since ef is an eigenvector of Wρ with eigenvalue ǫ = ±1, then n[a] = ǫm[a]

for all ideals [a] ∈ I(a). Clearly if ǫ = 1, then ef is in M(Õ)old and ef is as in
Corollary 2.5 i.e. it has the same eigenvalues as a weight 2 and level p form. On
the other hand, if ǫ = −1, then ef is the twist of an eigenvector in M(Õ)old (see
[8]) therefore it corresponds to a quadratic twist of a level p form, as claimed. �

Theorem 2.7. Let p be a norm p bilateral Õ-ideal. The algebra T0,p generated by

T0 and Wp is commutative, its action on the space M(Õ) is semisimple, and its
eigenspaces have multiplicity one.
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Proof. By the remark in page 6, we have that T0,p is commutative and its elements
are self-adjoint with respect to the height pairing.
We will now prove multiplicity one. Let f be a modular form of weight 2 and

level p2, and consider the eigenspaceM(Õ)f , which we know has dimension at most

2. Since W 2
p = 1, we will assume Wp = ±1 on M(Õ)f , as otherwise the statement

is clearly true.
In this case, we have the identity (on M(Õ)f )

Wρ = WρpWp = WpWρp = Wρ−1

(the middle equation comes from the fact that Wp = ±1.) Hence W 2
ρ = 1 on

M(Õ)f , and there is an eigenvector e ∈ M(Õ)f for Wρ with eigenvalue ±1. By
the Lemma, φ(e, e) is either an oldform or the quadratic twist of a level p form,
whose eigenspace for T0 is already one-dimensional. �

Corollary 2.8. The action of Wp on M(Õ) gives an orthogonal decomposition

M(Õ) = ker(Wp − 1)⊕ ker(Wp + 1),

and the action of T0 on each of the components has multiplicity one.

Proof. The claimed decomposition is clear because W 2
p = 1 on M(Õ), and the

multiplicity one on each of the components follows from the theorem. �

Remark 2.9.

(1) The action of Wp on M(Õ)old is given by left multiplication by p acting on
M(O). When f is an eigenform of level p, this action on M(O)f is known
to be −ǫp(f), where ǫp(f) is the eigenvalue of the Atkin-Lehner involution

|Wp
. Hence, M(Õ)f ⊆ ker(Wp + ǫp(f)).

(2) When f is the quadratic twist of an eigenform g of level p, one can see
that the operator Wp = −ǫp(g)χ(p) where χ(p) is the character of the left

Õ-ideal p. Basically, if Φ denotes the twisting operator in M(O), given

on a basis element [b] ∈ I(Õ) by Φ([b]) = χ(b)[b], it amounts to see that
WpΦ = χ(p)ΦWp.

Hence, M(Õ)f ⊆ ker(Wp + ǫp(g)χ(p)).

Recall from [9] there is a T0-linear map

Θ : M(Õ)→M3/2(4p,κp),

where κp(n) :=
(
p
n

)
is the quadratic character modulo p or 4p (according to

whether p ≡ 1 or 3 (mod 4), respectively). This map can be defined as

Θ([Õ]) :=
1

2

∑

x∈Õ/Z

q−∆x/p,



SHIMURA CORRESPONDENCE FOR LEVEL p
2

15

and extended to all of M(Õ) by conjugation, i.e.:

Θ([b]) := Θ([b−1
Õb]).

Note that Θ([ρb]) = Θ([b]), since ρ−1
Õρ = Õ. In other words the diagram

M(Õ)
Θ

++❲❲❲
❲❲

❲❲
❲

Wρ

��
M3/2(4p,κp)

M(Õ) Θ

33❣❣❣❣❣❣❣❣

is commutative.

Proposition 2.10. If e ∈ M(Õ) is an eigenvector for T0, and Θ(e) 6= 0, then e

is old.

Proof. If Θ(e) 6= 0, we may assume that e ∈ kerΘ⊥, since Θ is T0-linear.
Since ΘWρ = Θ, it follows that kerΘ is invariant by Wρ. Moreover, kerΘ⊥ is

also invariant by Wρ, because Wρ is unitary.
Hence, Wρ(e) ∈ kerΘ⊥, and the vector

e−Wρ(e)

is both in kerΘ⊥ and in kerΘ. Thus e is an eigenvector for Wρ with eigenvalue 1,
and the result follows from Lemma 2.6. �

2.3. Suborders and symmetries. In view of Proposition 2.10, the map Θ is
trivial on M(Õ)new. In order to obtain non-zero half-integral weight modular forms

corresponding to new vectors in M(Õ), we need to work with the orders of index

p in Õ, which we call orders of level p2 (see [9]). It is known that they play a very
important role in the theory of Shimura correspondence for level p2.

Remark 2.11. As suggested by the referee, we want to clarify the terminology
here. In [10], the author uses the name “orders of level p2” for Õ. In his context,
this was the natural term to use, since the main achievement was to construct
bases of integral weight modular forms and, using the trace formula, he proves
that weight 2 modular forms of level p2 appear in M(Õ). However, since orders
in quaternion algebras are in correspondence with ternary quadratic forms, it is
more natural to index orders by the level of the corresponding ternary form, which
was the definition we used in [9] and we maintain in this article. We hope this will
make no confusion to the reader.

We recall the following

Proposition 2.12. Let L ⊂ Õ be a lattice such that [Õ : L] = p. Then L is an
order if and only if Z+ pO ⊂ L.

Proof. This is Proposition 2.2 of [9]. �
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Proposition 2.13. If p is a norm p bilateral Õ-ideal then Z + p is an order
of index p in Õ. Conversely, if Rp is an order with [Õ : Rp] = p then L =

{x ∈ Rp : p | Tr x} is a norm p bilateral Õ-ideal.

Proof. Since p has norm p in Õ, by a local computation it follows that p ⊆ Õ, and
[Õ : p] = p2. Also it is easy to check that pO ⊂ p, hence Z + pO ⊂ Z + p and

[Õ : Z+ p] = p. By Proposition 2.12 it follows that Z+ p is an order.

For the converse, note that for x ∈ Õ we have p | Tr x if and only if p | N x .
Hence L = {x ∈ Rp : p | N x}, and it follows that RpL ⊆ L. Therefore, the left

order of L is either O, Õ or Rp. From the fact that all the lattices with one of

them as left order are locally principal (see [2]) and [Õ : L] = p2, it follows that L

is a left Õ-ideal of norm p, hence bilateral. �

Remark 2.14. Recall the definition of the character χ in an order Rp of index p

in Õ:

χ(Rp) :=

(−∆x/p
p

)
,

where x ∈ Rp such that p ‖ ∆x. This is well defined by [9, Lemma 2.3], and it’s
clear that

χ(Z+ p) = χ(p),

i.e. the correspondence preserves the character.

2.4. Theta series of weight 3/2. Using the correspondence given in the previous

section we define, for p a bilateral Õ-ideal of norm p, a map

Θp : M(Õ)→M3/2(4p
2,κp)

by

Θp([Õ]) := Θ([Z+ p]) =
1

2

∑

x∈Z+p/Z

q−∆x/p.

This definition extends to all of M(Õ) by conjugation, namely:

Θp([b]) := Θb−1pb([b
−1
Õb]).

In [9], for b ∈ I(Õ) and Rp = Z+ p, it is defined

ΘRp
([b]) := Θ(Rr(c)),

where c is any left Rp-ideal with index p in b.

Lemma 2.15. If Rp = Z+ p then Θp = ΘRp
.

Proof. If b ∈ I(Õ) and c is any left Rp-ideal with index p in b, we claim that
Rr(c) = Z+ b−1pb, which implies the assertion.
To see it, we prove equality of both orders at the different completions. For

primes q 6= p, the statement is trivial, since cq = bq and Rr(cq) = Rr(bq) =
b−1
q bq = (Z+ b−1pb)q.
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At p, if bp = Õpxp, we can take cp := (Zp + pp)xp (the global lattice c with
this local completions satisfies the hypothesis). Then Rr(cp) = Zp + x−1

p ppxp =

Zp + bp
−1ppbp as claimed. �

Note that
Θp([ρb]) = Θρ−1pρ([b]) = Θpρ2([b]),

hence for any rotation ρk we have:

M(Õ) Θ
pρ2k

++❱❱❱
❱❱

❱❱
❱

W
ρk

��
M3/2(4p

2)

M(Õ) Θp

33❤❤❤❤❤❤❤❤

Proposition 2.16. The image of the map Θp(M(O)f ) depends only on the char-
acter of p for any eigenform f .

Proof. If p and p′ are two bilateral ideals of norm p with the same character, then
they differ by the square of a rotation, say p = p′ρ2k. Since the operator Wρk

commutes with the Hecke operators, the space M(Õ)f is invariant under Wρk ,
hence the statement follows from the previous observation. �

Using the same argument for W̃ , since W̃ 2 = 1, we have the commuting triangle

M(Õ) Θp

++❱❱❱
❱❱

❱❱
❱

W̃
��

M3/2(4p
2)

M(Õ) Θp

33❤❤❤❤❤❤❤❤

hence ker(W̃ +1) ⊆ kerΘp; in other words, eigenvectors corresponding to modular
forms f with ǫ(f) = −1 have trivial image under Θp.
A similar computation shows that

Θp([pb]) = Θp−1pp([b]) = Θp([b]),

thus

M(Õ) Θp

++❱❱❱
❱❱

❱❱
❱

Wp

��
M3/2(4p

2)

M(Õ) Θp

33❤❤❤❤❤❤❤❤

and again we have ker(Wp + 1) ⊆ kerΘp.
Summarizing, we have

Proposition 2.17. In the irreducible components of M(Õ) where Θp is non-zero,

we have Wp = W̃ = 1. In particular, the image Θp(M(O)f ), for an eigenform f ,
is at most 1-dimensional.
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3. Special points for level p2

Following Section 1, we fix D < 0 an odd fundamental discriminant. We require
p | D, since there are no special points of discriminant D for Õ otherwise. Let K
be the imaginary quadratic field of discriminant D, and OK its ring of integers.
Let uD be half the number of units in OK , i.e. uD = 1

2
#O

×
K . Write D = p∗D0,

where p∗ =
(

−1
p

)
p.

Fix a rational prime q > 0 satisfying the conditions:

• q ∤ 2D.

•
(

−q
p

)
= −1.

• q ≡ −1 (mod D0).

By quadratic reciprocity, these conditions imply that q is split in K. We fix an
ideal q of OK of norm q, and note that its genus gen[q] is the only element of the
set

Q =
{
gen[q] : N q ≡ −p2 (mod D0)

}

appearing in Theorem A.14 below.
Let B = K +Kj with

j2 = −q,
and jk = k̄j for all k ∈ K, where k̄ is the complex conjugate of k.

Proposition 3.1. B is a quaternion algebra ramified precisely at p and ∞.

Proof. Clearly, B is a quaternion algebra over Q, so we just need to find the set

of ramified primes. In the basis
{
1,
√
D, j,

√
D j
}
, the norm form is

N(x0 + x1
√
D + x2j + x3

√
D j) = x20 −Dx21 + qx22 −Dqx23.

Since the norm form in B is positive definite, B ramifies at infinity. To check
whether B is ramified at a prime l or not, we need to see if the norm form represents
0 in Ql for each prime l. Consider the different cases:

• If l ∤ 2Dq then it is clear that B is split at l, since the discriminant of the
norm form is an l-adic unit in this case.
• If l = p, the norm form represents zero if and only if

(
−q
p

)
= 1. The second

condition on q assures that this is not the case, hence B ramifies at p.
• If l | D but l 6= p then the norm form represents zero if and only if

(−q
l

)
= 1,

which is clearly the case since −q ≡ 1 (mod l).

• If l = q, the norm form represents zero if and only if
(

D
q

)
= 1 which

is the case by quadratic reciprocity. In fact, the conditions in q imply
εD0

(−q) = +1 and εp∗(−q) = −1, hence εD(−q) = −1. Since D < 0 it

follows that
(

D
q

)
= 1 as claimed.
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Since the number of ramified primes for a quaternion algebra is even, we do not
need to consider the prime 2. �

Let D0 be the ideal in OK of norm D0, and pK the ideal of OK of norm p. To
simplify the notation, in this section only we will omit the subscript K writing
p = pK . Define

O :=
{
α + βj : α ∈ D−1

0 , β ∈ D−1
0 q−1, α− qβ ∈ OK

}
,

and
Õ :=

{
α + βj : α ∈ D−1

0 , β ∈ D−1
0 pq−1, α− qβ ∈ OK

}
,

This is consistent with the notation of the previous section by the following theo-
rem.

Theorem 3.2. O is a maximal order in B and Õ is the unique order of index p
in O.

Proof. To prove that O is an order, since 1 ∈ O and O is closed under addition,
we just need to check it is closed under multiplication. Let a1 + b1j, a2 + b2j ∈ O,
then

(a1 + b1j)(a2 + b2j) = (a1a2 − qb1b̄2) + (a1b2 + ā2b1)j.

To prove that this is in O, we claim that it belongs to Ol := O⊗Zl for all primes l.
Consider the cases:

• If l ∤ D0 the claim is clear, since in this case

Ol = (OK + q−1j)⊗ Zl,

with j2 = −q.
• If l | D0, then

a1a2 − qb1b̄2 = a1(a2 − qb2) + qb2(a1 − qb1) + qb1(qb2 − b̄2).
The first two terms clearly belong to D−1

0 ⊗ Zl. The last also belongs to
D−1

0 ⊗ Zl since q ≡ −1 (mod l), and b+ b̄ ∈ OK ⊗ Zl for all b ∈ D−1
0 ⊗ Zl.

Analogously,

(a1b2 + ā2b1) = (a1 − b1q)b2 + b1(b2q − a2) + b1(a2 + ā2),

and the same reasoning applies.
Finally, the proof that

(a1a2 − qb1b̄2)− q(a1b2 + ā2b1)j ∈ OK ⊗ Zl,

follows from a similar computation.

The proof that Õ is an order is the same, except for l = p, where Õp = (OK +

pj)⊗ Zp and the claim is clear. Also this shows that Õ has index p in O.
It remains to prove that O is maximal, or equivalently, that its reduced dis-

criminant is p. We compute the l-valuation of the discriminant for each prime
l:
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• If l ∤ Dq then Ol = (Ok+OKj)⊗Zl, and the discriminant of the norm form
in Ol is an l-adic unit.
• If l | D0, Ol ⊂ (D−1

0 + D−1
0 j) ⊗ Zl with index l. The discriminant of the

norm form in the latter is l−2 since l ∤ N j = q hence the discriminant of
the norm form in Ol is an l-adic unit.
• If l = q, Oq = (OK + q−1j) ⊗ Zq. Since N j = q, the discriminant of the
norm form in Oq is a q-adic unit.
• If l = p, Op = (OK + OKj) ⊗ Zp hence the discriminant of the norm form
in Op is p2 since p | D.

�

3.1. Counting special points. Recall that
〈
Õb, tmÕab

〉
=

1

2
#Hom(Õb, Õab)[m],

where

Hom(Õb, Õab)[m] :=
{
u ∈ Hom(Õb, Õab) : N u = mN a

}
.

Let D be the set of ideals,

D := {d : N d | D0}.
Note that the elements of D are in one to one correspondence with the elements

of order 1 or 2 of the class group I(OK), since D is odd and hence squarefree.

Lemma 3.3. Let a, b ideals of OK of norm prime to D, and let d ∈ D. Then
Hom(Õbd, Õabd) =

{
α + βj : α ∈ D−1

0 a, β ∈ D−1
0 pq−1b−1āb̄,

α + qβ ∈ (OK)l ∀ l | N d,

α− qβ ∈ (OK)l ∀ l | D0 and l ∤ N d
}
.

Proof. By definition, Hom(Õbd, Õabd) = (bd)−1
Õabd, i.e.

Hom(Õbd, Õabd) =
{
b0(α + βj)ab1 : (α + βj) ∈ Õ, b0 ∈ (bd)−1, b1 ∈ bd and a ∈ a

}
.

For α ∈ K, αj = jᾱ thus b0(α + βj)ab1 = ab0b1α + āb0b̄1βj. The first term lies
in D−1

0 a while the second one lies in D−1
0 q−1b−1āb̄ since d−1d̄ = OK .

We claim that ab0b1α− qāb0b̄1β ∈ OK ⊗ Zl for all primes l | D0/d. Indeed

ab0b1α− qāb0b̄1β = ab0b1(α− qβ) + qβb0(ab1 − ab1),
so the claim follows from the condition on the norms of a and b, and the definition
of Õ.
On the other hand, if l | d, then

ab0b1α + qāb0b̄1β = ab0b1(α− qβ) + qβb0(ab1 + ab1).
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The first term is in OK as before, and since b1 ∈ bd, l | ab1 + ab1 so the second
term lies in OK ⊗ Zl finishing the proof. �

We denote δ(n) := 2t, where t is the number of prime factors of gcd(n,D0). This
is relevant because of the following computation.

Lemma 3.4. With the same notation as above, let α ∈ D−1
0 a and β ∈

D−1
0 pq−1b−1āb̄ such that N(α + βj) ∈ Z, and set n = qN β |D0|

pN a
∈ Z. Then

#
{
d : d ∈ D, α + βj ∈ Hom(Õbd, Õabd)

}
= δ(n).

Proof. Take a prime l | D0. When l | n, it follows that N β ∈ Zl, hence β ∈ OK⊗Zl

(since l is ramified). Since N(α+βj) = Nα+qN β ∈ Z, it follows that α ∈ OK⊗Zl,
and the condition at l in the previous lemma is trivially satisfied for all d.
If l ∤ n, then neither α nor β are in OK ⊗ Zl, but lNα ∈ Zl and lN β ∈ Zl. We

claim that this implies α + ᾱ ∈ Zl and β + β̄ ∈ Zl. In fact, lα ∈ OK ⊗ Zl, hence
D | ∆(lα) = (lTr(α))2 − 4l(lNα). Since l | D, it follows that (lTrα)2 ∈ lZl, thus
Trα ∈ Zl.
Then, the condition Nα+ qN β ∈ OK ⊗Zl is equivalent to α

2− q2β2 ∈ OK ⊗Zl

(here we have used that q ≡ −q2 (mod l)). Therefore, either α− qβ ∈ OK ⊗Zl or
α+qβ ∈ OK⊗Zl, but not both. Therefore, the condition at l in the previous lemma
is satisfied for exactly half of the possible d. Namely, when α− qβ ∈ OK ⊗Zl, the
condition holds for all d with l ∤ N d, and when α + qβ ∈ OK ⊗ Zl, the condition
holds for all d with l | N d.
This implies the lemma, since the conditions on d for each l ∤ n are independent.

�

Let a and b be ideals of OK of norm prime to D as in the lemma, and consider
the map

Ψb : Hom(Õb, Õab)→ Ĩ(OK)× Ĩ(OK)

given by
u = α + βj 7→ (αD0a

−1, βD0qp
−1bb̄−1ā−1).

Note that Ψb is well defined by Lemma 3.3 (i.e. it maps to a pair of integral
lattices). Furthermore, its image is contained in

Λ :=
{
(L1,L2) : L1 ∼ pa−1, gen[L2] = gen[aq]

}
,

where by abuse of notation we allow L1 or L2 to be the zero ideal.
Moreover, if Ψb(α + jβ) = (L1,L2) then clearly

NL1 =
Nα |D0|

N a
, NL2 =

N β |D0|q
pN a

,

and so
NL1 + pNL2

|D0|
=

Nα + qN β

N a
=

N(α + βj)

N a
.
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Therefore, if we set

Λ[m] := {(L1,L2) ∈ Λ : NL1 + pNL2 = m|D0|},
the maps Ψb restrict to

Ψb : Hom(Õb, Õab)[m]→ Λ[m].

Lemma 3.5. The number of pairs (L1,L2) ∈ Λ[m] with NL2 = n is




1 if m = n = 0,

ra(m) if m > 0, n = 0,

Rgen[aq](n) if m|D| = p2n 6= 0,

ra(m|D| − p2n)Rgen[aq](n) if m|D| > p2n 6= 0.

Proof. Since NL2 = n, then the number of choices for this ideal is Rgen[aq](n) if
n 6= 0, and 1 otherwise. Similarly, NL1 = m|D0| − pn, and the number of choices
for L1 is either rpa−1(m|D0| − pn) (for m|D| > p2n) or 1 otherwise.
The result follows by noting that rpa−1(m|D0| − pn) = ra(m|D| − p2n), because

p is ramified; and when n = 0, since
√
D ∈ OK , this number is just ra(m|D|) =

ra(m). �

Lemma 3.6. Let (L1,L2) ∈ Λ[m], with NL2 = n. Then

∑

b∈I(OK)

#Ψ−1
b (L1,L2) =





hD if m = n = 0

2uDhD if m > 0, n = 0,

2uDδ(n) if m|D| = p2n 6= 0,

4u2Dδ(n) if m|D| > p2n 6= 0.

Proof. First note that #Ψ−1
b (L1,L2) depends only on the class of b, since the

following diagram commutes

Hom(Õb, Õab) Ψb

--❩❩❩❩❩
❩❩❩

❩❩❩
❩❩❩

❩❩❩
❩

conjugation by γ
��

Λ

Hom(Õbγ, Õabγ) Ψbγ

11❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞

for any γ ∈ OK .
Suppose n 6= 0. If b2aq ≁ L2, then Ψ−1

b (L1,L2) = ∅. Fix an ideal b0 such that
b20aq ∼ L2. Then the set of classes b such that b2aq ∼ L2 equals {b0d : d ∈ D},
hence ∑

b∈I(OK)

#Ψ−1
b (L1,L2) =

∑

d

#Ψ−1
b0d

(L1,L2).

Let α be a generator of L1D
−1
0 a (which is principal), and let β be a generator of

L2D
−1
0 āq−1pb−1

0 b̄0 (which is also principal by the choice of b0). Given such a pair
(α, β), we have

#
{
d : α + βj ∈ Ψ−1

b0d
(L1,L2)

}
= δ(n)
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by Lemma 3.4.
Now suppose n = 0: in this case L2 = 0 and it follows from Lemma 3.4 that

#Ψ−1
b (L1,L2) = 1 for all b, thus

∑

b∈I(OK)

#Ψ−1
b (L1,L2) = hD.

The statement follows by counting the number of choices for α and β, which can
be 2uD or 1 in each case (when the norm is non-zero or zero, respectively). �

The following formula extends [4, Proposition 10.8] to level p2.

Theorem 3.7. Let a be an ideal for OK. Then

(3)
∑

b∈I(OK)

〈
Õb, tmÕab

〉
= uDhDra(m)

+ 2u2D

|D|m/p2∑

n=1

δ(n) ra(m|D| − p2n)Rgen[aq](n),

where δ(n) := 2t, with t being the number of prime factors of gcd(n,D0).

Proof. We have
∑

b∈I(OK)

〈
Õb, tmÕab

〉
=

1

2

∑

b∈I(OK)

#Hom(Õb, Õab)[m]

=
1

2

∑

b∈I(OK)

∑

(L1,L2)∈Λ[m]

#Ψ−1
b (L1,L2).

In order to evaluate this we split the inner sum by the norm of the ideal L2. This
is suitable to apply Lemmas 3.5 and 3.6, which together give

1

2

∑

b∈I(OK)

∑

(L1,L2)∈Λ[m]
NL2=n

#Ψ−1
b (L1,L2)

=

{
uDhDra(m) if n = 0,

2u2D δ(n) ra(m|D| − p2n)Rgen[aq](n) if n 6= 0.

Note that the four different cases of the lemmas become just two cases by use of
the convention ra(0) =

1
2uD

.
The statement follows by adding this expression over n ≥ 0. �

3.2. Special points and central values of L-series. Let f be a cusp form in
Snew
2 (Γ0(N)). In the appendix we recall the definition of an L-series LA(f, s), a

Rankin convolution of L(f, s) and a partial zeta function associated to an ideal
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class A of Q(
√
D). These L-series are interesting due to their relation to the

L-series of f and its twists; for instance we have the factorization
∑

A

LA(f, s) = L(f, s)L(f,D, s),

where the sum is over all ideal classes of Q(
√
D). The main result of the appendix

is the following generalization of [5, (4.4) p.283] regarding the central values of
this L-series.

Theorem 3.8 (Theorem A.14). Let D < 0 be an odd fundamental discriminant,

A be an ideal in Q[
√
D] and f(z) be a cusp form in Snew

2 (Γ0(N)). Then,

LA(f, 1) =
8π2

√
|D|
〈f, gA〉,

with gA = g
(N)
A

=
∑
bA(m)qm, where

(4) bA(m) :=
1− εD(Nη)

2
· h(D)

uD
rA(m)

+
∑

gen[q]∈Q

|D|m/N∑

n=1

δ(n)rA(m|D| − nN)Rgen[Aq](n),

where the first sum is over the set of genera

Q := {gen[q] : N q ≡ −N (mod D0)},
and where δ(n) := 2t, with t the number of prime factors of gcd(n,D0).

Comparing the right hand side of (3) in Theorem 3.7 with the formula (4) for

the Fourier coefficients of the form g
(p2)
A

in Theorem A.14, we obtain an explicit

formula for g
(p2)
A

in terms of special points.

Corollary 3.9. On the above notation,

(5) g
(p2)
A

=
1

2u2D

∑

b∈I(OK)

φ(Õb, Õab),

Proof. In the formula for bA(m) of Theorem A.14, note that εD(Nη) = 0 (since
N = p2 and p | D in our case), and the set Q consists of a unique element gen[q].
Then the statement follows immediately from Theorem 3.7. �

Assume now f is a normalized eigenform in Snew
2 (p2). Fix a character ϕ of

I(OK), and define

Lϕ(f, s) :=
∑

A

ϕ(A)LA(f, s).

Consider cϕ =
∑

a ϕ
−1(a) Õa ∈ M(Õ), and denote cf,ϕ its projection to the f -

isotypical component of M(Õ).
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Proposition 3.10.

Lϕ(f, 1) =
4π2

u2D
· 〈f, f〉√
|D|
〈cf,ϕ, cf,ϕ〉.

Proof. The proof is similar to Proposition 11.2 of [4], given Theorem A.14 and

Corollary 3.9. In our case, the f -isotypical component in M(Õ) may have di-
mension 2; however, since f is new, the f -isotypical component of Snew

2 (p2) has
dimension 1, and the same reasoning as given by Gross still applies. �

Remark 3.11. If the f -isotypical component M(Õ)f is zero, the proposition im-
plies that Lϕ(f, 1) = 0 for all characters ϕ. Equivalently,

LA(f, 1) = 0

for all ideal classes A, and for all discriminants, whenever f is a twist of a form of
level p by a non-quadratic character.

4. Proof of the Main Theorem

In this section we want to relate the central value of the L-series Lϕ(f, 1) to
coefficients of half-integral weight modular forms. We will assume from now on
that ϕ = 1D. This case of the Rankin convolution L-series is related to our main
formula because of the factorization

L1D(f, s) = L(f, s)L(f,D, s).

We will start with the case of odd discriminants D, which follows from the
results in Section 3. The case of even discriminants could be proved by a similar
calculation, but we avoid the technical difficulties of this case by resorting to a
theorem of Waldspurger. This step is done in the proof of Theorem 4.11; until
then we will assume that the discriminant D is odd, just so that we can use the
results in previous sections.
Let P denote the set of norm p bilateral Õ-ideals. If b ∈ M(Õ), p ∈ P , and D

is a negative fundamental discriminant, with D = −pd, the coefficient of qd in the
q-expansion of Θp([b]) is

(6) cd,p(b) =
1

2
#
{
x ∈ Z+ b−1pb/Z : ∆x = D

}
.

Let cd,p :=
∑

[b] cd,p(b)[b]. Then if e ∈M(Õ), the coefficient of qd in the q-expansion

of Θp(e) is 〈cd,p, e〉.
We want to give an adèlic description of this set. Let ωD ∈ OK an element of

discriminant D; adding an integer we will assume that TrωD ≡ 0 (mod p). It’s
easy to check that then OK = 〈1, ωD〉 and pK = 〈p, ωD〉. Moreover,

4 NωD = (TrωD)
2 −D ≡ −D (mod p2).

Fix an embedding i : K →֒ B, and let x = i(ωD). Once such embedding is fixed, by
Proposition 1.4 the special points of discriminant D correspond to some elements
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in the double coset Ĩ(Õ)/K×. Explicitly, let x ∈ Z + b−1pb of discriminant D;
adding an integer we may assume that Tr x = Trx. Hence N x = N x as well, and
so there exists α ∈ B×/K× with

α−1xα = x.

The correspondence associates to x the OK-point bα. The condition x ∈ Z+b−1pb

translates to the condition x ∈ Z+ (bα)−1p(bα).
For p ∈ P , define

Cp :=
{
a ∈ Ĩ(Õ) : (a, i) is a special point for OK and x ∈ a−1pa

}
.

Recall from Section 1 that (a, i) is a special point for OK if Rr(a) ∩K = OK .

Lemma 4.1. Cp is closed under the action of K̂× by right multiplication, i.e.

CpK̂× = Cp.
Proof. Let a ∈ Cp and α̂ ∈ K̂×. By Proposition 1.5, aα̂ is an OK-point. Since
x ∈ a−1pa,

α̂−1xα̂ ∈ (aα̂)−1p(aα̂).

But α̂−1xα̂ = x, because all elements are in K̂, which is commutative. Then
aα̂ ∈ Cp as claimed. �

Lemma 4.2. Cp is closed under the action of W̃ by left multiplication.

Proof. Recall from Section 1 that the bilateral ideals act on the OK-points by left

multiplication. Let a ∈ Cp; then x ∈ a−1pa, and we must show that W̃a ∈ Cp. But
W̃ is the order two rotation of the group of bilateral Õ-ideals (which is a dihedral
group), hence it commutes with p for any p ∈ P . Thus,

x ∈ a−1pa = (W̃a)−1p(W̃a),

hence W̃a ∈ Cp as claimed. �

The last two lemmas imply that Cp is closed under the action of {1, W̃}×I(OK).
Moreover, cd,p(b) =

1
2
#{a ∈ Cp/K× : a ∼ b}.

Let R be an order in the same genus of Õ such that i(OK) ⊆ R. In particular,
x ∈ R. Such an order R exists because p | D. Indeed, i(OK) is contained in
some maximal order R0 of B; but the condition p | D implies that p | ∆ x for all
x ∈ i(OK), hence i(OK) is actually contained in the unique order of index p in R0.

Lemma 4.3. Assume that χ(p) =
(

d
p

)
. Then, there is an α̂ ∈ B̂× such that

(1) α̂−1
Õα̂ = R,

(2) α̂−1pα̂ = R i(pK).

Moreover, α̂ modulo multiplication by Q×, is unique up to left multiplication by

the group generated by W̃ and Wp.
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Proof. Since R is in the same genus as Õ, there exists α̂ satisfying the first condi-
tion. Two such elements differ by a bilateral Õ-ideal.
We claim that the left R-ideal R i(pK) is a bilateral ideal. It is enough to prove

that all the localizations are bilateral ideals. Since R i(OK) = R, and (OK)q =
(pK)q at all primes q 6= p, the localizations at primes q 6= p give bilateral ideals.
At the ramified prime p, there is a unique maximal order, and a unique order of
index p in it, hence the localization at p must also give a bilateral ideal.
Recall that the group of bilateral Õ-ideals modulo Q× is a dihedral group. We

claim that χ(R i(pK)) =
(

d
p

)
. Indeed, x ∈ R i(pK) and N x = NωD ≡ −D

4

(mod p2), hence
(

Nx/p
p

)
=
(

−D/(4p)
p

)
=
(

d
p

)
. Then by assumption χ(R i(pK)) =

χ(p), hence α̂−1pα̂ and R i(pK), being bilateral, are in the same orbit by conju-
gation in this dihedral group. Thus the second condition holds by changing α̂
accordingly.
The last statement follows from the fact that the stabilizer of p in the dihedral

group is the group generated by W̃ and Wp. �

Note that, for an ideal class [a] in I(OK), the Õ-ideal α̂R i(a) with α̂ as in the
lemma is an OK-point, since x ∈ i(pK). Then we define

CD,p :=
{
α̂ R i(a) : [a] ∈ I(OK)

}
∪
{
W̃ α̂ R i(a) : [a] ∈ I(OK)

}
.

Lemma 4.4.

(1) Wp CD,p = CD,p.
(2) CD,p is independent of the choice of α̂.

Proof. The first statement follows from

pα̂R i(a) = α̂R i(pK) i(a) = α̂R i(pK a),

since multiplication by pK is a permutation of I(OK). For the second statement

note that clearly W̃ CD,p = CD,p, and use the final statement of the previous lemma.
�

Theorem 4.5. With the previous notation,

CD,p = Cp/K×.

Proof. Let α̂ be as in Lemma 4.3, so that α̂R ∈ CD,p. Then α̂R = Õα̂ by the first
condition in the lemma, and the second condition implies that it is in Cp.
Then, by Lemma 4.1 and Lemma 4.2, CD,p ⊆ Cp/K×. The theorem follows from

the fact that Cp/K× has exactly 2hD elements, where hD is the class number of
OK . This will be proved in the following lemmas.
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Lemma 4.6. We have

{OK-points for Õ} =
⋃

p∈P
Cp/K×.

Furthermore, the union is disjoint.

Proof. The fact that the set of OK-points are the union over the norm p bilateral
Õ-ideals follows from the fact that there is a bijection between bilateral ideals of
norm p and orders of index p in Õ (given by p↔ Z+p) and the union of such orders

is Õ. The second claim comes from the fact that the intersection of two different
index p suborders of Õ gives Z + pO, hence the discriminant of such elements is
divisible by p2. �

Lemma 4.7. If χ(p) 6=
(

d
p

)
then Cp = ∅.

Proof. If Cp 6= ∅, there exists α̂ such that x ∈ α̂−1pα̂. By definition, χ(α̂−1pα̂) is
computed by choosing an element in this ideal of norm divisible by p but not by
p2. Since x is such an element,

χ(p) = χ(α̂−1pα̂) =

(
N x/p

p

)
=

(−D/p
p

)
=

(
d

p

)
.

�

Proposition 4.8. If p1, p2 ∈ P with χ(p1) = χ(p2) then Cp1 and Cp2 have the same
number of elements.

Proof. If χ(p1) = χ(p2) there exists a rotation o in the group of bilateral ideals
such that o−1p2o = p1. Then oCp1 = Cp2 , where the action is given by left
multiplication. �

Lemma 4.9. The number of OK-points for O is hD.

Proof. The set of OK-points is an homogeneous space for Bil(O)/Q××I(OK). The
results follows from the fact that Bil(O)/Q× has two elements, and the norm p

ideal in Bil(O) acts as the ideal pK ∈ Ĩ(OK). �

Proposition 4.10. The number of OK-points for Õ is (p+ 1)hD.

Proof. See Theorem 2.7 and Theorem 4.8 of [10]. �

The last proposition asserts that the total number of OK-points for Õ is (p+1)hD.
By Lemma 4.6, this equals

∑
p∈P #Cp/K×. By Lemma 4.7, half of this numbers

are zero and by Proposition 4.8 all the non-empty sets have the same number of
elements. This implies that

#Cp/K× = 2hD,

which finishes the proof of Theorem 4.5. �
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In particular, 2 cd,p =
∑

b∈CD,p
[b] in M(Õ). Since Wp commutes with T0 and

acts trivially on cd,p, then the projection cf,p to the f -isotypical component is a
vector on which Wp acts trivially.

Assume there is a non-zero eigenvector ef ∈ M(Õ)f with Wp ef = ef , as oth-

erwise cf,p = 0 and L(f, 1) = 0 by Proposition 3.10. When dimM(Õ)f = 2, this
vector always exists by Theorem 2.7 (multiplicity one). In any case ef is unique
up to a constant, and therefore

cf,p =
〈cd,p, ef〉
〈ef , ef〉

ef ,

and

(7) 〈cf,p, cf,p〉 =
|〈cd,p, ef〉|2
〈ef , ef〉

.

Theorem 4.11 (Main Theorem). Let f be a new eigenform of weight 2, level

p2 with p > 2 an odd prime. Fix a norm p bilateral Õ-ideal p, and let ef be an

eigenvector in the f -isotypical component of M(Õ) such that Wp(ef ) = ef .
If d is an integer such that D = −pd < 0 is a fundamental discriminant, and

such that
(

d
p

)
= χ(p), then

L(f, 1)L(f,D, 1) = 4π2 〈f, f〉
〈ef , ef〉

c2d√
pd
,

where the cd are the Fourier coefficients of Θp(ef ) =
∑

d≥1 cd q
d.

Proof. • First case: odd discriminants.
By Proposition 3.10,

L(f, 1)L(f,D, 1) = L1D(f, 1) =
4π2

u2D
· 〈f, f〉√
|D|
〈cf , cf〉,

where cf is the projection of c1 =
∑

aRa to the f -isotypical component in M(Õ).
Since Wp acts trivially in c1, it acts trivially in its projection cf so we just need
to project it to the eigenspace where Wp acts trivially.
Since 2 cd,p =

∑
b∈CD,p

[b], from the definition of CD,p we get

〈cd,p, ef〉 =
1

2

(
〈c1, ef〉+

〈
W̃c1, ef

〉)
.

If the operator W̃ acts as −1 in ef , then cd = 〈cd,p, ef〉 = 0 and the left hand
side of the main formula also vanishes (since the sign of the functional equation

is −1 in this case). Otherwise, W̃ acts trivially in ef and so 〈cd,p, ef〉 = 〈c1, ef〉,
hence cf,p = cf . Therefore

〈cf , cf〉 = 〈cf,p, cf,p〉 =
|〈cd,p, ef〉|2
〈ef , ef〉

=
cd

2

〈ef , ef〉
.
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• Second case: even discriminants. The modular form Θp(ef ) lies in the space
S3/2(4p

2,κp) and maps to f via the Shimura correspondence. In this situation,
Corollary 2 of [14] states:

Theorem 4.12 (Waldspurger). Let pd1, pd2 ∈ N be square-free integers, and sup-

pose that d1/d2 ∈ Q×
q
2
for q = p and q = 2. Then one has the equality

c2d1 L(f,−pd
†
2, 1)

√
pd2 = c2d2 L(f,−pd

†
1, 1)

√
pd1,

where −pd†i is the discriminant of the quadratic field Q[
√−pdi].

For the particular case of Θp(ef ), one actually has

Proposition 4.13. Let −pd1 and −pd2 be fundamental discriminants and suppose
that d1/d2 ∈ Q×

p
2
. Then one has the equality

c2d1 L(f,−pd1, 1)
√
pd2 = c2d2 L(f,−pd2, 1)

√
pd1.

We show that the case of even discriminants of the Main Theorem follows from
Proposition 4.13. By Theorem 4 of [15], there exists an odd fundamental discrim-
inant −pd0 such that L(f,−pd0, 1) 6= 0. The Main Theorem for odd fundamental
discriminants implies that the coefficient cd0 6= 0. Let −pd be an even fundamental
discriminant, then

L(f,−pd, 1)L(f, 1) = L(f,−pd, 1)
L(f,−pd0, 1)

L(f,−pd0, 1)L(f, 1)

=
c2d√
pd

√
pd0
c2d0

L(f,−pd0, 1)L(f, 1)

= 4π2 〈f, f〉
〈ef , ef〉

c2d√
pd

where the second equality follows from Proposition 4.13 and the last one follows
from the Main Theorem for odd fundamental discriminants. �

Proof of Proposition 4.13. To prove the result, we follow the proof of the Corollary
2 in [14]. The same reasoning implies the result once we prove that the local factor
at 2 of the weight 3/2 modular form Θp(ef ) is the same for pd1 and pd2. Let λ2
be the eigenvalue of the Hecke operator T2 acting on f . Let α, α′ denote the roots
of the polynomial x2 − λ2√

2
x+ 1.

The space S3/2(4p
2,κp) is 4-dimensional. Generators for this space are obtained

by choosing 2 local functions at the prime p and 2 local functions at the prime
2. Following the notation of [14] (p.453), define the functions c′2[δ] and c

′′
2[δ] on d

(where −pd is a fundamental discriminant) by:

c′2[δ](d) :=

{
δ − (2, d)2 κp,2(2)/

√
2 if 2 ∤ d.

δ if 2 | d,
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where (∗, ∗)2 denotes the Hilbert symbol at 2, and κp,2 is the character on Q×
2

associated to κp. And the function

c′′2[δ](d) := δ.

Then the set of local functions at the prime 2 is given by
{
{c′2[α], c′2[α′]} if α 6= α′,

{c′2[α], c′′2[α]} if α = α′.

Moreover, we have c′2[α](d) = 1 for 2 ‖ d. But since the coefficients cd of Θp(ef )
vanish in this case, its local function at 2 (up to a global constant) must be, in the
first case,

c′2[α]− c′2[α′].

This function clearly attains the same value at odd and even values of d (namely
α− α′).
In the second case, the local function at 2 must be c′′2[α], since c

′′
2[α](d) = 0 when

2 ‖ d. This function also clearly attains the same value for odd and even values of
d. The rest of the proof is exactly the same as Waldspurger. �

Appendix A. Rankin’s Method

Notation A.1. If n,m are integers, we write n | m∞ if every prime factor of n
divides m. We denote by gcd(n,m∞) the unique positive integer M that satisfies

• M | n,
• M | m∞,
• gcd( n

M
,m) = 1.

Let D < 0 be a fundamental discriminant. If A is an ideal class of Q(
√
D), we

denote ΘA the theta series

ΘA(z) :=
∞∑

n=0

rA(n)q
n =

1

2

∑

x∈a
qN(x)/N a,

where a is any ideal in the class A. It is well known that ΘA is a weight 1 modular
form of level |D| and nebentypus εD, where εD : (Z/DZ)× → C× denotes the

character εD(n) =
(
D
n

)
of the field Q(

√
D).

Definition A.2. Let f(z) =
∑
a(n)qn be a cusp form in Snew

2 (Γ0(N)). Define

LA(f, s) :=


 ∑

(m,N)=1

εD(m)

m2s−1


 ·

( ∞∑

m=1

a(m)rA(m)

ms

)

which converges for ℜ(s) > 3/2.
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A.1. Rankin’s Method. For each decomposition D = D1D2 of D as the product
of two fundamental discriminants, define the Eisenstein series

E(D1,D2)
s (z) :=

1

2

∑

m,n∈Z
D2|m

εD1
(m) εD2

(n)

(mz + n)

ys

|mz + n|2s

The series E
(D1,D2)
s (z) is a non-holomorphic weight 1 modular form of level |D|

and Nebentypus εD.
Let η = gcd(N,D) and N0 = N/η. In [5], they work in the case η = 1; when N

is a perfect square, this restriction makes their formula for the central value vanish
trivially on both sides (see the remark after Proposition A.12).

Proposition A.3.

(4π)−sΓ(s)LA(f, s) = 〈f,Gs̄−1,A〉Γ0(N)

where

Gs,A(z) := Tr
N0|D|
N

(
ΘA(z)E

(1,D)
s (N0z)

)

Proof. Similar to [5, (1.2) p. 272]. �

A.2. Computation of the trace. For D a fundamental discriminant, let

κ(D) :=

{
1 if D > 0

i if D < 0.

If D = D1D2 is a decomposition of D as the product of two fundamental dis-
criminants, χD1,D2

denotes the corresponding genus character, i.e. for ideals A of
norm prime to D, χD1,D2

(A) = εD1
(NA) = εD2

(NA).
Recall the usual operator

U|D|(f) :=
1

|D|
∑

j mod |D|
f

(
z + j

|D|

)

on spaces of modular forms.

Proposition A.4. Assume D is odd. Then the function Gs,A(z) defined in the
last proposition is given by

Gs,A(z) = (Es(N0z)ΘA(z))|U|D|
,

where

(8) Es(z) :=
∑

D=D1D2

εD1
(Nη)χD1,D2

(A)

κ(D1) |D1|s+1/2
E(D1,D2)

s (|D2|z)

The sum is over all decompositions of D as a product of two fundamental discrim-
inants D1 and D2.
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Proof. As in [5, (2.4) p.276], we can prove the result with

Es(z) =
∑

D=D1D2

gcd(D1,η)=1

εD1
(N0)χD1,D2

(A)

κ(D1) |D1|s+1/2
E(D1,D2)

s (|D2|z)

and the statement follows since

εD1
(Nη) =

{
εD1

(N0) when gcd(D1, η) = 1,

0 otherwise.

�

A.3. Fourier expansions. From now on we will assume D is odd as in Proposi-
tion A.4. This implies that η is odd and squarefree.
We first give an explicit description of the Fourier coefficients of the function

Es(z) defined in (8) above.

Proposition A.5. We have

Es(z) =
∑

n∈Z
es(n, y)e

2πinx.

where the coefficients are given by

es(0, y) = L(εD, 2s+ 1) (|D|y)s + εD(Nη)

i
√
|D|

Vs(0)L(εD, 2s) (|D|y)−s

if n = 0 and by

es(n, y) =
i√
|D|

(|D|y)−s Vs(ny)
∑

d|n
d>0

εA(n, d)

d2s

if n 6= 0, with

εA(n, d) := εD1
(−Nη d) εD2

(n/d)χD1,D2
(A)

for the unique decomposition D = D1D2 as a product of fundamental discriminants
such that |D2| = gcd(D, d), and where

V0(t) :=





0 if t < 0

−πi if t = 0

−2πie−2πt if t > 0

Proof. The proof from [5, (3.2) p.277] works, with the following differences:

• Replace εD1
(N) by εD1

(Nη), as in (8).
• In the last step of the computation of es(n, y), in [5] they use the identity

iεD1
(−N) =

εD(N)

i
εD2

(−N),
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which is only true in the case (D2, N) = 1. Thus a formula like theirs is
good only so far as η = 1, but ours is always true.

�

Note that εA(n, d) = 0 unless η | d. In particular, es(n, y) = 0 unless η | n.
To ease notation, write η∗ =

(
−1
η

)
η and D0 = D/η∗, so that D = η∗D0 is a

discriminant decomposition, and N is prime to D0 (because we are assuming D is
odd, hence squarefree).
We let

ε̃A(n, d) := εA(ηn, ηd)

= εD1
(−Nd)εη∗D2

(n/d)χD1,η∗D2
(A),

(9)

for the unique decomposition D0 = D1D2 as a product of fundamental discrimi-
nants such that |D2| = gcd(D0, d).

Corollary A.6. The Fourier coefficients of

G0,A(z) =
2π√
|D|

∞∑

m=0

bA(m)qm,

are given by

bA(m) =

|D|m/N∑

n=0

σA(n) rA(m|D| − nN),

where

σA(n) =

√
|D|
2π

e0(ηn, y) e
2πηny

=





√
|D|
2π

L(εD, 1)− εD(Nη)
2

L(εD, 0) for n = 0∑
d|n
d>0

ε̃A(n, d) for n > 0

Proof. Similar to [5, (3.4) p.281]. �

Proposition A.7.

σA(0) =
1− εD(Nη)

2
· h(D)

uD

Proof.

σA(0) =

√
|D|
2π

L(εD, 1)−
εD(Nη)

2
L(εD, 0).

But √
|D|
2π

L(εD, 1) = L(εD, 0) =
h(D)

uD
,

by the class number formula and the functional equation for L(εD, s). �
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Denote:

σA(n0, n1) :=
∑

d0|n0

d0>0

ε̃A(n0n1, d0).

Recall that the number of integral ideals of norm n in Q(
√
D) is

RD(n) =
∑

d|n
d>0

εD(d).

Lemma A.8. For n > 0

(1) If d0d1 | n with gcd(d1, D) = 1, then

ε̃A(n, d0d1) = ε̃A(n, d0) εD(d1).

(2) If n = n0n1 with gcd(n1, n0D) = 1, then

σA(n) = σA(n0, n1)RD(n1).

(3) Let n = n0n1, where n0 = gcd(n,D∞). Then

σA(n) = σA(n0, n1)RD(n)

Proof.

(1) Follows from the definition of ε̃A(n, d) in (9), because the hypothesis implies
gcd(D0, d0d1) = gcd(D0, d0).

(2) if gcd(n1, n0D) = 1 then

σA(n0n1) =
∑

d0|n0

∑

d1|n1

ε̃A(n0n1, d0d1) (since gcd(n0, n1) = 1)

=
∑

d0|n0

∑

d1|n1

ε̃A(n0n1, d0) εD(d1) (by part (1))

= σA(n0, n1)
∑

d1|n1

d1>0

εD(d1)

= σA(n0, n1)RD(n1).

(3) Since n/n1 = n0 | D∞, there is a unique ideal of norm n/n1, hence
RD(n1) = RD(n). Thus the statement follows directly from (2).

�

Lemma A.9. Let η̃ = gcd(n, η∞), and n′ = gcd(n,D∞
0 ). Then

σA(n) = ε̃A(n, η̃) ·
∑

d′‖n′

ε̃A(n, η̃d
′)

ε̃A(n, η̃)
·RD(n)
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Proof. First note that

ε̃A(n, η̃) = εD0
(−N η̃) εη∗(n/η̃)χD0,η∗(A).

Since gcd(η, n/η̃) = 1, and gcd(D0, Nη̃) = 1, it follows that

ε̃A(n, η̃) 6= 0.

Let n = n0n1 with n0 = gcd(n,D∞) as in the previous lemma, and note that
n0 = η̃n′, since η and D0 are relatively prime.
Suppose d0 | n0 is such that ε̃A(n, d0) 6= 0. By the definition of ε̃A, it follows

that

εη∗(n/d0) 6= 0 and εD2
(n/d0) 6= 0,

where |D2| = gcd(D0, d0). The first inequality implies that η̃ | d0, so we can write
d0 = η̃d′, where d′ | n′. Since d′ | n′ | D∞

0 , and |D2| = gcd(D0, d0), it follows that
d′ | D∞

2 . The second inequality implies εD2
(n′/d′) 6= 0, and so we finally conclude

that d′ ‖ n′.
It follows from the above discussion that

σA(n0, n1) =
∑

d′‖n′

ε̃A(n, η̃d
′)

= ε̃A(n, η̃) ·
∑

d′‖n′

ε̃A(n, η̃d
′)

ε̃A(n, η̃)

This finishes the proof by Lemma A.8 (3). �

Lemma A.10. The function

d′ 7→ ε̃A(n, η̃d
′)

ε̃A(n, η̃)

is multiplicative. In particular,

∑

d′‖n′

ε̃A(n, η̃d
′)

ε̃A(n, η̃)
=

{
δ(n) if all terms are 1,

0 otherwise

where δ(n) := 2t, with t the number of prime factors of gcd(n,D0).

Proof. Let D0 = D1D2 where |D2| = gcd(D0, d
′). We have

ε̃A(n, η̃d
′) = εD1

(−Nη̃d′) εη∗D2

(
n

η̃d′

)
χD1,η∗D2

(A)

and

ε̃A(n, η̃) = εD0
(−Nη̃) εη∗

(
n

η̃

)
χD0,η∗(A)
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Hence

ε̃A(n, η̃d
′)

ε̃A(n, η̃)
= εD1

(d′) εD2
(−Nη̃) εη∗(d′) εD2

(
n

η̃d′

)
χη∗D1,D2

(A)

= εη∗D1
(d′) εD2

(
−N n

d′

)
χη∗D1,D2

(A)

(we have used χD1,η∗D2
= χD0,η∗ · χη∗D1,D2

).
To check multiplicativity, let d′ = d′′d′′′ with gcd(d′′, d′′′) = 1, and let D0 =

D′′
1D

′′
2 = D′′′

1 D
′′′
2 be the discriminant decompositions corresponding to d′′ and d′′′,

i.e. |D′′
2 | = gcd(D0, d

′′) and |D′′′
2 | = gcd(D0, d

′′′). Note that D2 = D′′
2D

′′′
2 , and so

D′′
1 = D1D

′′′
2 and D′′′

1 = D1D
′′
2 .

Then
ε̃A(n, η̃d

′′)

ε̃A(n, η̃)
= εη∗D′′

1
(d′′)εD′′

2
(d′′′)εD′′

2

(
−N n

d′

)
χη∗D′′

1
,D′′

2
(A)

and
ε̃A(n, η̃d

′′′)

ε̃A(n, η̃)
= εη∗D′′′

1
(d′′′)εD′′′

2
(d′′)εD′′′

2

(
−N n

d′

)
χη∗D′′′

1
,D′′′

2
(A).

Hence the product

ε̃A(n, η̃d
′′)

ε̃A(n, η̃)
· ε̃A(n, η̃d

′′′)

ε̃A(n, η̃)

= εη∗D′′
1
D′′′

2
(d′′)εη∗D′′′

1
D′′

2
(d′′′)εD2

(
−N n

d′

)
χη∗D1,D2

(A)

= εη∗D1(D′′′
2
)2(d

′′)εη∗D1(D′′
2
)2(d

′′′)εD2

(
−N n

d′

)
χη∗D1,D2

(A)

= εη∗D1
(d′)εD2

(
−N n

d′

)
χη∗D1,D2

(A)

=
ε̃A(n, η̃d

′)

ε̃A(n, η̃)
.

�

Lemma A.11. Suppose there is an ideal a ∈ A such that N a ≡ −nN (mod D),
and let b be an ideal of norm n. Then the following conditions are equivalent:

(1) ε̃A(n,η̃d′)
ε̃A(n,η̃)

= 1 for all d′ ‖ n′.

(2) χl∗,D/l∗(ab) = εl∗(−N) for all prime discriminants l∗ | D0.
(3) There is an ideal q in the same genus as ab such that

N q ≡ −N (mod D0).

Moreover, this also implies
ε̃A(n, η̃) = 1

Proof. We first prove that (1) implies (2). Let l∗ be a prime discriminant with
l | D0, and consider the following two cases:
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• l ∤ n: then gcd(N ab, l) = 1, so χl∗,D/l∗(ab) = εl∗(N ab) = εl∗(−N), by
hypothesis.
• l | n: use (1) with d′ = gcd(n, l∞), thus |D2| = l, and we have

χD/l∗,l∗(a) = εD/l∗(d
′) εl∗(−N

n

d′
)

= εl∗(−N) εD/l∗(d
′) εl∗(n/d

′)

= εl∗(−N)χD/l∗,l∗(b),

where the last equality holds since d′ | D.

To prove that (2) implies (1), note that since the expression in (1) is multiplica-
tive, it is enough to check it for d′ = gcd(n, l∞), where l is any prime dividing n′.
Since l | n, a computation similar to the second case above applies.
Clearly (3) implies (2); to see the converse take an ideal c in the same genus as

ab, with gcd(N c, D0) = 1. By (2), we know that

N c ≡ −Nr2 (mod D0)

for some r ∈ (Z/D0)
×, and we can take q = r̃c where r̃ ∈ Z is such that r̃r ≡ 1

(mod D0).
For the final assertion, we use the definition of ε̃A in (9) with d = η̃, so that

D1 = D0 and D2 = η∗, and thus

ε̃A(n, η̃) = εD0
(−Nη̃) εη∗(n/η̃)χD0,η∗(A)

= εD0
(−N)χD0,η∗(b)χD0,η∗(A),

since χD0,η∗(b) = εD0
(η̃) εη∗(n/η̃). Hence,

ε̃A(n, η̃) = εD0
(−N)χD0,η∗(q)

= εD0
(−N) εD0

(−N) = 1.

�

Denote by Rgen[b](n) the number of integral ideals of norm n in a given genus
gen[b]. We can finally obtain a closed formula for σA(n) when n > 0:

Proposition A.12. For n > 0, suppose there is an ideal a ∈ A such that N a ≡
−nN (mod D). Then

σA(n) = δ(n)
∑

gen[q]∈Q
Rgen[Aq](n)

where the sum is over the set of genera

Q := {gen[q] : N q ≡ −N (mod D0)}.
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Proof. We have

σA(n) = ε̃A(n, η̃) ·
∑

d′‖n′

ε̃A(n, η̃d
′)

ε̃A(n, η̃)
·RD(n) (by Lemma A.9)

= ε̃A(n, η̃) ·
∑

d′‖n′

ε̃A(n, η̃d
′)

ε̃A(n, η̃)
·
∑

b
N b=n

1

=
∑

b
N b=n

1 ·
{
δ(n) if gen[ab] ∈ Q,
0 otherwise.

where the last equality follows from Lemma A.10 and Lemma A.11.
Now we note that gen[ab] ∈ Q is equivalent to gen[b] = gen[aq] for some gen[q] ∈

Q, hence we can rewrite the last summation as

σA(n) = δ(n)
∑

gen[q]∈Q

∑

b
N b=n

gen[b]=gen[aq]

1

= δ(n)
∑

gen[q]∈Q
Rgen[aq](n)

�

Remark A.13.

(1) In the case η = 1, we have D0 = D, and the condition on N q in the
definition of Q determines its genus gen[q], in case it exists. This depends
on the sign of εD(N q), so we have

#Q =

{
1 if εD(N) = −1,
0 if εD(N) = 1.

This is the case of [5], and in this case the proposition is part (a) of Propo-
sition 4.6 in [5, p.285]. As noted before, when N is a perfect square we
have #Q = 0 for all D prime to N .

(2) When η 6= 1, we have Q 6= ∅. Indeed, for any α ∈ Z such that εη∗(α) =
εD0

(−N), by genus theory there is an ideal q with

N q ≡
{
−N (mod D0),

α (mod η).

The number of such α mod η, up to squares is 2t−1, where t is the number
of prime factors of η. Each one results in an ideal lying in a different genus,
hence

#Q = 2t−1.
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(3) In the particular case N = p2, it follows that

#Q =

{
0 if p ∤ D,

1 if p | D.

A.4. The central value of L-series. We conclude this section with a formula for
the central value of L-series which is similar to [5, (4.4) p.283], but not requiring
gcd(D,N) = 1 as in the original formulation. As remarked above, this generaliza-
tion is essential to obtain a non-trivial result in the case of level p2, which is the
main interest of this paper.

Theorem A.14. Let D < 0 be an odd fundamental discriminant, A be an ideal
in Q[

√
D] and f(z) be a cusp form in Snew

2 (Γ0(N)). Then,

LA(f, 1) =
8π2

√
|D|
〈f, gA〉,

with gA = g
(N)
A

=
∑
bA(m)qm, where

bA(m) :=
1− εD(Nη)

2
· h(D)

uD
rA(m)

+
∑

gen[q]∈Q

|D|m/N∑

n=1

δ(n)rA(m|D| − nN)Rgen[Aq](n),

where the first sum is over the set of genera

Q := {gen[q] : N q ≡ −N (mod D0)},

and where δ(n) := 2t, with t the number of prime factors of gcd(n,D0).

Proof. This follows by combining Proposition A.3, Corollary A.6, and Proposi-
tion A.12, using the renormalization

gA(z) =

√
|D|
2π

G0,A(z).

Note that when evaluating each term σA(n) rA(m|D| − nN) in the sum of Corol-
lary A.6, the hypothesis of Proposition A.12 holds whenever rA(m|D| − nN) 6= 0,
so we can indeed substitute the value of σA(n) without restriction. �

Remark A.15. We expect a similar formula to hold for any fundamental discrim-
inant D < 0. The case of even discriminants is harder since the discriminant is
not square free in this case. Nevertheless, the result for odd discriminants will be
enough for our purposes.
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