
Extended tachyon field using form invariance symmetry

Iván E. Sánchez G.1, a
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In this work we illustrate how form-invariance transformations (FIT) can be used to construct
phantom and complementary tachyon cosmologies from standard tachyon field universes. First we
show how these transformations act on the Hubble expansion rate, the energy density, and pressure
of the tachyon field. Then we use the FIT to generate three different families of the tachyon field.
In other words, the FIT generate new cosmologies from a known “seed” one, in particular applying
the FIT to the ordinary tachyon field we obtain two types of tachyon species, denominated phantom
and complementary tachyon. We see that the FIT allow us to pass from a non-stable cosmology
to a stable one and vice-versa. Finally, as an example, we apply the transformations to an inverse
square potential, V ∝ φ−2, and generate the extended tachyon field.
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I. INTRODUCTION

The tachyon field can play an important role in infla-
tionary models [1]-[7] as well as in the present accelerated
expansion, simulating the effect of the dark energy [1]-[3],
[8]-[11] depending upon the form of the tachyon potential
[1]-[3], [12]-[15]. The tachyon is an unstable field which
has becomes important in string theory through its role
in the Dirac-Born-Infeld Lagrangian, because it is used
to describe the D-brane action [16]. It was shown that
the tachyon field could play a useful role in cosmology in-
dependent of the fact that it can be an unstable field [17].
Besides, it was pointed out in [1] that the tachyon La-
grangian can be accommodated into a quintessence form
when the derivates of the fields are small.

Several years ago, it was proposed that the tachyon
Lagrangian could be extended in such a way to allow
the barotropic index takes any value [18] generating new
species of tachyon called phantom and complementary
tachyons in addition to the ordinary one [9], [11], [18].
The standard tachyon field can also describe a transition
from an accelerated to a decelerated regime, behaving
as an inflaton field at early times and as a matter field
at late times. The complementary tachyon field always
behaves as a matter field. The phantom tachyon field
is characterized by a rapid expansion where its energy
density increases with time [11], [19]-[21].

On the other hand, form invariance transformations
involve internal or external variables in such a way that
the transformations preserve the form of the dynamical
equations, i.e., they have a form invariance symmetry
(FIS) [22]. Particularly useful are the T-duality [23] or
“scale-factor duality” [24].

A new kind of internal symmetry that preserves the
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form of the spatially flat Friedmann cosmology was found
by one of the authors [25]-[27]. There it was shown that
the equations governing the evolution of FRW cosmolo-
gies have a FIS group. The FIT which preserves the form
of those equations relates quantities of the fluid, energy
density and pressure, with geometrical quantities such
as the scale factor and Hubble expansion rate. The FIS
introduce an alternative concept of equivalence between
different physical problems meaning that essentially a set
of cosmological models are equivalent when their dynam-
ical equations are form invariant under the action of some
internal symmetry group [28].

The FIS makes possible to find exact solutions in sev-
eral contexts and generate new cosmologies from a known
“seed” one [27]-[30].

In this paper we will show that the FIT applied to
the standard tachyon field, used as a seed, can gener-
ate the complementary tachyon field and the phantom
tachyon field. Our main goal is to show that the extended
tachyon field, is a consequence of the internal symmetry
that preserves the form of the Einstein equations, in a
FRW space-time. Additionally we will shown that the
FIT allow us to pass from a non-stable cosmology to a
stable one and vice-versa. In particular we will analyze
the tachyon field, driven by a potential depending in-
versely on the square of the scalar field. We will start
with some seed cosmology and use FIT to obtain a dif-
ferent new one, for example passing form a accelerated
to a super-accelerated scenario.

II. FIS IN FLAT FRW COSMOLOGY AND
LINEAR FIT

We will investigate an internal symmetry contained in
the Einstein equations for a spatially flat FRW space-
time

3H2 = ρ (1)
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ρ̇+ 3H(ρ+ p) = 0 (2)

where H = ȧ/a is the Hubble expansion rate and a(t)
is the scale factor. We assume that the universe is filled
with a perfect fluid having energy density ρ and pressure
p. The two independent Einstein equations have three
unknown quantities (H, p, ρ), hence the system of equa-
tions (1)-(2) has one degree of freedom. This allows to
introduce FIT which involves those quantities,

ρ̄ = ρ̄(ρ), (3)

H̄ =

(
ρ̄

ρ

)1/2

H, (4)

p̄+ ρ̄ =

(
ρ

ρ̄

)1/2
dρ̄

dρ
(ρ+ p). (5)

Hence, the FIT (3)-(5), generated by the invertible func-
tion ρ̄(ρ), make the job of preserving the form of the
system of equations (1)-(2) and the FRW cosmology has
a FIS. The FIT (3)-(5) map solutions of a define cos-
mology, through the variables (H, p, ρ), into solutions of
other system of equations, defining a different cosmology
identified with the barred variables (H̄, p̄, ρ̄), forming a
Lie group structure as is demonstrated in [28].

We present FIT induced by the linear generating func-
tion ρ̄ = n2ρ being n a constant. After this choice Eqs.
(3)-(5) become

ρ̄ = n2ρ, (6)

H̄ = nH, ⇒ ā = an, (7)

(ρ̄+ p̄) = n(ρ+ p). (8)

Hence, the linear transformation (6) leads to a linear
combinations of the variables ρ,H, p and a power trans-
formation of the scale factor, obtained after having inte-
grated H̄ = nH. Finally, the Eq. (8) gives the transfor-
mation rule for the pressure of the fluid

p̄ = −n2ρ+ n(ρ+ p). (9)

In the case of considering two universes, each one of
them filled with a perfect fluid for which we assume equa-
tions of state p̄ = (γ̄ − 1)ρ̄ and p = (γ − 1)ρ respectively,
the barotropic index γ transforms as

γ̄ =
(ρ̄+ p̄)

ρ̄
=
ρ+ p

n ρ
=
γ

n
, (10)

after using Eq. (6) along with Eq. (8).
The existence of a Lie group structure opens the possi-

bility of connecting the scale factor a of a seed cosmology
with the scale factor ā = an of a different cosmology.

III. THE EXTENDED TACHYON COSMOLOGY

We turn our attention to the tachyon field and will
show how it transforms under the FIT (6)-(8). We con-
sider a scalar field φ of the tachyon-type with the self-
interaction potential V (φ). The background energy den-
sity and pressure of the tachyon condensate, for a flat
FRW cosmology, are

ρφ =
V√

1− φ̇2

, pφ = −V
√

1− φ̇2, (11)

respectively. The corresponding Einstein-Klein-Gordon
(EKG) equations are

3H2 =
V√

1− φ̇2

, (12)

φ̈+ 3Hφ̇(1− φ̇2) +
1− φ̇2

V

dV

dφ
= 0. (13)

The equation of state for the tachyon is p = (γ − 1))ρ,
so the barotropic index is

γ = φ̇2. (14)

with 0 < γ < 1 for Eqs. (11). The sound speed is
c2s = 1− γ > 0, and using (14), we can write

c2s = 1− φ̇2. (15)

From equations (6) and (9), the transformed energy
density and pressure of the tachyon field are given by

ρ̄ =
V̄√

1− ˙̄φ
2

=
n2V√
1− φ̇2

, (16)

p̄ = −V̄
√

1− ˙̄φ
2

= −

(
1− φ̇2

n

)
n2V√
1− φ̇2

. (17)

So, we find that the tachyon field, the potential, the
barotropic index and the sound speed transform linearly
under the FIT (6)-(8),

˙̄φ
2

= nφ̇2, V̄ = n2V

√
1− φ̇2/n

1− φ̇2
, (18)

γ̄ =
γ

n
, c̄2s =

n− φ̇2

n
. (19)

and the scalar field transforms as φ̄ =
√
nφ.

We consider the Eqs. (11) with a barotropic index
0 < γ < 1 as a seed tachyon, called the ordinary tachyon.
Using the first equation of (19) we can get a barotropic
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index γ̄ = γ/n < 0. Then, the energy density and the
pressure of the barred cosmology are given by

ρ̄ =
V̄√

1 + ˙̄φ
2
, p̄ = −V̄

√
1 + ˙̄φ

2
, (20)

These fluids represented by the Eq. (20) with negative
pressure and negative barotropic index describe phantom
cosmologies. Moreover, we can get 1 < γ̄ = γ/n under
de condition n < γ applying the transformed rule (19) to
the barotropic index of the seed tachyon 0 < γ < 1. So,
the energy density and the pressure of the barred fluid
are

ρ̄ =
i | V̄ |

i

√
˙̄φ
2
− 1

=
| V̄ |√
˙̄φ
2
− 1

, (21)

p̄ = −i | V̄ | i
√

˙̄φ
2
− 1 =| V̄ |

√
˙̄φ
2
− 1, (22)

while, these fluids described by the Eqs. (21) and (22)
give rise to nonaccelerated expanding evolutions.

We used the ordinary tachyon field, Eqs. (11) with
0 < γ < 1, as a seed. With the application of the FIS
Eqs. (16)-(19) we found the two species of tachyon fields,
as in [18], the phantom tachyon Eqs. (20) with a γ < 0
and the complementary tachyon Eqs. (21) and (22) with
1 < γ. Therefore, the form invariance transformations
allow us to extend the family of tachyon field.

Following Gibbons [31] and Barrow et. al. [32], the
Einstein static universe containing a perfect fluid is al-
ways neutrally stable for the condition c2s > 1/5. There-
fore, the FIT Eq. (19) allow us to pass from a non-stable
cosmology to a stable one and vice-versa. For example,
if we use a barotropic index γ0 = 6/7 as a seed solution
with c2s = 1/7, using the transformation rule Eq. (19),
we can get a stable cosmology with c2s = 5/7 > 1/5 if
n = 3.

A. Power-law expansion for the tachyon field

Let us assume that the potential is an inverse square
in terms of the tachyon field,

V (φ) =
V0

φ2
, (23)

with V0 a constant. This potential, that diverges at φ =
0, fairly mimics the behavior of a typical potential in the
condensate of bosonic string theory. The Eq. (23), leads
to the power law expansion a(t) = ktδ, with k a constant,
if φ is the only source [1] [2]. The tachyon field and the
barotropic index are

φ =

(
2

3δ

)1/2

t, 0 < γ0 < 1, (24)

with

δ =
1

3

[
1 +

√
1 + 4β

]
, β =

(
3V0

4

)2

. (25)

For this reason the power law expansion appears to be
a good example to illustrate how from a seed solution,
characterized by particular values of the parameters V0,
γ0 and k, the FIS helps us to find the scalar field and
the scale factor driven by inverse square potential (23)
for any other value of those parameters. Applying the
FIT (6)-(8) to the seed solution (24), (25) and using Eqs.
(14), (18) and (19) we obtain the transformation rules
for V0 and γ0

γ̄0 =
γ0

n
, (26)

V̄0 = nV0

√
1− γ0

n

1− γ0
. (27)

Therefore, the transformed tachyon field, for a
barotropic index γ̄ < 0, is given by

φ̄ =

(
2

−3 | δ̄ |

)1/2

t, δ̄ =
1

3

[
1−

√
1 + 4β̄

]
. (28)

These tachyon field solutions, Eq. (28), describe phan-
tom cosmologies. Note that if n = −1 in Eqs. (26) and
(27) we can get the results of [9] for the phantom tachyon.

On the other hand, if the transformed barotropic index
is 1 < γ̄, we get

φ̄ =

(
2

3δ̄

)1/2

t, δ̄ =
1

3

[
1±

√
1− 4 | β̄ |

]
. (29)

This type of tachyon field solution with 1 < γ0 is called
the complementary tachyon solution, which represents
stiff matter with a deceleration cosmology.

Hence, the scale factor a(t) = ktδ transforms as ā = an,

so the transformed scalar field is ā = k̄tδ̄ with k̄ = kn

and δ̄ = nδ. The condition to has an inflation solution
is that 1 < δ and it is represented by the solutions (24).
Notice that the exponent of the power law solution can
takes positive or negative values provided that n ∈ <.
We can see that this exponent is directly related with
the barotropic index of the tachyon fluid, δ = 2/3γ0,
therefore changing n it is equivalent to allow that the γ̄0

varies over <. This simple fact leads us to a remarkable
conclusion, there are new species of tachyons and the FIS
has revealed their existence to us.

IV. CONCLUSION

As part of a long-term investigation [25]-[28] we have
shown here that form invariance transformations can be
used as tools for generating new solutions to the Einstein
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field equations, in this case the existence of two new kinds
of extended tachyon fields were derived from the standard
tachyon field (0 < γ < 1): the complementary (1 < γ)
and the phantom tachyon (γ < 0) fields, confirming the
work made by one of the authors [18]. In addition we
see that the form invariance transformations allow us to
pass from a neutrally unstable universe to a stable one
[31], [32].

In particular, we have applied the method to obtaining
phantom and complementary versions of FRW tachyon
cosmologies, with an accent on power-law space-times
generated by an inverse-square potential. We have found
that the FIT transform the seed scale factor a = ktδ

into the power law solution a = kntnδ. For illustra-
tion purposes, if we start from a decelerated model with
2/3 < δ < 1, we can get a power-law inflation model with

δ > 1 or a super-accelerated model (phantom model)
with δ < 0. So, we have shown how FIT generate new
cosmologies from a seed one.
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