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We evaluate dissipative effects for a system consisting of a massive Dirac field confined between two
walls, one of them oscillating, in 1þ 1 dimensions. In the model that we consider, a dimensionless
parameter characterizing each wall is tuned so that bag-boundary conditions are attained for a particular
value. We present explicit results for the probability of creating a fermion pair, and relate the total
probability to the imaginary part of the effective action.
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I. INTRODUCTION

Quantum field theory predicts many interesting effects in
the presence of nontrivial boundary conditions. The best
known example of this phenomenon is the Casimir effect
[1,2] which, in the static case, manifests itself in forces due
to a nontrivial dependence of the vacuum energy on the
geometry of the boundary. Although, in principle, this
effect is relevant for any kind of fluctuating field, the most
frequently studied case corresponds to an Abelian gauge
field. This is hardly surprising since, for the electromag-
netic (EM) field, boundary conditions can be controlled in a
rather precise and straightforward way. Nevertheless, fields
other than the electromagnetic field have also been studied,
like in the fermionic fields describing quarks, since their
vacuum energies play an important role in the bag model of
QCD [3], where part of the mass of a baryon is due to the
Casimir energy of the fields which are affected by the (bag)
boundary conditions. A more straightforward realization
arises in the context of condensed matter physics, where
Dirac fields play a preeminent role, specially in 1þ 1 and
2þ 1 dimensions [4]. Boundary conditions may, on the
other hand, be also relevant due to the existence of
impurities, domain walls, etc.
We are interested here in the dynamical Casimir effect,

whereby a time dependence of the boundary may induce
the creation of particles of the quantum field out of the
vacuum. In [5] this has been studied, for a massless Dirac
field in 1þ 1 dimensions satisfying bag conditions on two

moving boundaries. For massive Dirac fields, higher
dimensions, and more general boundary condition, the
imaginary part the effective action for a single moving
boundary has been evaluated in [6]. In this paper, we
consider a massive Dirac field coupled to two walls, one
them moving, both imposing boundary conditions which,
for a particular value of a parameter describing the coupling
of the fermion to the wall, correspond to the vanishing of
the component of the current which is normal to the
boundary: bag conditions.
The structure of this paper is as follows: in Sec. II we

introduce the concepts and define the model that we study
in the rest of this work. Then, in Sec. III, we evaluate the
probability of pair creation from the vacuum, assuming a
small oscillation amplitude. In Sec. IV, we compare, and
show the consistency of the previous result with the one
that one finds from the evaluation of the imaginary part
of the effective action. Finally, in Sec. V we present our
conclusions.

II. THE MODEL

In the model that we consider, the (real-time) action S,
describing the fermionic field (ψ , ψ̄) subjected to boundary
conditions, is:

Sðψ̄ ;ψ ;VÞ ¼
Z

d2xψ̄ðxÞDψðxÞ ð1Þ

with

D≡ i=∂ −m − VðxÞ; ð2Þ

where m is the mass of the fermion field, and VðxÞ will be
used in order to introduce the boundary conditions (see
below). In our conventions, both ℏ and the speed of light
are equal to 1, the spacetime coordinates are denoted by xμ,
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μ ¼ 0, 1, x0 ¼ t, and the metric tensor is gμν ≡ diagð1;−1Þ.
Dirac’s γ-matrices are chosen as follows:

γ0 ≡ σ1 ¼
�
0 1

1 0

�
; γ1 ≡ iσ3 ¼

�
i 0

0 −i

�
; ð3Þ

and

γ5 ≡ γ5 ≡ γ0γ1 ¼ σ2 ¼
�
0 −i
i 0

�
; ð4Þ

with σi (i ¼ 1, 2, 3) representing the usual Pauli’s matrices.
Following the approach of [7,8], we can impose boun-

dary conditions by a special choice of the “potential” V.
Namely, V has to be proportional to a δ-function concen-
trated on the worldline swept by the point where the
condition is imposed. For example, for a timelike curve
C, corresponding to the solution to the equation FðxÞ ¼ 0,
the potential V shall have the structure:

VðxÞ ¼ gjNjδ½FðxÞ�; ð5Þ

where jNj≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−NμNμ

p
, Nμ ≡�½∂μFðxÞ�F¼0, is defined

on C, and everywhere normal to it (therefore spacelike).
There is a global sign ambiguity in Nμ, which corresponds
to the two possible orientations of the normal to a curve. We
will fix it by setting it to point toward the interior of the
region limited by two curves.
When C is the union of disconnected curves, V decom-

poses into a sum of terms, one for each curve. The factor g,
on the other hand, is a constant.
We shall assume that there are two walls, i.e., two curves

L and R (which eventually become boundaries in the bag
limit). L is static and given by x1 ¼ 0, while the other, R,
has the trajectory x1 ¼ aþ ηðx0Þ (ηðx0Þ > −a).
Applying the general structure of V discussed above to

the case at hand, it will consist of two terms, namely,

VðxÞ ¼ gLδðx1Þ þ gRγ−1ð_ηðx0ÞÞδðx1 − qðx0ÞÞ; ð6Þ

where γðuÞ≡ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
is the Lorentz factor.

Here, gL and gR are constants which, in order to enforce
bag boundary conditions, have to equal 2 (see [7]).
Different values produce imperfect boundary conditions,
in the sense that some current may escape the cavity. We
recall that the general form of the bag boundary conditions

ðeiθγ5 þ inμγμÞψ jC ¼ 0; ð7Þ

where θ is a real parameter which can be chosen arbitrarily,
and nμ ≡ Nμ

jNj. Note that, as usual, the boundary condition is

assumed to be imposed on the limit of the function on
which it acts, when one approaches the curve from the
interior of the region delimited.

Since we are going to deal with the region limited
between L and R, on L, nμ ¼ δμ1, while on R, nμðx0Þ ¼
−γð _qÞðδμ0 _qþ δμ1Þ.
To see the kind of boundary condition due to a singular

term like the one we are considering, let us observe what
happens for a singularity of strength g at x1 ¼ 0. We see
from the Dirac equation, after integrating along a spatial
path from x1 ¼ −ϵ and x1 ¼ ϵ, that the presence of the
singular term introduces a discontinuity in ψ . Therefore,
following [9], we replace the integral of the δ-function
times ψ by the average of the two lateral limits:

iγ1ðψðϵÞ − ψð−ϵÞÞ − g
2
ðψðϵÞ þ ψð−ϵÞÞ ¼ 0; ð8Þ

where we have omitted writing the temporal arguments,
which are the same in all the terms.
Setting g ¼ 2, and introducing the orthogonal projectors:

P� ≡ 1�iγ1

2
, this is equivalent to:

Pþψð−ϵÞ ¼ −P−ψðϵÞ; ð9Þ

and, therefore,

Pþψð−ϵÞ ¼ 0; P−ψðϵÞ ¼ 0: ð10Þ

The second equation is the bag boundary condition one has
on the field on L (assuming θ ¼ 0), assuming the interior of
the cavity is between L and R.
This formal argument will be seen to hold true in more

concrete terms, in Sec. IV, when evaluating different terms
in the perturbative expansion of the effective action ΓðqÞ,
that results by functional integrating out the Dirac field in
the vacuum to vacuum transition amplitude:

eiΓðqÞ ¼
R
DψDψ̄eiSðψ̄ ;ψ ;VÞR
DψDψ̄eiSðψ̄ ;ψ ;V0Þ : ð11Þ

Here V is as defined in (6), and we have introduced V0,
the function V corresponding to q≡ a, where a is a
positive constant. The denominator thus incorporates the
static Casimir effect, which has been evaluated for this case
[7], where it has been shown that it properly reproduces the
fermionic Casimir force for bag boundary conditions, when
gL ¼ gR ¼ 2. For different values of g, the strength of the
interaction is weaker.

III. PAIR CREATION

We evaluate there the probability of pair creation out
of the vacuum, due to the motion of one of the walls, which
acts as an “external source” injecting energy into the
system. We will consider motions of the R wall which
are parametrized by means of a function ηðx0Þ, which
measures the departure of R from its equilibrium, time
average position a > 0, namely,
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qðx0Þ ¼ aþ ηðx0Þ: ð12Þ

The object we study is the S-matrix; more specifically,
matrix elements of the T-matrix which describes the
nontrivial part of the evolution:

S ¼ 1þ iT: ð13Þ

For the perturbative evaluation of those matrix elements,
we will make use of the interaction representation. Note,
however, that bag conditions correspond to g ¼ 2, thus, an
expansion in powers of g is impossible. We can, however,
use a reliable expansion which captures interesting physics,
by taking as unperturbed system the one corresponding to
two static boundaries (separated by a distance a) and the
difference between the real action and the unperturbed one
as perturbation. This may be justified if one assumes, as we
do, that the departure η is sufficiently small. Thus, the
action is split up as follows:

S ¼ S0 þ SI ð14Þ

with:

S0 ≡ Sðψ̄ ;ψ ;V0Þ; V0ðxÞ ¼ 2δðx1Þ þ 2δðx1 − aÞ; ð15Þ

and

SI ≡ −
Z

d2xψ̄ðxÞφðxÞψðxÞ; φðxÞ≡ VðxÞ − V0ðxÞ:

ð16Þ

In SI , the fields are in the interaction picture, so that their
time evolution is dictated by the free Hamiltonian, which
corresponds to the potential V0: static walls (at a dis-
tance a).
Then, we evaluate the transition amplitudes that result by

expanding T in powers of SI , for small departures η. Up to
the second order in η, we see that φ ¼ φð1Þ þ φð2Þ þ � � �,
with

φð1ÞðxÞ ¼ −2δ0ðx1 − aÞηðx0Þ ð17Þ

φð2ÞðxÞ ¼ 2½δ00ðx1 − aÞðηðx0ÞÞ2 þ δðx1 − aÞð_ηðx0ÞÞ2�;
ð18Þ

where the prime denotes differentiation with respect to x1.
Let us now evaluate, to the lowest nontrivial order in η,

the transition amplitudes and transition probabilities (the
latter will be of the second order in η), assuming the initial
state to be the vacuum of the unperturbed system. To the
first order in η, the transition amplitude from jii to jfi is:

Tð1Þ
fi ¼ hfjSIjii ¼ −

Z
d2xφð1ÞðxÞhfjψ̄ðxÞψðxÞjii

¼ −
Z

d2xφð1ÞðxÞhfj∶ψ̄ðxÞψðxÞ∶jii: ð19Þ

The normal ordering above is justified as follows: using
Wick’s theorem in SI,

SI ¼
Z

d2xφð1ÞðxÞψ̄ðxÞψðxÞ ¼
Z

d2xφð1ÞðxÞð∶ψ̄ðxÞψðxÞ∶

−Tr½SFðx; xÞ�Þ ð20Þ

where SF is the fermion propagator in the presence of the
static boundaries. Now, the term involving SF vanishes.
Indeed, this object is invariant under time translations:
SFðx0; x1; x00; x01Þ ¼ SFðx0 − x00; x1; x1Þ. Thus,
Z

d2xφð1ÞðxÞtr½SFðx; xÞ�

¼
Z

d2xφð1ÞðxÞtr½SFð0; x1; x1Þ�

¼ −2
�Z

dx0ηðx0Þ
�Z

dx1δ0ðx1 − aÞtr½SFð0; x1; x1Þ�

¼ −2
Z

dx0hηi
Z

dx1δ0ðx1 − aÞtr½SFð0; x1; x1Þ� ¼ 0;

ð21Þ

where hηi is the time average of ηðx0Þ which, by
assumption, vanishes, since it is the departure with respect
to the average position a. On the other hand, note that hηi is
multiplied by a factor which is divergent. Indeed, the
coincidence limit picks up a logarithmic divergence, so that
the UV behavior of that term is

Z
d2xφð1ÞðxÞtr½SFðx; xÞ� ∼ −2

Z
dx0hηim

a
log

�
Λ
m

�
; ð22Þ

where Λ is an UV cutoff. The physical meaning of such a
term in the action, is a divergent contribution to the static
energy, not to the dynamical process we want to study and
therefore one could have defined the theory with the normal
ordering from the very beginning without affecting tran-
sition probabilities. Also, note that, if hηi were a non-
vanishing constant, one could still absorb that term, by a
redefinition of a: a → aþ hηi in S0 and expanding to first
order in hηi, as it should be.
We want to study particle production out of the

vacuum, so that the initial state is jii≡ j0i; on the other
hand, to this order, the only kind of final state allowed
contains a fermion antifermion pair. Note that this pair will
not correspond to free space particles, rather, to states
contained in the bag, which are the eigenstates of the
unperturbed Hamiltonian. They will be of the form
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jfi≡ b†nd
†
l j0i, with b†n and d†l being creation operators of

fermions and antifermions, respectively. They are labeled
by discrete indices, n and l, which correspond to spatial
momenta when a → ∞. Indeed, a mode-expansion of the
field operator (interaction picture) may be constructed as
follows:

ψðxÞ≡X
n

½bne−iEnx0unðx1Þ þ d†neiEnx0vnðx1Þ�; ð23Þ

where unðx1Þ≡ ψn;þðx1Þ and vnðx1Þ≡ ψn;−ðx1Þ, with
ψn;� are normalized solutions of Dirac equation with
bag boundary conditions (7):

ψn;�ðx1Þ ¼ Nn

� � En
pn
sinðpnx1Þ

cosðpnx1Þ þ m
pn
sinðpnx1Þ

�
;

Nn ≡
ffiffiffi
2

p
p2
n½p2

nðmþ 2aE2
nÞ þmE2

n sin2ðpnaÞ�−1=2;
ð24Þ

where En ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
n þm2

p
and the values of pn are deter-

mined by a transcendental equation. In terms of the
dimensionless quantities ρn ≡ pna and μ≡ma, the ener-
gies may also be rendered in units of 1=a, introducing
dimensionless energies ϵn: En ¼ 1

a ϵn, ϵn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2n þ μ2

p
,

while the transcendental equation is

μsincρn þ cos ρn ¼ 0; ð25Þ

with the sinc function defined as sincx ¼ sin x
x . This yields a

discrete spectrum [10,11]. In the massless (μ → 0) limit,
this spectrum is simply pn ¼ ðnþ 1

2
Þ πa with n ¼ 0; 1;…,

and energies ϵn ¼ ρn. In the opposite regime, μ ≫ 1, the
spectrum is in turn determined by the zeros of the sinc
function, namely: pn ¼ nπ

a , n ¼ 1; 2;…. Note that the
lowest energy is, in this limit, the mass of the fermions.
Taking into account the mode expansion above, the

transition amplitude for this kind of process becomes:

Tð1Þ
fi ≡ Tnl ¼ −2η̃ðEn þ ElÞðūnðx1Þvlðx1ÞÞ0jx1¼a; ð26Þ

where the Fourier transform of the departure is defined as:
η̃ðνÞ≡ R

dx0eiνx
0

ηðx0Þ. Using the explicit form of the
eigenstates u and v, we may write:

Tnl ¼ −
4

a2
η̃ðEn þ ElÞξnξlðϵn − ϵlÞ; ð27Þ

with

ξn ≡ ϵn sinðρnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵn þ μð1þ ϵ2nsinc2ρnÞ

p : ð28Þ

From the form of the matrix element of T it is clear that, for
the transition to be possible, the energies En and El must be
different.
We then write the probability of creation of a specific

pair in a spectral form, as follows:

Pð1Þ
nl ¼

Z
dν
2π

γnlðνÞjη̃ðνÞj2: ð29Þ

where:

γnlðνÞ ¼
32π

a4
δ½ν − ðEn þ ElÞ�½ξnξlðϵn − ϵlÞ�2: ð30Þ

For strictly massless fermions, this becomes:

γnlðνÞ ¼
8π5

a4
δ

�
ν−

ðnþ lþ 1Þπ
a

��
nþ 1

2

��
lþ 1

2

�
ðn− lÞ2:

ð31Þ

In this case, the frequency threshold ν0 required to produce
a pair is then given by considering n ¼ 0 and l ¼ 1.
Thus ν0 ¼ π

2a þ 3π
2a ¼ 2π

a .
In the μ → ∞ limit, on the other hand, the probability is

of course 0, since sin ρn (and therefore ξn) vanishes.
Finally, the total probability of pair creation P is

obtained by summing over all values of n and l which
give nonvanishing contributions.

P ¼
X
n;l

Pð1Þ
nl ¼

Z
dν
2π

γðνÞjη̃ðνÞj2; ð32Þ

with

γðνÞ ¼
X
n;l

γnlðνÞ: ð33Þ

In particular, for the massless case, we may write:

γðνÞ ¼ 8π5

a4
X∞
k¼1

δ

�
ν −

ðkþ 1Þπ
a

�
fðkÞ; ð34Þ

with

fðkÞ ¼
Xk
j¼0

�
jþ 1

2

��
k − jþ 1

2

�
ð2j − kÞ2; ð35Þ

where we have taken into account the fact that the
minimum value of the frequency threshold is 2π

a .
The sum over j may be explicitly evaluated, leading to

the result:

fðkÞ ¼ 1

60
ðkþ 1Þð2k4 þ 8k3 þ 17k2 þ 18kÞ: ð36Þ
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IV. IMAGINARY PART OF THE
EFFECTIVE ACTION

Let us here consider the (in-out) effective action Γ, in
order to check the consistency of its imaginary part with the
pair creation probability just derived. Γ may be written as a
functional trace, in terms of the fermion propagator SF
in the presence of the static boundaries, and of φ≡ V − V0,
as follows:

ΓðqÞ ¼ −iTr log ð1þ iSFφÞ: ð37Þ

In our conventions, SF is determined by ½i=∂ −m−
V0ðxÞ�SF ¼ iI, where I is the identity operator in both
functional and spinorial spaces, also refer to its kernel. Since
V0 is time-independent, we will use its Fourier transform

SFðx0 − y0; x1; y1Þ ¼
Z

dω
2π

e−iωðx0−y0ÞS̃Fðω; x1; y1Þ: ð38Þ

Expanding for small departures, as in the previous
section,

Γ ¼ Γð0Þ þ Γð1Þ þ Γð2Þ þ… ð39Þ
where the index denotes the order of the term. It is rather
straightforward to see that, since in our definition of Γ the
static contribution is subtracted, then Γð0Þ ¼ 0. Besides,
from the assumption that the time average position of R is
a, it follows that also the first order term vanishes. We thus
only need to evaluate Γð2Þ. On the other hand, we see that in
its second-order term there will be two qualitatively differ-
ent contributions:

Γð2Þ ¼ Γð2;1Þ þ Γð2;2Þ; ð40Þ
with

Γð2;1Þ ¼ TrðSFφð2ÞÞ; Γð2;2Þ ¼ −
i
2
TrðSFφð1ÞSFφð1ÞÞ:

ð41Þ
Γð2;1Þ produces a renormalization of the would be

Lagrangian for the R wall, since it correspond to terms
which are proportional to the square of η and of its time
derivative. They are local in time, and therefore they will
not contribute to any dissipative effect (which necessarily
correspond to nonanalyticities in the frequency space).
Let us then extract from the second order term its

imaginary part, which is related to the total probability
of pair creation P. Indeed, the vacuum persistence prob-
ability is related to Γ by:

jh0outj0inij2 ¼ e−2ImΓ ≃ 1 − P; ð42Þ

where the last equality is valid for ImΓ ≪ 1. This is
essentially the equation for probability conservation, where

P ¼ 2ImΓ is the probability of the transition of the vacuum
to a state with a nonvanishing particle content. Because the
first nontrivial process is the creation of a particle and
antiparticle pair, by computing ImΓ we should obtain the
pair-production probability.
In Γð2;2Þ, for bag boundary conditions, and evaluating the

trace over the spatial coordinates

Γð2;2Þ ¼ −2i
Z
x0;y0

ηðx0Þηðy0Þ∂x1∂y1

× tr½SFðx; yÞSFðy; xÞ�jx1¼y1¼a: ð43Þ

To evaluate the integrals in the last expression, rather than
using the time Fourier transforms, and evaluate the con-
volution of the propagators, we take into account that we
are interested in a process whereby real particles are
created. Therefore, the flux of energy will have a definite
sense in the diagram and, in the spirit of the “largest time
equation” [12], we have found it convenient to use the
following decomposition of the propagator in terms of
positive- and negative-energy projectors:

SFðx; yÞ ¼
X
n

½θðx0 − y0Þe−Enðx0−y0ÞPþ
n ðx1; y1Þ

− θðy0 − x0Þe−Enðy0−x0ÞP−
n ðx1; y1Þ�: ð44Þ

The energy projectors are written in terms of the
solutions of the Dirac equation with bag boundary con-
ditions:

Pþ
n ðx1; y1Þ ¼ unðx1Þūnðy1Þ; P−

n ðx1; y1Þ ¼ vnðx1Þv̄nðy1Þ:
ð45Þ

Evaluating the effective action with the previous represen-
tation for the propagator, we obtain the expression:

Γð2;2Þ ¼ 2i
X
n;l

jðūnðx1Þvlðx1ÞÞ0j2jx1¼a

Z
x0;y0

ηðx0Þηðy0Þ

× ½θðx0 − y0Þe−iðEnþElÞðx0−y0Þ

þ θðy0 − x0Þe−iðEnþElÞðy0−x0Þ�: ð46Þ

Finally, using the integral representation of Heaviside’s step
function, and expressing the function η in terms of its
Fourier transform we get:

Γð2;2Þ ¼ −4
X
n;l

jðūnðx1Þvlðx1ÞÞ0j2jx1¼a

×
Z

dν
2π

jη̃ðνÞj2
ν − ðEn þ ElÞ þ iε

: ð47Þ

The imaginary part of the last result may be taken in a rather
straightforward way, leading to the result:
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P ¼ 2ImΓð2;2Þ ¼ 4
X
n;l

jη̃ðEn þ ElÞj2jðūnðx1Þvlðx1ÞÞ0j2jx1¼a:

ð48Þ
Namely,

P ¼
X
n;l

jTnlj2; ð49Þ

with Tnl as given in (26); therefore in total agreement with
the results previously obtained.

V. CONCLUSIONS

In this work, using an S-matrix approach, we have
evaluated the fermion pair creation propability for a

trembling cavity which enforces bag boundary conditions
on the Dirac field, in 1þ 1 dimensions. The results may be
expressed in a rather general form in terms of the
eigenenergies of the static cavity, which in turn correspond
to the roots of a transcendental equation. In the massless
case, results may be written more explicitly.
We have shown the consistency of those results with the

ones stemming from the imaginary part of the effective
action, for the evaluation of which we have used a shortcut
approach.
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