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Teleparallel Gravity by restoring the spin connection of the theory. Then, we perform the
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this way, we extend the results that were already found for F (T ) gravity in previous works.
Furthermore, our calculations reveal the importance of considering a second post-Newtonian
(2PN) order approximation or a parametrized post-Newtonian cosmology (PPNC) frame-
work where additional perturbative modes coming from general modifications of Teleparallel
Gravity could lead to new observable imprints.
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1 Introduction

The discovery of the current accelerated expansion of the universe has led the community of
theoretical physicists to pose a challenging problem that has not been solved yet: the expla-
nation of the physical mechanism responsible for this phenomenon. The solution provided by
the Standard Cosmological Model (ΛCDM) is to include a cosmological constant in Einstein
equations. However, the observational value of this constant can not be explained by the
Standard Model of Particle Physics. Other proposals often named as “dark energy models”
consist in adding extra degrees of freedom to the Standard Model of Particle Physics. On
the other hand, other authors have analyzed the possibility that the extra degrees of free-
dom are added to the gravitational sector of the theory, which leads to assume alternative
theories of gravity to General Relativity (GR). It is important to stress that all theoreti-
cal proposals mentioned before are able to explain current cosmological observations such
as those provided by type Ia supernovae, the Cosmic Microwave Background and Baryon
Acoustic Oscillations just to mention the most relevant ones. Besides, it is well known that
there is a discrepancy between the values of the Hubble constant obtained using Cosmic Mi-
crowave Background data and those calculated using type Ia supernovae explosions together
with local distance calibrations [1]. Even though, there is no agreement about the amount
of the discrepancy (some authors claim there is a 4σ discrepancy while others report only
2σ or even no discrepancy [2–4]), it is clear that it can not be explained in the context of
the Standard Cosmological Model. As a consequence, alternative cosmological models, in
particular, those based in alternative theories of gravity, that have been considered in the
literature before [5, 6], have now a growing interest. In this work we will focus in those the-
ories where the lagrangian of the gravitational sector is replaced by an arbitrary function of
the torsion scalar, the so called f(T ) theories [6]. The torsion scalar is defined in the context
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of the so-called teleparallel equivalent of General Relativity or simply Teleparallel Gravity
(TG) [7–18]. This is a gauge theory for the translation group where the dynamical variable is
the tetrad field whose non-trivial part representing the gravitational field is the translational
gauge potential and the field strength is the corresponding torsion tensor [19]. Then, unlike
GR, in this alternative and equivalent description of gravity the Lorentz connection is purely
inertial giving a vanishing curvature tensor [20]. While alternative theories of gravity are able
to explain the current accelerated expansion of the universe without a cosmological constant,
it has been pointed out that some of them are ruled out with the bounds imposed by local
experiments such for example those performed within the solar system.

The f(T ) theories have already been studied in the context of the solar system using i)
different effects such as perihelion precession, Shapiro time delay, gravitational redshift and
light bending; and ii) appealing to the parametrized post-Newtonian (PPN) formalism. This
later approach provides a solution to the Einstein equations for different metric theories in
the weak-field slow-motion limit, and generates ten parameters which can be compared with
high precision solar system data to establish the viable regions of a theory. In this way, it is
not necessary to calculate the theoretical predictions for each effect to compare them with the
observations, but it is enough to estimate the theoretical PPN parameters and contrast them
with the PPN values obtained from the observational data [21–23]. The first f(T ) published
analyses using the solar system effects [24–28], were obtained considering a bad choice of
the tetrad which consequently triggered an incorrect solution.1 Later on, this mistake was
corrected using a covariant formulation of f(T ) Gravity [29], which allowed the old results
to be improved [30–32]. Moreover, a similar analysis was performed for f(T,B) theories
(f(T ) theories with a boundary term B) [33]. In most of these works, the predictions of
these effects are calculated using a Schwarzschild background that allows the analysis to be
extended to regions where the field is stronger than in the Solar System (weak field limit).
On the other hand, several articles have applied the PPN formalism to Modified Teleparallel
Gravity (MTG) theories such a for example ref. [34], where the post-Newtonian limit of
a general class of Teleparallel Gravity theories (that includes f(T ) theories) is derived by
imposing the Weitzenböck gauge. Furthermore, assuming a post-Newtonian approximation
of the tetrad around a Minkowski background solution; the authors concluded that the f(T )
predictions in this limit are not distinguished from those of GR. This approach, which is
performed in a Minkowski spacetime, has also been used in other works such as [35], where
Teleparallel Gravity theories whose action is a free function L(T,X, Y, φ) of the torsional
scalar T and scalar quantities X and Y formed from a massless scalar field φ are studied.
Another examples are ref. [36], which is focused on massive and massless scalar fields; and
ref. [37], in which an analysis of symmetric Teleparallel Gravity theories (whose action is
defined by a free function of the five parity-even scalars that are quadratic in the non-
metricity tensor) is carried out. In this paper we focus in the analysis of teleparallel theories
with higher-derivative torsional terms in the action F (T, (∇T )2,�T ) within the framework
of the PPN formalism, which has not been performed so far.

The manuscript is organized as follows: in section 2 we provide a brief description of
the main aspects of f(T ) theories, specifically those with higher derivative torsional terms.
Next, we review in section 3 the parameterized post-Newtonian (PPN) formalism focusing on
the necessary modifications to describe Teleparallel Gravity. Using this latter formalism we
compute in section 4 the components of the tetrad which allows us to obtain in section 5 the

1The tetrads used in those articles do not yield torsion scalars that vanish in the Minkowski spacetime limit.
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metric for a generalized F (T, (∇T )2,�T ) gravity. The PPN parameters are then obtained
from the comparison of the latter with the standard PPN metric. Finally, in section 6 we
present our conclusions and discuss several aspects to improve in the PPN formalism applied
to these kind of theories.

2 F (T, (∇T )2,�T ) gravity

The Teleparallel Gravity (TG) is an alternative formulation of gravity equivalent to GR
where the dynamical field is given by the tetrad eAµ, that sets up an orthonormal base for the
tangent space at each point of a manifold [7–18]. Also, it is connected to the metric through
the following relationship,

gµν = ηABe
A
µe
B
ν , (2.1)

where greek indice span the coordinate space and latin indices span the tangent space. By
using a general Lorentz frame one can write the tetrad field as [38]

eAµ = ∂µx
A + ωABµx

B +BA
µ, (2.2)

where the inertial effects are embedded into the spin connection ωABµ and the gravitational
field is represented by the translational gauge potential BA

µ. Then, the spin connection of
TG is given by

ωABµ = ΛAD(x)∂µΛ D
B (x), (2.3)

with ΛAD(x) a local (point-dependent) Lorentz transformation. This is a purely (flat) spin
connection and then it gives a vanishing curvature tensor [20, 38]. On the other hand, in the
presence of gravitation (BA

µ 6= 0) the tetrad field (2.2) leads to the non-zero torsion tensor

T ρµν ≡ e
ρ
A

(
∂µe

A
ν − ∂νeAµ + ωABµe

B
ν − ωABνeBµ

)
. (2.4)

Consequently, the torsion scalar T represents the Lagrangian of the theory, and is built from
the contractions of the torsion tensor such that [38, 39],

T ≡ 1
4T

ρµνTρµν + 1
2T

ρµνTνµρ − TρµρT νµν . (2.5)

In addition, motivated by the f(R) theories in which the scalar of curvature R is replaced
by a function of itself [40], simple torsion-modified theories of gravity [41, 42] have been
developed. Noticeably, the Lagrangian of these theories is written as an arbitrary function
f(T ). Moreover, other alternative gravity theories where higher derivative torsional terms
such as (∇T )2 and �T are introduced have also been considered [43–45]. In this article we
focus on these kinds of theories where the actions takes the following form

S = − 1
2κ2

∫
eF (T, (∇T )2 ,�T )d4x+ Sm(eAρ ,Ψm), (2.6)

where κ2 = 8πG and the light speed c is set to one. Also, (∇T )2 = ηABe µ
A e

ν
B∇µT∇νT

= gµν∇µT∇νT and �T = ηABe µ
A e

ν
B∇µ∇νT = gµν∇µ∇νT , being e = det

(
eAµ

)
=
√
−g.

Rewriting action (2.6) based on these new parameters X1 ≡ (∇T )2, X2 ≡ �T , FT ≡
∂F/∂T and F,Xa ≡ ∂F/∂Xa (with a = 1, 2); and varying it with respect to the tetrad; the
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field equations in a general coordinate basis can be obtained,

Eµν ≡ F,TGµν + S σ
µν ∂σF,T + 1

4gµν(F − F,TT ) + 1
4

2∑
a=1

{
eAµgρνF,Xa

∂Xa

∂eAρ

−1
e

[
eAµgρν∂σ

(
eF,Xa

∂Xa

∂∂σeAρ

)
− eAµgρν∂σ∂δ

(
eF,Xa

∂Xa

∂∂σ∂δeAρ

)]}

− 1
4ee

A
µgρν∂λ∂σ∂δ

(
eF,X2

∂X2
∂∂λ∂σ∂δeAρ

)
− κ2

2 Tµν = 0, (2.7)

being Gµν = e µ
A G

A
ν the Einstein tensor, with G µ

A ≡ e−1∂ν (ee σ
A S

µν
σ ) − e σ

A T
λ
ρσS

ρµ
λ +

e λ
B S

ρµ
λ ωBAρ + 1

4e
µ
A T . Here we define S µν

ρ ≡ 1
2

(
Kµν

ρ + δµρ T
τν
τ − δνρ T τµτ

)
as the “super-

potential”, and Kµν
ρ ≡ −1

2

(
Tµνρ − T νµρ − T µν

ρ

)
the contortion tensor. Besides, the matter

energy momentum tensor is given by,

e τ
A T ρ

τ ≡
1
e

δSm
δeAρ

. (2.8)

The covariant derivative of the mattter action is null as long as its only coupling with gravity
(that is, with the tetrad) is minimal and also, the Lagrangian of matter is diffeomorphism
invariant. Although the action of Teleparallel Gravity is local Lorentz invariant [38], the
gravitational part of the action (2.6) is not anymore [46, 47]. Then, the modified field
equations (2.7) are not symmetric. Indeed, the superpotential tensor S σ

µν is not symmetric
in its lower indices, as well as the terms coming from the new higher-order derivative terms
added to the action, and then Eµν is also not symmetric. Thus, the antisymmetric part
of (2.7) constitutes a set of six equations for six additional degrees of freedom (DOF) due to
violation of local Lorentz symmetry [48] (see also refs. [49–53] and references therein).

Finally, some of us [43] pointed out before that the higher-order derivatives in eq. (2.7)
might be generating Ostrogradsky ghosts. However, since the theory is not formulated in the
Einstein frame, these terms could also be indicating the existence of extra degrees of freedom.
Considering that there is not yet a transformation between the Jordan and Einstein frames
for torsional modified gravity theories, this type of analysis is beyond the scope of this work.

3 Post-Newtonian approximation

In this section, we quickly summarize the parametrized post- Newtonian formalism that
we are going to use in this work. The PPN formulation is a method that allows solving the
Einstein’s field equations of metric theories in the weak field limit and assuming slow motions
in such a way that it is possible to compare the theoretical predictions with observations or
experiments, for example those from the solar system [22, 23]. The main hypotheses of the
PPN formalism are: i) matter behaves like a perfect low-speed fluid; ii) all relevant physical
quantities in the solution of the gravitational field equations can be expanded in orders of the
velocity vi = ui

u0 of the source matter. Several authors have already applied this formalism
to different scalar torsion theories before [34–37]. Therefore, we will use several of their
developments to carry out the expansion of important quantities (such as the tetrad) in the
orders of the velocity.
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First, we recall that the energy momentum tensor of a perfect fluid with rest energy
density ρ, specific internal energy Π, pressure p, and four-velocity uµ, can be expressed as:

Tµν = (ρ+ ρΠ + p)uµuν + pgµν , (3.1)

where the normalization of the four-velocity uµ with the metric is such that the following
relation is met: uµuνgµν = −1. In Cartesian coordinates the diagonal tetrad representing the
Minkowski background is a proper tetrad and then we can choose ωABµ = 0 [29]. Next, we
consider first an expansion of the tetrad field in eq. (2.2) around the Minkowski background
as follows:

eAµ = δAµ + τAµ = δAµ + 1
τAµ + 2

τAµ + 3
τAµ + 4

τAµ +O(5) , (3.2)

being δAµ = diag(1,1,1,1); and each term n
τAµ is of order O(n) ∼ ~vn. For our calculation, we

only consider velocity orders up to the fourth order. Then, in order to study the PPN limit
of the theory we can choose the following ansatz for the perturbed tetrad field

e0̂
µ =

(
1 + 2

τ 0̂
0 + 4

τ 0̂
0,

3
τ 0̂
i

)
, eaµ =

(
3
τa0, δai + 2

τai

)
,

e µ

0̂ =
(
1− 2

τ 0̂
0 −

4
τ 0̂

0 + ( 2
τ 0̂

0)2, − δia
3
τa0

)
,

e µ
a =

(
−δia

3
τ 0̂
i, δ

i
a − δja δib

2
τ bj + δja δ

k
c δ

i
b

2
τ cj

2
τ bk

)
. (3.3)

The hat notation denotes time and spatial algebraic indices. The above ansatz introduces
seventeen DOF, but only sixteen are going to be independent as usual in the tetrad formalism
for gravity. Furthermore, although in the context of GR and TEGR, six of them are Lorentz
gauge degrees recovering the usual ten DOF, in the case of modified teleparallel gravity
theories these six additional modes are no longer Lorentz gauge degrees because local Lorentz
violation [46, 47].

Thus, using the expansion of eq. (3.2) we can obtain the perturbed metric around a flat
background 0

gµν = ηµν = ηABδ
A
µδ
B
ν as follows

2
g00 = 2 2

τ00 ,
2
gij = 2 2

τ (ij) ,
3
g0i = 2 3

τ (i0) ,
4
g00 = −( 2

τ00)2 + 2 4
τ00 . (3.4)

where we have introduced τµν = δAµηABτ
B
ν and n

τµν = δAµηAB
n
τBν . In addition, from

that same expression, the torsion scalar reduces to

T = −∂i
2
τ jk∂k

2
τ (i,j) + ∂i

2
τ jk∂j

2
τ [i,k] − ∂0

2
τ ij∂0

2
τ (i,j)

+∂i
2
τ jk∂i

2
τ (j,k) − ∂i

2
τ ij∂k

2
τkj

+∂0
2
τ ii∂0

2
τ jj + 2∂i

2
τ jj∂i

2
τ00 − ∂i

2
τ jj∂i

2
τkk

−2∂i
2
τ ij∂j

2
τ00 + 2∂i

2
τ ij∂j

2
τkk +O(5), (3.5)

where, 2
τ (j,k) = 1

2( 2
τ jk+ 2

τkj) and
2
τ [j,k] = 1

2( 2
τ jk−

2
τkj). From last equation, the higher-derivative

torsional terms can be written as

X1 = −∂0T∂0T + ∂iT∂iT +O(9), (3.6)
X2 = −∂0∂0T + ∂i∂iT +O(5). (3.7)
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Since the lowest order of velocity for T is fourth order (eq. (3.5)) we can deduce that the
lowest order of X1 is eighth order and the lowest order of X2 is fourth order.

Also, the energy-momentum tensor expressed in term of the relevant velocity orders is
given by

T00 = ρ
(
1 + Π + v2 − 2 2

τ00
)

+O(6) , (3.8a)

T0j = −ρvj +O(5) , (3.8b)
Tij = ρvivj + pδij +O(6) . (3.8c)

Taking into account their order of magnitude in the solar system [35], we assigned the velocity
order O(2) to ρ and Π and O(4) to p. These are all formulas which will be necessary for the
post-Newtonian expansion of the field equations. We will proceed with this expansion and
their solution in the following section.

4 Field equations

To obtain the expression of the post-Newtonian parameters for the class of theories analyzed
in this paper, we need to expand the field equations to each velocity order (up to fourth order)
and solve them using the post-Newtonian approximation. Following [34] we also assume a
generic ansatz for the perturbative terms of the tetrad field, which consists in assuming that
they can be expressed as linear combinations of constant coefficients and post-Newtonian
potentials.

4.1 Zeroth velocity order
This order represents the background solution of the vacuum field equations. First, the
energy-momentum tensor at the zeroth velocity order is null. This fact is deduced from the
expansion in the eq. (3.8). Therefore, it only remains to solve the zero order of the field
equations (2.7) by introducing in them the assumed background expressions for the tetrad.
Since all the terms within the expressions for

0
E00 and

0
Eij are proportional to F (0, 0, 0), this

automatically leads to
0
E00 = 0 ,

0
Eij = 0. (4.1)

This is because to fulfil the post-Newtonian approximation, the function F (T, (∇T )2 ,�T )
must satisfy

F (0, 0, 0) = 0 (4.2)
since a flat Minkowski space is considered as the background. This condition shows a limita-
tion of the PPN formalism given that it cannot be applied to several of the more complicated
theories of gravity which are currently being used in cosmology.

4.2 Analysis of higher orders of velocity
Before studying the higher orders of velocity we will analyze some terms of equation (2.7).
First, to evaluate eq. (4.2), we propose the following ansatz:

F (T,X1, X2) = T +
∑
n1

αn1T
n1 +

∑
n2

αn2X
n2
2 +

∑
n3

αn3X
n3
1

+
∑

m1,m2

αm1,m2T
m1Xm2

2 +
∑

m3,m4

αm3,m4T
m3Xm4

1

+
∑

m5,m6

αm5,m6X
m5
2 Xm6

1 +
∑

m7,m8,m9

αm7,m8,m9T
m7Xm8

2 Xm9
1 , (4.3)
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where values ni and mi are greater or equal to 1 to avoid divergences. Besides, n2 must be
restricted to n2 6= 1, as �T is a boundary term.

Now, using the order of velocity found in equation (3.6), we examine the higher-
derivative torsional term X1 and its partial derivatives

F,X1(0, 0, 0)∂X1
∂eAρ

∼ 8
τµν , (4.4)

FX1(0, 0, 0) ∂X1
∂∂µeAρ

∼ 6
τµν , (4.5)

F,X1(0, 0, 0) ∂X1
∂∂µ∂νeAρ

∼ 6
τµν , (4.6)

and we conclude that the last terms are not of interest in post-Newtonian approximation.
Next, we study terms related to X2 (details in appendix A),

F,X2(0, 0, 0)∂X2
∂eAρ

∼ F,X2(0, 0, 0) 4
τµν = 0, (4.7)

F,X2(0, 0, 0) ∂X2
∂∂µeAρ

∼ F,X2(0, 0, 0) 2
τµν = 0, (4.8)

F,X2(0, 0, 0) ∂X2
∂∂µ∂νeAρ

∼ F,X2(0, 0, 0) 2
τµν = 0, (4.9)

F,X2(0, 0, 0) ∂X2
∂∂λ∂µ∂νeAρ

∼ F,X2(0, 0, 0) 2
τµν = 0. (4.10)

and we find that these terms are null, due to the fact that for eq. (4.3), F,X2(0, 0, 0) = 0.
Although we have proposed an F (T, (∇T )2,�T ) as general as possible, there are particular
cases where F (0, 0, 0) = 0 but F,X2(0, 0, 0) is not null (for example, models with terms such
as �TeT 2) and the corresponding contribution must be considered. However, the analysis of
these specific cases is beyond the goal of this paper. Hence, in post-Newtonian approximation,
equation (2.7) reduces to

Eµν ≡ F,TGµν + 1
4gµν(F − F,TT )− κ2

2 Tµν = 0. (4.11)

This field equation is symmetric since the action (2.6) becomes local Lorentz invariant up to
fourth velocity order in the post-Newtonian expansion. Thus, we are now dealing with the
usual ten degrees of freedom of curvature-based gravity theories. Nevertheless, by analysing
a higher order than fourth in eq. (2.7), it is observed that the contributions coming from
both the non-linear torsion terms and the higher-derivative torsional terms (including the
effects of the additional DOF present in generic modifications of TG due to local Lorentz
violation [46, 47]) can contribute to the field equations from the sixth velocity order and then
beyond the first PPN approximation [54]. Furthermore, if the condition of a static vacuum
background is relaxed, these contributions can arise at lower velocity order. For instance,
the idea of a dynamical background (FRW metric) has been realized in the recently proposed
parameterized post-Newtonian cosmology (PPNC) framework [55, 56].

2Actually, F,X2 (0, 0, 0) 6= 0 for any function F = �T f(T, (∇T )2) where f(0, 0) 6= 0.
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4.3 Second velocity order

Next, we expand the field equations in terms of the tetrad perturbations at second velocity
order:

2
E00 = −2fT

2
τ i[i,j]j − κ2ρ,

2
Eij = fT

2
τ j[k,i]k + fT

(
2
τ i[k,j]k + 2

τk[j,i]k
)

−fT
[
2 2
τk[k,i]j −

2
τ00,ij +

(
2
τ00,kk + 2 2

τk[l,k]l
)
δij
]
, (4.12)

where we have set out the constant fT = F,T (0, 0, 0) and τi[j,k]l = 1
2(τij,kl − τik,jl).

Defining U and Uij as the postnewtonian functionals of the matter variables, it is possible
to obtain their relations with the matter variables such that:

4U = −4πρ , Uij = χ,ij + Uδij ∇2χ = −2U, (4.13)

in which ∇2 = δij∂i∂j refers to the spatial Laplace operator of the background metric and
χ is the superpotential defined in [22]. We also assume as usual in the PPN formalism the
following ansatz

2
τ00 = a1U,
2
τ ij = a2Uδij + a3Uij , (4.14)

to obtain the field equations at second order

2
E00 = −

[
κ2 − 8π(a2 + a3)fT

]
ρ, (4.15)

2
Eij = fT (a1 − a2 − a3) (4πδijρ+ U,ij) . (4.16)

Parameters ai are constant coefficients, which are determined from the solutions of the field
equations and imposing gauge conditions. In the standard PPN gauge, the spatial part of the
metric is diagonal and isotropic, consequently a3 = 0, since 2

gij should be only proportional
to Uδij . Therefore, we solve the last system for a1 and a2 landing on

a1 = κ2

8πfT
,

a2 = κ2

8πfT
. (4.17)

4.4 Third velocity order

We proceed with the expansion at the third velocity order of the field equations where the
only non vanishing terms are given by

3
E0i = fT

[1
2
(

2
τ ij,0j−

3
τ i0,jj+

2
τ ji,0j−

3
τ j0,ij+2 3

τ0[j,i]j
)
− 2
τ jj,0i+

3
τ j0,ij

]
+κ2ρvi , (4.18)

3
Ei0 = fT

[1
2
(
2 3
τ0[j,i]j−

2
τ00,0i+2 3

τ [j|0|,i]j+2 2
τ [ij],0j−

2
τ00,0i

)
−2 2

τ j[j,|0|i]+
2
τ00,0i

]
+κ2ρvi . (4.19)
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It should be noted that the tetrad perturbations at third velocity order 3
τ0i and

3
τ i0 transform

as vectors under spatial rotations. Therefore, the following ansatz is assumed:

3
τ i0 = 3

τ0i = b1Vi + b2Wi, (4.20)

being Vi and Wi postnewtonian functions of the matter variables defined as follows:

4Vi = −4πρvi , 4Wi = −4πρvi + 2U,0i , (4.21)

where bi are constant parameters that are established in the same way as the ai coefficients
in the subsection 4.4. Rewriting expressions (4.18) and (4.19)

3
E0i =

3
Ei0 =

[
κ2 + 4πfT (b1 + b2)

] (
ρvi −

U,0i
4π

)
, (4.22)

we are able to solve the system and obtain:

b1 = −b0 −
κ2

4πfT
, (4.23)

b2 = b0 . (4.24)

leaving b0 as a parameter to be determined in the next subsection instead of setting the gauge
and thus having another equation [34, 35].

4.5 Fourth velocity order

Finally, we expand the field equations at fourth velocity order, and we obtain the traces for

4
E00 = −fT2

[
− 2
τ ij,k

2
τ i[k,j] + 2

τ ij,k
(

2
τk[j,i] + 2

τ j[i,k]
)

+ 2
τ ij,i

2
τkj,k + 2

τ ii,j
2
τkk,j + 2 2

τ ij,i
2
τ jk,k

]
−2fT

[
4
τ i[i,j]j + 2

τ ij,k
2
τ j[k,i] + 2 2

τ00
2
τ i[j,i]j −

2
τ ii,j

2
τ (jk),k + 2

τ ij
(

2
τ j[k,i]k + 2

τk(i,j)k −
2
τkk,ij

)]
−κ2ρv2 − κ2ρΠ, (4.25)

and
4
Eii = −2fT

[
4
τ00,ii−

3
τ0i,0i−

2
τ00,i

2
τ ij,j+

2
τ ii

2
τ jk,jk−

2
τ ij

2
τ jk,ik+

2
τ ji

2
τ ij,kk−

2
τkk

2
τ ii,jj+

2
τ00,ii

(
2
τ00+ 2

τ jj
)]

−2fT
[

2
τ i[i,j]

2
τ jk,k−

4
τ i[i,j]j+

2
τ ii,00−

3
τ i0,i0+2 2

τ00,i
2
τ j[j,i]+2 2

τ ij
(

2
τkk,ij−

2
τk(i,j)k

)]
+1

4fT
[
2 2
τ ik

2
τ ij,jk+2 2

τkj,i
2
τki,j+

2
τ ij,k

(
2
τ ij,k−3 2

τ ik,j
)
+ 2
τ ij,k

2
τkj,i+2 2

τ ij
2
τ ik,jk

]
+3fT

2
τ (ij)

2
τ00,ij

−1
2fT

[
2
τ ii,j

(
2 2
τkj,k−

2
τkk,j

)
− 2
τ ij,i

2
τkj,k−

2
τ ij,k

2
τ jk,i

]
−3

4fT
2
τ ij,k

2
τ ji,k−fT

2
τ ij

2
τ ij,kk

−3κ2p−κ2ρv2. (4.26)

Next, we note that the relevant tetrad perturbation at fourth velocity order 4
τ00 behaves

as a scalars under spatial rotations and therefore we consider the following ansatz:

4
τ00 = c1Φ1 + c2Φ2 + c3Φ3 + c4Φ4 + c5U

2, (4.27)
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being ci constant coefficients (similar to ai and bi) while Φi represent the typical PPN po-
tentials defined by

∇2Φ1 = −4πρv2 , ∇2Φ2 = −4πρU ,
∇2Φ3 = −4πρΠ , ∇2Φ4 = −4πp . (4.28)

Replacing the latter ansatz in eqs. (4.25) and (4.26) we obtain:
4
E00 +

4
Eii = −2fT

{
2b0U,00 + 4π[c1ρv

2 + (c2 + 2c5)ρU + c3ρΠ + c4p]− 2c5U,iU,i
}

−κ
2

4π

(
U,00 −

κ2ρU

2fT

)
+ 3κ2p+ 2κ2ρv2 + κ2

(
ρΠ + κ2

32π2
U,iU,i
fT

)
. (4.29)

In order to avoid any violation of the standard PPN gauge, the coefficient that follows U,00
must be null (in addition, it does not correspond to any term of the ansatz proposed in this
subsection). On the other hand, it is also necessary that the coefficients in front of the terms
ρU , p, ρΠ, ρv2, U,i U,i also vanish. For this, the following relations have to be fulfilled:

b0 = − κ2

16πfT
, c1 = κ2

4πfT
,

c2 = κ4

32π2f2
T

, c3 = κ2

8πfT
,

c4 = 3κ2

8πfT
, c5 = − κ4

128π2f2
T

. (4.30)

5 PPN metric and parameters

In this section, we compute the metric from the results of the previous section and obtain
the PPN parameters for the F (T, (∇T )2,�T ) generalized theories.

Thanks to the coefficients computed in section 4 it is possible to calculate the tetrads.
Besides, from eq. (3.4) the metric at different orders is obtained,

2
g00 = κ2

4πfT
U , (5.1a)

2
gij = κ2

4πfT
Uδij , (5.1b)

3
g0i = − κ2

8πfT

(7
2Vi + 1

2Wi

)
, (5.1c)

4
g00 = κ2

8πfT

(
− κ2

4πfT
U2 + 4Φ1 + κ2

2πfT
Φ2 + 2Φ3 + 6Φ4

)
. (5.1d)

Then, assuming that the gravitational constant G for this type of theories is given by,

G = κ2

8πfT
= 1, (5.2)

the metric can be written as ,

g00 = −1 + 2U − 2U2 + 4Φ1 + 4Φ2 + 2Φ3 + 6Φ4, (5.3)

g0i = −7
2Vi −

1
2Wi, (5.4)

gij = 1 + 2Uδij . (5.5)
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Finally, comparing the metric attained above with the standard PPN form of the metric [21–
23], we are able to read the PPN coefficients

α1 = α2 = α3 = ζ1 = ζ2 = ζ3 = ζ4 = ξ = 0, (5.6)
γ = β = 1, (5.7)

Our results show that for F (T, (∇T )2,�T ) theories within the fourth order of the PPN
formalism there is no violation of the total energy-momentum conservation, nor the effects of
the preferred frame or the preferred location are relevant enough. In this way these theories
can be considered as fully conservative at least at these orders. In addition, our estimates for
the β and γ parameters are equal to the ones obtained in General Relativity which in turn
are consistent with the experimental and observational bounds [21–23].

6 Concluding remarks

In the present paper we studied the parametrized post-Newtonian (PPN) limit of higher-
derivative-torsion modified teleparallel gravity theories. These latter theories [43] constitute
a new class of modified gravity theories which are constructed by adding higher-derivative
torsional terms to the action of F (T ) gravity [41, 42]. Higher order terms are motivated by
the similar constructions based on curvature, whose origin is related to quantum corrections
or to a fundamental gravitational theory (e.g. string theory, Kaluza-Klein theory [57–59])
or to quantum-gravity-like effective actions at scales closed to the Planck scale [60]. In this
context, torsion is associated to the Weitzenböck connection of teleparallel gravity [7–20].
Furthermore, the PPN formalism provides a remarkable tool in studying the viability of
gravity theories to fulfill the constraints imposed by local-scale observations through a set of
ten parameters that have been measured with a high precision [21–23].

We have started from the covariant formulation of modified teleparallel gravity by restor-
ing the non-vanishing spin connection of the theory [20, 29]. Thus, in order to obtain the
PPN limit we expanded the tetrad field around the Minkowski background and found the
corresponding perturbed field equations. At this point, by establishing the ansatz for the
perturbed tetrad field consistent with the standard PPN spacetime metric we have clari-
fied the count of the total number of degrees of freedom (DOF) including the six additional
modes appearing in modified teleparallel gravity (MTG) due to local Lorentz symmetry
breaking [46, 47]. In this way, by using this PPN expansion of the tetrad field we calculated
the relevant geometrical quantities at hand, as for instance the torsion scalar, and the higher-
derivative torsional terms up to fourth velocity order. With these results we have shown that
the torsion scalar is fourth velocity order, as well as the higher-derivative torsional terms
(e.g. �T , (∇T )2) which are fourth and eighth order respectively. Therefore, we have shown
that the contributions to the perturbed field equations originated from the modifications
to teleparallel gravity (products of non-linear torsion terms or due to higher-derivative tor-
sional terms, including the effects of additional perturbative modes) can appear explicitly
only from the sixth velocity order, that is to say, beyond the PPN formalism. Therefore,
a second post-Newtonian (2PN) order approximation should be considered to study these
contributions [54]. Consequently, in the traditional PPN formalism it is not possible to find
for the theories studied here, any deviations from the PPN parameters with respect to the
GR predictions (consistent with the experimental and observational bounds).

Besides, we note that in refs. [30] and [31] a detailed analysis on power law f(T ) =
T + 1

2εαT
p theories (with ε � 1) was performed. In them, the perihelion shift, photon
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sphere and perturbative gravitational effects near neutron stars predictions are calculated
from perturbations around a Schwarzschild spacetime while in our case the PPN formalism
is developed for a Minkowski spacetime background. In fact, in [31], a Minkowski spacetime
expansion has also been carried out obtaining that,

A(r) = 1 + ε

(
C2 −

C1
r
− κ2

3 Λr2
)
, (6.1)

B(r) = 1 + ε

(
C1
r

+ κ2

3 Λr2
)
, (6.2)

for a spherically symmetric metric ds2 = −A(r)dt2 +B(r)dr2 + r2(dθ2 + sin2 θdφ2), being C1
and C2 integration constants and where the Λr2 term appears if a nonvanishing cosmological
constant is assumed. In the PPN expansion g00 = −1 + 2U(r) + O(ε2) and gik = (1 +
2γU(r))δik, where U(r) represents the Newtonian potential. Therefore, with a suitable choice
of the integration constants, the above predictions are compatible with ours and those of [34],
where O(ε2) terms are null and γ = 1 for these cases. In addition, the deviations to GR
that appear in the expansions using a Schwarzschild spacetime shrink as the power (p) of
the power series increases, being able to establish restrictions with the observables on the
parameter α only when p = 2 [31].

Finally, it is important to note that the PPN formalism relies on the asymptotical
flatness and slow-motion assumptions which are not valid on larger scales as the cosmological
one. At the same time, with the motivation to extend the success of the PPN formalism to
cosmological scales, and to encompass a larger class of theories of gravity and dark energy
models as possible, an attempt to construct a parameterized post-Newtonian cosmology
(PPNC) has been performed in refs. [55, 56]. This new formalism takes into account the
time dependence of the cosmological quantities linked to the large scale expansion, as well as
it is still valid in the presence of non-linear structures and consistent with the PPN limit. In
this sense, we have shown that the consequences of non-linear torsion terms, higher-derivative
torsion terms, including the effects of the additional perturbative modes present in MTG, can
also become significant if the condition of the static vacuum background is relaxed. Thus,
in order to study the new observational imprints predicted by these theories a new analysis
within the PPNC framework is mandatory.
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A Partial derivatives of the higher-derivative torsional terms

In this appendix, we show the partial derivatives of the higher-derivative torsional term X2
using CADABRA [61, 62]. From eq. (3.7), we find that the lowest order of partial derivative
of X2 with respect to eAγ is fourth velocity order. Although it was calculated explicitly via
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CADABRA, its expression is very long and therefore we do not write it here. On the other
hand, the partial derivative of X2 with respect to ∂ρeA1

ν1 can be written

∂X2

∂∂ρ1e
A1
ν1

= −∂A1
α
α

(
2
τν1ρ1

)
+∂ρ1α

α

(
2
τν1

A1
)

+∂A1
α
α

(
2
τρ1ν1

)
−∂ν1α

α

(
2
τρ1

A1
)

+∂ρ1α
α

(
2
τA1

ν1
)
−∂ν1α

α

(
2
τA1

ρ1
)

+2δA1
ν1∂A

α
α

(
2
τAρ1

)
−2δA1

ν1∂ρ1α
α

(
2
τβ β

)
−2δA1

ρ1∂A
α
α

(
2
τAν1

)
+2δA1

ρ1∂ν1α
α

(
2
τβ β

)
+O(3), (A.1)

Furthermore, the partial derivative of X2 with respect to ∂ν1∂τ1e
A1
σ1 reads

∂X2

∂∂ν1τ1e
A1
σ1

= −2∂A1
ν1
(

2
τσ1τ1

)
−2∂ν1σ1

(
2
τ τ1

A1
)

+2∂ν1τ1
(

2
τσ1

A1
)

+2∂A1
ν1
(

2
τ τ1σ1

)
+2∂ν1τ1

(
2
τA1

σ1
)
−2∂ν1σ1

(
2
τA1

τ1
)

+4δA1
σ1∂ν1

A

(
2
τAτ1

)
+4δA1

τ1∂ν1σ1
(

2
τα α

)
−4δA1

σ1∂ν1τ1
(

2
τα α

)
−4δA1

τ1∂ν1
A

(
2
τAσ1

)
+O(3), (A.2)

and, finally, we have obtained the partial derivative of X2 with respect to ∂γ1∂ν1∂τ1e
A1
σ1

∂X2
∂∂γ1ν1τ1eA1

σ1
= −ηγ1ν1∂σ1

(
2
τ τ1

A1
)

+ηγ1ν1∂τ1
(

2
τσ1

A1
)

+ηγ1ν1∂A1
(

2
τ τ1σ1

)
−ηγ1ν1∂A1

(
2
τσ1τ1

)
+ηγ1ν1∂τ1

(
2
τA1

σ1
)
−ηγ1ν1∂σ1

(
2
τA1

τ1
)

+2δA1
τ1ηγ1ν1∂σ1

(
2
ταα

)
−2δA1

σ1ηγ1ν1∂τ1
(

2
ταα

)
−2δA1

τ1ηγ1ν1∂A
(

2
τAσ1

)
+2δA1

σ1ηγ1ν1∂A
(

2
τAτ1

)
+O(3). (A.3)
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