
����������
�������

Citation: Pennini, F.; Plastino, A.;

Ferri, G.L.; Plastino, A.R. Energetic

Cost of Statistical Order-Degree

Change in a Fermions’ Set. Entropy

2022, 24, 752. https://doi.org/

10.3390/e24060752

Academic Editors: Giuliano

Benenti and Lawrence Horwitz

Received: 11 April 2022

Accepted: 23 May 2022

Published: 26 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Energetic Cost of Statistical Order-Degree Change in a
Fermions’ Set

Flavia Pennini 1,2,*, Angelo Plastino 3 , Gustavo Luis Ferri 4 and Angel Ricardo Plastino 5

1 Departamento de Física, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta 3580000, Chile
2 Departamento de Física, Facultad de Ingenieria, Universidad Nacional de Mar del Plata (UNMDP),

CONICET, Mar del Plata 7600, Argentina
3 Instituto de Física La Plata–CCT-CONICET, Universidad Nacional de La Plata, C.C. 727,

La Plata 1900, Argentina; plastino@fisica.unlp.edu.ar
4 Departamento de Física, Universidad Nacional de La Pampa, Santa Rosa 6300, Argentina;

glferri2002@yahoo.com
5 CeBio-Departamento de Ciencias Básicas, Universidad Nacional del Noroeste de la Prov. de Buenos Aires

(UNNOBA), CONICET, Junin 6000, Argentina; arplastino@unnoba.edu.ar
* Correspondence: fpennini@ucn.cl

Abstract: We discuss novel many-fermions thermodynamics’ features. They refer to the energy
cost associated to order-disorder changes. Our thermal quantum statistical scenario is controlled
by suitable fermion-fermion interactions. We deal with two well-known quantum interactions that
operate within an exactly solvable model. This model is able to adequately describe some aspects
of fermion-dynamics, particularly level-crossings. We describe things via employment of Gibbs’
canonical ensemble strictures. We show that judicious manipulation of the energy cost associated to
statistical order (disorder) variations generates useful information-quantifiers. The underlying idea is
that changes in the degree of order are intimately linked to level-crossings energetic costs.

Keywords: statistical mechanics’ quantifiers; order-disorder disjunction; fermions

1. Introduction

This work explores new features in statistical mechanics. We will discuss novel
many-fermions’ thermodynamics features. They refer to the energy cost associated to
order-disorder changes whenever our thermal quantum statistical scenario is controlled by
suitable fermion-fermion interactions. Let us start with the essential notion of entropy.

Entropy is intimately linked with the idea of disorder, as it is well known. Its order-
counterpart (OC) has taken many forms in the literature, but here we will concentrate
our attention on a special OC-notion called disequilibrium D (see Ref. [1] and references
therein). This quantity D is the Euclidean distance in probability space between the actual
probability distribution and the uniform one. Since the uniform distribution can be thought
of as the most ”disordered one”, the larger D the larger the order-degree.

Based on the quantity D we will try to establish novel links between the notions of
entropy, negentropy (simply −S, the negative of the entropy), statistical order, and free
energy, in the context of the thermal description of many fermion systems. We will appeal
to simple exactly solvable fermion models, that are particularly valuable in testing new
notions referring to the intricacies of the quantum many body problem, without appealing
to huge hamiltonian matrices [2]. It is widely accepted that the best way to understand a topic is
first to grasp specific, well-chosen cases and then to worry afterward about how to generalize from
this understanding. This is why it has been of great utility in fermionic theoretical research
the application of the exactly solvable Lipkin Model (LM) [2–5]. The LM greatly clears the
way for assessing the validity and/or usefulness of distinct approaches formulated so as to
research the manifold features of the fermion many body problem [6].
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1.1. Quasi Spin Operators and Exactly Solvable Models

We will use such models in this work. The celebrated, two energy-levels Lipkin
model (LM) (containing N fermions) is centered on an SU2 algebra. Such algebra is
generated by operators called quasi-spin ones. We will here work with LM-variants that
have immediately accessible exact analytical solutions (LM instead requires numerical
diagonalization). Our analytical solutions can then be compared with results that emerge
from variegated sorts of approximate theoretical N-fermions techniques. A relevant Casimir
operator (CO) characterizes both the LM model [3] and our variants. The CO has attached
to it different multiplets. Mostly the unperturbed ground state multiplet is the focus of
attention [3]. Each level of our two energy ones is degenerate and accommodate Ω = N/2
fermions. We say that each of our two energy levels contains Ω sites in the upper level and
the dame number in the lower level. Each site that can be occupied or empty. Sister sites
are those in the same position above (higher energy level) and below (lower energy level).

Cambiaggio and Plastino (CP) [1,7–9] proposed a simple Lipkin-model extension, from
SU2 to SU2× SU2, to del with the excited Lipkin-multiplets (or bands) and thus adequately
face the pairing interaction responsible for superconductivity. The augmentation allowed
for the formulation, in quasi-spin parlance, of a BCS-like enactment which permits, as
promised above, to exactly mimic superconductivity, yielding exact analytic solutions. In
the CP-model (CPM), the BCS-solution coincides with the exact solution. The CPM is
indeed an extension of the Lipkin model to a layout containing a variable particle number.
Superconductivity quite often arises in fermion systems [10–12].

Colloquially, some physicist usually speak of phase transitions when the actually
mean level-crossings. We will also do this here where we wish to detailed study, in a
statistical order-disorder context, the combination of the pairing interaction with a spin-
flip force, which can be done if we juxtapose the CP model of the pairing interaction
with the Plastino-Moskowski (PM) model of a spin-flip interaction [13,14]. These two
models display, individually, phase transitions(PT). We wish to see how these different PT
mutually interfere. Our exactly solvable juxtaposition (CP and PM models) presents rich
enough quantum structural features to profitably delineate such competition layout. Some
preliminary details of the competition were reported in Refs. [8,9]. Here we present a more
detailed view focused on and order-disorder scenario, discussing mainly the energy costs
incurred in phase transitions, a colloquial vocable often used for level-crossings.

1.2. Goal: Our Route

Here we wish to construct the route detailed below and address the issues the this
building up will generate.

• The central and well established idea is that fermion-fermion interactions are capable
of generating phase transitions (PT) in many-fermions systems. The details of the PT
depend on the properties of the extant fermion-fermion interaction.

• We wish to connect phase transitions (or level crossings in a finite system) with changes
in the degree of statistical (CDSO) order exhibited by our many fermion system.

• We wish to analyze the fact that CDSO are made at the expense of energy spending.
• We wish to associate a new statistical quantifier to this energy expense.
• We wish to ascertain that this new quantifier is a very good phase transition “detector”.

2. Statistical Order, Disorder, and Disequilibrium

Our system is described by an unperturbed Hamiltonian H0 plus two different in-
teraction terms: a short range force (pairing) (HCP) and a long range one (spin-flip) (HM).
There are attractor-states for each of them [8,9]. We wish to show that a kind of order is
associated to these special states. We will undertake a canonical ensemble analysis of our
system, whose protagonist is our Hamiltonian

H = H0 + HM + HCP. (1)
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There exist two T = 0-attractors. We assert that they are endowed with “order” in this
respect: every site is equally occupied. For the M attractor, each sister-pair of sites is singly
occupied. We find the same number of nucleons in each of the two energy-levels. This
last feature is also displayed by the CO attractor, but now each sister-pair is either doubly
occupied or empty. For us, “disorder” is associated to an instance in which each of the
two energy-levels displays different occupation numbers. Using statistical tools we will
attempt to the interplay between our two different interactions and see how they influence
the order degree.

The Hamiltonian (1) represents a scenario that prevails in many atomic nuclei, in
which a long-range distance interaction (e.g., a quadrupole one) competes with a short
range one, the pairing interaction. H mimics such picture. Its (H) pairing component has
identical mathematical properties as those of the actual pairing force. H also displays a
spin-flip interaction.

Statistical Order and Disequilibrium Quantifier D

That represented by D is a much employed concept (see for example Refs. [15–21]).
Consider two opposite layouts: (i) perfect order or (ii) maximal randomness (no corre-
lations at all) [15]. In between them variegated degrees of correlation may be found. In
Ref. [15] a way such multiplicity was advanced. Since we are working in statistical fashion,
with probability distributions (PD) as protagonists, we confidently state that maximum
randomness or maximal disorder is represented by the uniform PD, The degree of order
associated to a given PD is quantified by the distance of this PD (in probability space) to
the uniform PD. This distance was called the disequilibrium D.

Great progress was made in Ref. [15] by proposing this measure D [16], that allow one
to build up a sort of hierarchy. If there are privileged states among the accessible ones, their
associated D value would reveal it. Multiplying D by the entropy S L. Ruiz, Mancini, and
Calvet (LMC) [15] established one of today’s most used form for a statistical complexity C.

C = DS, (2)

a functional of the probability distributions (PDs) that competently lays hold of complexity
in the fashion that entropy does so with randomness [15]. D adopt the form, if one deals
with N accessible states [15,21],

D =
N

∑
i=1

(
pi −

1
N

)2
. (3)

Here {p1, p2, . . . , pN} are the individual normalized probabilities (∑N
i=1 pi = 1) [15]. D

acquires the maximum possible value for a fully ordered state and instead vanishes in the
case of uniform pi. Of course, for the entropy we have S = −∑N

i=1 pi ln pi. LMC’s scheme
attracted great attention (Refs. [15–21] constitute just a small sample) and was employed
in variegated environments for both the canonical, micro-canonical, and grand canonical
Gibbs’ ensembles.

3. Details of the Two Interactions We Are to Confront in This Work
3.1. Present Hamiltonians: (1) Unperturbed H0, (2) Spin-Flip HM, and (3) Pairing HCP Ones

One faces, as stated above

H = H0 + HM + HCP, (4)

which is the juxtaposition of two distinct analytically solvable nucleon-nucleon interactions.
Firstly, a spin-flip one advanced in Ref. [14] that represents either (1) spin-flip or, (2) forward
scattering interactions [14]. The last term is the superconducting one [1,7] that mimics
the pairing interactions that originates superconductivity [10]. The math background is
that of the SU2 × SU2 group [8,9] involves N nucleons apportioned to 2Ω-fold degenerate
single-particle (sp) levels (N = 2Ω) separated by an energetic gap ε (we work here with
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ε-energy units). The system’s sp states are singled out by appeal to two quantum numbers:
p, µ, with p = 1, . . . , 2Ω and µ = ±1. p is called a quasi-spin quantum number and is
regarded as a “site” [3].

3.2. Quasi-Spin Language and the Pairing Operators

The so called SU2 quasi-spin operators Ji were introduced in Ref. [3] in terms of
creation and destruction operators C+, C

Jz = (1/2)∑
p,µ

C+
p,µCp,µ, (5)

J+ = ∑
p

C+
p,+Cp,−, (6)

J− = ∑
p

C+
p,−Cp,+. (7)

In Ref. [7] its authors introduced additional SU2 operators, angular momentum-like “pair-
ing” operators

Q0 = (1/2)∑
p,µ

C+
p,µCp,µ −Ω+, (8)

Q+ = ∑
p

C+
p,+C+

p,−, (9)

Q− = ∑
p

Cp,−Cp,+. (10)

It is clear that Q+ generates and Q− destroys a pair of particles giving zero contribution
to the Jz-value, or “coupled” to Jz = 0. The ensuing coupled particles do not contribute
to the total Jz value. Any J-operator will commute with all Q-operators, and vice versa
(SU2 × SU2).

3.3. Eigenvalues of H

Here, the pertinent, complete orthonormal basis is that of the eigenvalues of J2, Jz, Q2, Q0,
with eigenstates |J, Q, Jz, Q0〉. Ref. [7] advanced an additional and quite useful quantum
number denominated the quasi-spin seniority number ν

ν = 2(Ω−Q), (11)

which tells the reader which is the number of “uncoupled” particles (not “paired" to Jz = 0).
Thus, ν is the number of “unpaired" particles in a Q-multiplet. As demonstrated in Ref. [7]
we have

J = ν/2, (12)

J + Q = Ω. (13)

For the Lipkin model [3], N = 2Ω, Q0 = 0 [7], equalities that will be verified in our
subsequent proceedings. The unperturbed ground state (ugs) is the eigenvalue of our
unperturbed Hamiltonian H0. For it one has J = Ω, Jz = −Ω, Q = Q0 = 0 [7]. This state
belongs to the multiplet J = Ω, Q = Q0 = 0, [see (15) below]. Returning to the spin-flip
Hamiltonian HPM note that it reads [8,9]

HPM = H0 + HM = H0 −V
[

J2 − J2
z − N/2

]
. (14)
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It is expressed via J, Jz, and a coupling constant V. Of course, if Jz|J, Jz〉 = M|J, Jz〉,
then J2|J, Q, Jz, Q0〉 = M(M + 1)|J, Q, Jz, Q0〉. The pertinent eigen-states are denoted as
|J, Q, Jz, Q0〉. Thus we see that

H0 = Jz. (15)

Naturally, the HPM-eigenvalues become [14]

E(J, Q, Jz, Q0) = Mz−V[M(M + 1)−M2− N/2]. (16)

The energy of the unperturbed (V = 0) gs (ugs) (ν = N, Q = Q0) reads

E0 = −Ω. (17)

3.4. Phase Transitions or Level Crossings

The most important characteristic of HPM is that, as V augments the system unveils Ω
phase-transitions (level crossings): the ground state (at T = 0) stops being characterized by
Jz = −J and proceeds to be identified by successively larger Jz values until one sets foot
on M = 0 at V = 1 [14]. Abusing language a bit we say that the ket |J, M = 0〉 is a kind of
attractor for the system’s state if V is large enough (at T = 0). This T = 0-attractor (we call
it I) is set apart by the feature that all quasi-spin sites p are occupied by a single fermion.

If we add now the pairing interaction to the Hamiltonian via the interaction term
G
2 Q̂+Q̂−. One has the the pairing Hamiltonian HCP

HCP = H0 −
G
2

Q̂+Q̂−, (18)

which adds to Jz a pairing contribution Ep

EP = −(G/2)Q(Q + 1). (19)

H0 + HCP exhibits its own phase transition (level crossing) at G = 1 [7]. At such value the
system turns out to be a superconductor [7]. HCP, for large enough G, displays a second
T = 0-“attractor” II state, the superconducting-one, identified also by M = 0 (as the one
for HPM) but in which half the sites display double -occupancy and the other half is empty.

4. Statistical Mechanics, Gibbs’ Canonical Ensemble, and H

We need first of all to recapitulate statistical tools introduced in Ref. [22]. For treating
the ground state at T = 0, we have to concern ourselves just with the J + Q = Ω “band".
If T 6= 0 a manifold of states belonging to different bands are to be paid attention to. The
associated degeneracy Y(J, Q) (computed in Ref. [22]) becomes, if β stands for the inverse
temperature 1/T,

Y(J, Q) =
(2Ω + 2)!(2Ω)!(2J + 1)(2Ω + 1)

(Ω + J + Q + 2)!(Ω + J −Q + 1)!(Ω− J + Q + 1)!(Ω− J −Q)!
. (20)

The partial partition function that runs only over M, let us call it ZM, has the form [22]

ZM(β) =
M=J

∑
M=−J

exp{−β[[M−V(J2 −M2 − J)]− (G/2)Q(Q + 1)]}. (21)

while actual system’s true partition function Z reads

Z(β) = ∑
J,Q

Y(J, Q)ZM(β), (22)

where the quantum numbers J and Q run over all the values permitted by the SU2 × SU2
structure [22], that is:



Entropy 2022, 24, 752 6 of 13

•
0 ≤ J ≤ Ω, (23)

•
0 ≤ Q ≤ Ω, (24)

•
0 < J + Q ≤ Ω. (25)

Of course, Z permits one to obtain all the thermodynamic information one might require.
Now we will slightly modify (25) in the fashion

0 ≤ J + Q = s ≤ Ω. (26)

So as to implement the J-Q sum we sum over J + Q = s and over J, with Q fixed at
Q = s− J. We obey

0 ≤ s ≤ Ω. (27)

Note that s = 0, 1, 2, 3, . . . , Ω while J = 0, 1, 2, . . . . , s. Finally, the partition function acquires
the form

Z = ∑
J,Q

Y(J, Q)ZM =
Ω

∑
s=0

s

∑
J=0

Y(J, Q)ZM. (28)

Following Ref. [3], we set N = 2Ω. The level-energies are

E(J, M, Q) = M−V(J2 − J −M2)− GQ(Q + 1)/2, (29)

and define A(J, M, Q) = −βE(J, M, Q) so that our probabilities read

P(J, M, Q) =
Y(J, Q) exp[A(J, M, Q)]

Z
, (30)

leading to a mean energy U

U = ∑
J,Q

∑
M

P(J, M, Q)E(J, M, Q). (31)

We are also interested in particular average energies like the mean pairing energy

UP = −(G/2)∑
J,Q
−P(J, 0, Q)Q(Q + 1), (32)

and the mean spin-flip energy

UM = ∑
J,Q

∑
M

P(J, M, Q)[M−V(J2 − J −M2)], (33)

Also, the free pairing energy

FP = UP − TS, (34)

and the the free spin-flip energy

FM = UM − TS. (35)

Remind that maximal randomness or total disorder is associated to the uniform distribution.
In our context we have in such a case

Puni f =
1

Vu
, (36)
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where Vu is here given by the binomial value for 4Ω/N. Our present and all important
disequilibrium D becomes

D = ∑
J,Q

M=J

∑
M=−J

[P(M, Q)− Puni f ]
2. (37)

For the entropy we find

S = −∑
J,Q

M=J

∑
M=−J

P(M, Q) ln P(M, Q). (38)

Scheme of Our Algorithm

1. Since our models are analytically solvable, we know the expressions for the exact
energies Ei. We also know the temperature T.

2. Accordingly, we can construct our probability distribution (PD), whose elements Pi
are ∝ exp [−βEi], with β the inverse temperature

3. Since we have the Pi we can compute the entropy S = −∑i Pi ln Pi and the mean
energy U, U = ∑i PiEi.

4. With these quantities we compute the free energy F = U − TS.
5. We also know the disequilibrium D, which is a simple function of the Pi, given above

in Equation (3).

5. Information Cost (in Free Energy), a New Statistical Quantifier

We pass now to describe the main innovation of this paper, a new statistical quantifier
related to the disequilibrium D. We contemplate in this scenario two control parameters
V ≡ X1 and G ≡ X2. A perturbation in the control parameter, let us say from V to V + dV,
will result in a change of the system’s associated degree of order (DOO). Inspired by
Ref. [23], we introduce the order-efficiency ν of our interactions in the fashion

ν(X; dX) = kB
dD
dW

, (39)

with kB Boltzmann’s constant. Our dD and dW are, respectively, the variations in disequi-
librium and the work done on the system as a result of the dX change. Thus, ν(X; dX)
represents the diminution (increase) in uncertainty (for our system’ state) that results
from each unit of work done on the system. A small value of ν indicates that much work
on the system is needed to modify the current order degree. Vice versa in the case of
large ν. Of course, if dF is negative, it is the system itself that does the pertinent work.
Such will be the case below. In quasi-static processes, for which we things happen slowly
enough that the system effectively adjusts instantaneously to a new equilibrium state, it
can be demonstrated following the parallel treatment given in Ref. [23] (for a different
purpose) that

ν(X; dX) = kB
∂D
∂F

=
∂D
∂X

/
∂F
∂X

, (40)

involving Helmholtz’ free energy F. X stands for either of our two coupling constants. We
will always set kB = 1. The derivatives can be performed analytically. The modification in
F can be associated to the work done on the system dF = dW [23]. On the other hand, we
may regard νX as the work required (in varying X) so as to increment (ν < 0) or diminish
(ν > 0) our information concerning the system. This represents an “information cost”.
Alternatively, νX is the work needed to augment (decease) the degree of order in the system

Let us emphasize that

• If dD > 0 we see increasing statistical order,
• If dD < 0 we see increasing statistical disorder.
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The Conjugate Extensive Counterpart of ν

Consider now the extensive quantity

f = −dF/dX, (41)

where the intensive variable X stands for either G or V. Since the entropy S is

S = −dF/dT, (42)

f would be a sort of “quasi-entropic” counterpart of X. We will ascertain below whether
this counterpart has something useful to say about our present endeavor. We will call f
the information cost of changing the X− value. Instead, − f signals an information “source”,
a kind of negentropy that tells us which is the amount of energy involved in varying D when
X changes. As always, negentropy is a measure of order (and so is our quasi-negentropy).
The notion of negative entropy was advanced by Schrödinger in the book What is Life? [24].
Later, in 1974, Brillouin baptized the notion as negentropy [25]. Thus, we can associate − f
to the extension of this notion from S to D.

6. Results Obtained with Our New Quantifier ν at Finite Temperature T
6.1. ν Detects the Superconductivity Transition: νG versus G Plots

We will work at T = 0.1 (units for which kB = 1). Figure 1 displays νG versus G for
N = 10. At a critical value of the pairing constant the phase transition occurs and is duly
detected by ν. Note that ν is positive before the transition to superconductivity and slightly
negative when the later becomes established. This entails, as expected, that the physics
has radically changed. Of course, the critical G value Gcrit is slightly varied from its T = 0
value 0.3333 because of finite temperature effects.

G
0 0.5 1 1.5 2

8
G

-5

0

5

10

15

20

N=10; T=0.1; V=0

Figure 1. We depict νG versus G for V = 0, N = 10, and T = 0.1 (units for which kB = 1). There is
a significant drop at the critical G-value at which superconductivity becomes established. ν clearly
detects the phase transition.

Figure 2 displays results for the same scenario but for N = 4, where Gcrit = 2/3 at
T = 0.
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G
0 0.5 1 1.5 2

8
G

-5

0

5

10

15

20

N=4; T=0.1; V=0

Figure 2. Same as Figure 1 but for N = 4. Things proceed in a rather smoother fashion for N = 4 that
for N = 10.

The transition is more clearly seen as N augments.

6.2. ν Detects the Spin-Flip Transition: νV versus V Plots

We pass now to consider the spin-flip interaction in Figure 3 at T = 0.1, N = 10, and
G = 0. Immediately we realize that a totally different scenario is being confronted. At
the critical V value νV suddenly changes but its precedent value is re-established after
the transition while V keeps growing. However, there emerges here a much stronger
N-dependence than that for the pairing force, as illustrated by Figure 4 for N = 4. Here the
aspect of things at the phase transition looks different in the two N = 4, 10 systems. νV
first augments for N = 4 and immediately after wards decreases. Opposite to the pairing
case above, here the phase transition is displayed in a much more clear-cut fashion smaller
N’s than for larger ones.

V
0 0.2 0.4 0.6 0.8 1

8
V

-80

-60

-40

-20

0

N=10; T=0.1; G=0

Figure 3. Spin-flip interaction workings at T = 0.1, G = 0, and N = 10. We depict νV versus V. At
the critical spin-flip coupling constant Vcrit order suddenly augments, but after the transition, things
return to the original stage as V keeps growing.
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V
0 0.5 1 1.5 2

8
V

-60

-40

-20

0

20

N=4; T=0.1; G=0

Figure 4. Same as Figure 3 for N = 4. The transition region exhibits a much sharper definition though.

6.3. The Statistical Extensive Measure F

We start discussing the information cost f in Figure 1, where we depict fG versus
G together with the free energy F. The behavior of F is of critical importance to decide
whether we speak of order or of disorder. We know that ν decreases at the superconductivity
transition. We also see in the graph that dF is negative. Thus, dD > 0 and order augments.
Figures 5 and 6 show that the quasi-negentropy grows at the phase transition.

G
0 0.5 1 1.5 2

-20

-15

-10

-5

0

T=0.1; N=8; V=0

F
f
G

Figure 5. Information cost fG for N = 8 clearly detects the phase transition. As one should expect, at
Gcrit order grows (see text). The free energy F is also displayed. As G augments, work is done BY
the system.
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V
0 0.5 1 1.5 2

-25

-20

-15

-10

-5

0

5

T=0.1; N=8; G=0

F
f
V

Figure 6. Information cost fV (N=8) detects the spin-flip transition. The free energy F is also displayed.
As V augments, work is done BY the system as V grows.

Figure 6 is the counterpart of Figure 1 for fV . Following the reasoning line found at
the start of this Subsection, we ascertain that order grows.

6.4. Three Dimensional Graphs

A more transparent illustration of the physics of order here analyzed is that pro-
vided by Figures 7 and 8. The statistical disorder-induced role of the temperature T is
clearly visible.

1

T
0.5

000.5

N=8; V=0

G

11.52

-6

-4

-2

0

-10

-8

f G

Figure 7. Three dimensional plot. fG as a function of both T and G. One notes the competition
between the two intensive quantities T and G. Clearly, statistical order grows with G and diminishes
with T as one should expect.
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1

T
0.5

000.5

N=8; G=0

V

11.52

-5

0

-10

f G

Figure 8. Three dimensional plot. fV as a function of both T and V. One notes the competition
between the two intensive quantities. Clearly, order grows with V and diminishes with T as one
should expect.

7. Conclusions

In this work we have revisited the interplay statistical order-disorder, using the lens
of a new statistical quantifier ν (and its conjugate fX) that are a measure of energetic cost
(in terms of free energy) of changes suffered by the order-disorder quantifier called the
disequilibrium D.

If we change the sign of the extensive counterpart of ν called fX (the coupling constant
X being either G or V), we have a quasi-negentropy. This brings together the notions
of order and energy expense. We have studied the behavior of ν with regards to two
competing interactions. These interactions are a spin-flip and a short-range ones Our
layout is discussed using an exactly solvable model of the Lipkin-sort, that permits one to
undertake exact treatments of the pertinent Hamiltonians.

We contrast the statistical order-disorder properties of these two kinds of interac-
tion. They are indeed different, in particular in relation to their response to increases
in temperature.

Thus, we can reasonably claim to have unveiled a new sort of differences, in order and
energy cost, between pairing (short range) and multipole (long range) interactions.
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