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We study quantum dissipative effects due to the nonrelativistic, bounded, accelerated motion of a single
neutral atom in the presence of a planar perfect mirror, i.e., a perfect conductor at all frequencies. We
consider a simplified model whereby a moving “scalar atom” is coupled to a quantum real scalar field,
subjected to either Dirichlet or Neumann boundary conditions on the plane. We use an expansion in powers
of the departure of the atom with respect to a static average position to compute the vacuum persistence
amplitude and the resulting vacuum decay probability. We evaluate transition amplitudes corresponding to
the excitation of the atom plus the emission of a particle, and show explicitly that the vacuum decay
probabilities match the results obtained by integrating the transition amplitudes over the directions of the
emitted particle. We also compute the spontaneous emission rate of an oscillating atom that is initially in an
excited state.
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I. INTRODUCTION

Quantum vacuum fluctuations are at the origin of many
interesting phenomena. A prominent place among them
corresponds to the forces arising between static neutral
objects, originated in the fluctuations of the electromagnetic
(EM) field. These Casimir forces [1] have been measured
with precision in the last decades, and there have also been
theoretical advances on finding their dependence on the
geometry and composition of the bodies.
Vacuum fluctuations also affect the decay probability of

single atoms, via spontaneous emission. In the proximity of
metallic plates or when the atom is in a cavity, those decay
probabilities may change because of the influence of the
boundary conditions on the properties of those fluctuations.
This kind of effect has been investigated in the context of
cavity electrodynamics [2].
Qualitatively different effects appear when the system is

subjected to time dependent external conditions; for exam-
ple, photon creation when macroscopic media are accel-
erated or when, being static, a time dependence of their
electromagnetic properties is induced. Moreover (under
some conditions) even for a medium that moves at a
constant velocity with respect to a static one, a frictional
force, termed “quantum friction,” may arise. These
phenomena, broadly named dynamical Casimir effect [3],
do also manifest themselves at a microscopic level.

For example, the oscillatory motion of the center of mass
of an atom, which is initially in its ground state, can lead to
different excited states of the atom-field system: one of
them corresponds to a final state where the atom itself has
been excited, and a photon has been emitted. Alternatively,
the final state may contain a pair of photons, with the atom
still in its ground state. The latter is the microscopic
counterpart of the photon-creation process due to a moving
mirror [4]. A different mechanism, not involving motion,
arises when external driving fields produce a time depend-
ence in the energy levels [5].
Another interesting line of research, closely related to the

present paper, focuses on single atoms near a mirror, and in
relative motion to it. For example, for a two level atom in its
excited state, an oscillating mirror induces modifications in
the decay probability and in the spectrum of the emitted
photons [6,7]. Oscillating atoms near a perfect mirror have
been considered in a number of situations, most of them
using simplifying assumptions, either about the direction of
the emitted photons [8,9] or considering a scalar rather than
the EM field [10]. For uniform acceleration, the relation
between the excitation probability for a moving atom has
been compared with that of a moving mirror in discussions
of the equivalence principle [9]. Imperfect mirrors have
also been considered, in particular, in our previous work
[11] on quantum dissipative effects for an atom moving
nonrelativistically in the presence of a graphene sheet. The
calculations were performed perturbatively in the coupling
constants that define the imperfect media, estimating the
dissipative phenomena, in this context, via the imaginary
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part of the in-out effective action. This is a “global”
observable, namely, it accounts for the total probability
of vacuum decay.
In this paper, and for a similar kind of system, we present

a twofold approach to study quantum dissipation and then
check their consistency: we first evaluate the imaginary part
of the effective action, and then present a more refined
study, by evaluating the probability of photon emission
as a function of the direction of the emitted photons. The
consistency of both approaches is checked by integrating
out that emission probability over all the possible angles,
and comparing with the probability of vacuum decay. We
also consider the case of a moving atom that is initially
in an excited state, and analyze the dependence of the
probability of spontaneous emission on the acceleration of
the atom and its distance to the mirror. We have done all
calculations for a model where a real scalar field couples to
a scalar model for an atom, which moves in the presence of
a “perfect” mirror; namely, one which imposes either
Dirichlet or Neumann boundary conditions.
This paper is organized as follows: in Sec. II, we

introduce the model and evaluate the imaginary part of
its effective action, both for Dirichlet and Neumann
boundary conditions, to the second order in the amplitude
of motion of the atom. In Sec. III, we evaluate the transition
probabilities. We find the total decay probability and also
show its consistency with the finer description of the
elementary processes of photon emission and atom exci-
tation. We also discuss the decay or spontaneous emission
process in terms of its corresponding probability. Finally, in
Sec. IV, we summarize our main conclusions.

II. THE EFFECTIVE ACTION

It has become common usage in research related to both
the static and dynamic Casimir effects to begin the analysis
of the phenomenon being studied in a simplified setting,
with a real scalar field playing the role of the full EM field.
In some cases, one can even show that transverse electric
and transverse magnetic modes can be described by scalar
fields satisfying either Dirichlet and Neumann boundary
conditions, and that the EM field results may be obtained as
the superposition of those two scalar field theories.
In our model, an atom will be coupled to a quantum

real scalar field, and we will assume “perfect” boundary
conditions for the scalar field on the flat boundary, i.e.,
Dirichlet or Neumann. The free action for the massless
scalar field shall be given by

SscðϕÞ ¼
1

2

Z
d4x∂μϕðxÞ∂μϕðxÞ; ð1Þ

and boundary conditions will be assumed to be imple-
mented at the level of the functional integral over gauge
field fluctuations. In our conventions, indices from the
middle of the Roman alphabet (i; j…) are assumed to run

from 1 to 3, while those of the middle of the Greek alphabet
(μ; ν;…) run from 0 to 3, with x0 ≡ ct. In our conventions,
c≡ 1. The metric tensor is, on the other hand, assumed to
be ðgμνÞ ¼ diagð1;−1;−1;−1Þ. Einstein convention on the
sum over repeated indices is also understood, unless
explicitly stated otherwise.
The classical action for the atom is, on the other hand,

assumed to be

Sa ¼
m
2

Z
dtð _q2 −Ω2q2Þ þ g

Z
dtqðtÞϕðt; rðtÞÞ; ð2Þ

where qðtÞ plays the role of the electron’s degree of
freedom, rðtÞ of the atom’s center of mass, m is the
electron’s mass, and g is the coupling constant between
the electron and the vacuum field. We will assume that the
motion of the center of mass is bounded and we will denote
by r0 the (time) averaged position.
Following a similar approach to the one of our previous

work [11], we first integrate out the internal degree of
freedom qðtÞ, what produces an “intermediate” effective
action Seffðϕ; rÞ, given by the following expression:

Seffðϕ; rÞ ¼ SscðϕÞ þ SðaÞ
I ðϕ; rÞ; ð3Þ

with

SðaÞ
I ðϕ; rÞ ¼ −

g2

2

Z
dt

Z
dt0Δðt − t0Þϕðt; rðtÞÞϕðt0; rðt0ÞÞ;

ð4Þ

where Δðt − t0Þ ¼ R
dν
2π e

−iνðt−t0ÞΔ̃ðνÞ, and

Δ̃ðνÞ ¼ i
mðν2 −Ω2 þ iϵÞ : ð5Þ

Then, the complete effective action of the system,
functional of the center of mass coordinates, Γ½rðtÞ�, is
obtained by including the real scalar field fluctuations in the
presence of the appropriate boundary conditions. Namely,

eiΓ½rðtÞ� ¼
R ½Dϕ�meiSeffðϕ;rÞR ½Dϕ�meiSeffðϕ;r0Þ : ð6Þ

The subindex “m” for the brackets in the field integration
measure has been included to signal that the integral is over
those field configurations that are compatible with the
boundary conditions imposed by the mirrors. In our case,
and as already advanced, those conditions will be either
Dirichlet or Neumann on the plane x3 ¼ 0. We shall not
need to actually perform the full integrals above when we

evaluate Γ½rðtÞ� to the first order in SðaÞ
I . Indeed, to that

order, we just need the correlator of two fields in the
presence of the mirror, which is just the field propagator in
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the presence of Dirichlet or Neumann conditions on a
plane. More explicitly, and denoting the contribution of first

order in SðaÞ
I by ΓðamÞ½rðtÞ�, we see that

ΓðamÞ½rðtÞ� ¼ ie2

2

Z
dt

Z
dt0Δðt − t0Þ

× hϕðt; rðtÞÞϕðt0; rðt0ÞÞiðmÞ; ð7Þ

where the symbol h…iðmÞ denotes the functional averaging

h…iðmÞ ¼
R ½Dϕ�m…eiSscðϕÞR ½Dϕ�meiSscðϕÞ : ð8Þ

A. Dirichlet mirror

For a Dirichlet mirror, we can simply use the images
method to write

hϕðxÞϕðyÞim ¼ G0ðx0 − y0; x1 − y1; x2 − y2; x3 − y3Þ
−G0ðx0 − y0; x1 − y1; x2 − y2; x3 þ y3Þ;

ð9Þ

where G0 is the free scalar-field propagator

G0ðx0 − y0; x1 − y1; x2 − y2; x3 − y3Þ

¼
Z

d4k
ð2πÞ4 e

−ik·ðx−yÞ i
k2 þ iϵ

: ð10Þ

Introducing the explicit form of the Dirichlet propagator
above into (7), and using an entirely analogous approach to
the one of [10] we obtain, after some algebra,

Im½ΓD
mp� ¼

g2

8Ωm

Z
d3p
ð2πÞ3

1

p

× ½fð−pk;−p3;−ðpþ ΩÞÞfðpk; p3; pþ ΩÞ
− fð−pk; p3;−ðpþ ΩÞÞfðpk; p3; pþ ΩÞ�;

ð11Þ

where p ¼ ðpk; p3Þ, p ¼ jpj, and

fðp; νÞ ¼
Z þ∞

−∞
dte−ip·rðtÞeiνt: ð12Þ

We obtain more explicit expressions by expanding in
powers of the departure of the atom from an equilibrium
position r0, which in our choice of coordinates will be of
the form r0 ¼ ð0; 0; aÞ, a > 0.
To the second order in the departure, which we denote

yðtÞ, and using tildes to denote time Fourier transforms,
we find

Im½ΓD
mp� ¼

1

2

Z þ∞

−∞

dν
2π

ỹið−νÞỹjðνÞmij
DðνÞ: ð13Þ

Because of the presence of the plate, spatial isotropy is lost
and mij

DðνÞ and not proportional to δij. Rather, as a 3 × 3

matrix, it has the form

½mij
DðνÞ� ¼

0
BB@

mkðνÞ 0 0

0 mkðνÞ 0

0 0 m⊥ðνÞ

1
CCA; ð14Þ

where the parallel component is

mkðνÞ ¼
πg2

2mΩ
θðjνj −ΩÞ

Z
d3p
ð2πÞ3

pk2

2p
½1 − cosð2p3aÞ�

× δðjνj − p −ΩÞ; ð15Þ

and results in

mkðνÞ ¼
g2

8πmΩ
θðjνj −ΩÞðjνj − ΩÞ3

×

�
2

3
þ cosð2ðjνj − ΩÞaÞ

2½ðjνj − ΩÞa�2 −
sinð2ðjνj −ΩÞaÞ
4½ðjνj −ΩÞa�3

�
:

ð16Þ

The perpendicular component, on the other hand, is
given by

m⊥ðνÞ ¼
πg2

2mΩ
θðjνj −ΩÞ

Z
d3p
ð2πÞ3

ðp3Þ2
p

½1þ cosð2p3aÞ�

× δðjνj − p −ΩÞ; ð17Þ

or

m⊥ðνÞ ¼
g2

4πmΩ
θðjνj −ΩÞðjνj − ΩÞ3

×

�
1

3
þ cosð2ðjνj − ΩÞaÞ

2½ðjνj − ΩÞa�2 −
sinð2ðjνj −ΩÞaÞ
4½ðjνj −ΩÞa�3

þ sinð2ðjνj −ΩÞaÞ
2½ðjνj − ΩÞa�

�
: ð18Þ

It can be seen that both functions,mk andm⊥ approach a
common limit m0 far from the plate, i.e., when jνja → ∞:

m0ðνÞ ¼
g2

12πmΩ
Θðjνj −ΩÞðjνj −ΩÞ3: ð19Þ

As expected, this is the result corresponding to an oscillat-
ing atom in free space [10]. In Fig. 1 we plot the ratios
m⊥=m0 and mk=m0 as functions of aðjνj −ΩÞ, where the
above mentioned limit can be seen explicitly. On the
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contrary, in the opposite regime, i.e., close to the plate,
those functions approach rather different limits. Indeed,
m⊥ is enhanced by a factor which approaches 2, that is
m⊥ðνÞ ≈ 2m0ðνÞ, whilemk tends to zero in that limit. These
results have a simple interpretation in terms of the images
of the oscillating atom in each case.

B. Neumann mirror

For a Neumann mirror, one has instead the propagator:

hϕðxÞϕðyÞim ¼ G0ðx0 − y0; x1 − y1; x2 − y2; x3 − y3Þ
þ G0ðx0 − y0; x1 − y1; x2 − y2; x3 þ y3Þ:

ð20Þ
Proceeding in an entirely analogous way as for the
Dirichlet case,

Im½ΓN
mp� ¼

1

2

Z þ∞

−∞

dν
2π

ỹið−νÞỹjðνÞmij
NðνÞ: ð21Þ

where now the parallel component is

mkðνÞ ¼
πg2

2mΩ
θðjνj −ΩÞ

Z
d3p
ð2πÞ3

pk2

2p
½1þ cosð2p3aÞ�

× δðjνj − p −ΩÞ; ð22Þ
and results in

mkðνÞ ¼
g2

4πmΩ
θðjνj −ΩÞðjνj − ΩÞ3

×

�
1

3
−
cosð2ðjνj −ΩÞaÞ
4½ðjνj −ΩÞa�2 þ sinð2ðjνj −ΩÞaÞ

8½ðjνj −ΩÞa�3
�
:

ð23Þ

The perpendicular component, on the other hand, is
given by

m⊥ðνÞ ¼
πg2

2mΩ
θðjνj −ΩÞ

Z
d3p
ð2πÞ3

ðp3Þ2
p

½1 − cosð2p3aÞ�

× δðjνj − p −ΩÞ; ð24Þ

or

m⊥ðνÞ ¼
g2

4πmΩ
θðjνj −ΩÞðjνj − ΩÞ3

×

�
1

3
−
cosð2ðjνj −ΩÞaÞ
2½ðjνj −ΩÞa�2

þ sinð2ðjνj −ΩÞaÞ
4½ðjνj −ΩÞa�3 −

sinð2ðjνj −ΩÞaÞ
2½ðjνj −ΩÞa�

�
: ð25Þ

Far from the mirror, the results for Neumann boundary
conditions also coincide with the free space case. Note,
however, that the behaviors of mk and m⊥ close to the
mirror are reversed, when compared with their Dirichlet
counterparts. These results are illustrated in Fig. 2.

III. TRANSITION AMPLITUDES

The existence of a threshold at jνj ¼ Ω, above which
there is a continuum in frequency with a nonvanishing
probability of vacuum decay, suggests that the processes
involved correspond to an excitation of the electron in the
atom (hence the threshold Ω), plus the emission of a
massless scalar field particle (the continuum above the
threshold). Besides, we know that the imaginary part of
the effective action is related to the squared modulus of the
transition amplitude for the creation of real particles, when
the threshold is reached. To that end, and having in mind
the calculation of the imaginary part of the effective action
to the same order we have used, we consider the transition
matrix T, related to the S matrix by S ¼ I þ iT, (I: identity
operator), to the lowest nontrivial order in the coupling
constant g.

0 5 10 15

0.0

0.5

1.0

1.5

2.0

x

m1

m2

FIG. 2. Ratios m1 ¼ mk=m0 and m2 ¼ m⊥=m0 as a function of
the dimensionless x ¼ aðjνj − ΩÞ for Neumann boundary con-
dition on the mirror.

0 5 10 15

0.0

0.5

1.0

1.5

2.0

x

m1

m2

FIG. 1. Ratios m1 ¼ mk=m0 and m2 ¼ m⊥=m0 as a function of
the dimensionless x ¼ aðjνj − ΩÞ for Dirichlet boundary con-
ditions on the mirror.
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We use standard perturbation theory in the interaction
representation, taking as free Hamiltonian the one corre-
sponding to the free atom plus the free scalar field
(including its boundary conditions). Therefore,

S ¼ T exp
�
ig
Z

dtqðtÞϕ½t; rðtÞ�
�
; ð26Þ

with T the chronological ordering operator.
The matrix elements of the T matrix between the initial

and final states, to the first order in g, are then of the form:

Tfi ≡ g
Z

dthfjqðtÞϕ½t; rðtÞ�jii: ð27Þ

The operators above evolve independently, according to
their respective free Hamiltonians, thus, for the electron
degree of freedom:

qðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2mΩ

p ðae−iΩt þ a†eiΩtÞ; ð28Þ

where a and a† denote the standard destruction and creation
operators for the harmonic oscillator. The scalar field, on
the other hand, will have different expansions depending on
whether the mirror imposes Dirichlet or Neumann boun-
dary conditions. We consider these two alternatives below.

A. Dirichlet plane

In this case, which we consider first, using the notations
z≡ x3, xk ≡ ðx1; x2Þ (and analogously for the components
of k), we shall have

ϕðxÞ ¼
Z

d2kk

Z
∞

0

dkz½αðkÞfkðxÞ þ α†ðkÞf�kðxÞ�; ð29Þ

where

fkðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π3ωðkÞ
p e−iωðkÞtþikk·xk sinðkzzÞ; ð30Þ

ωðkÞ ¼ jkj and the only nonvanishing commutator bet-
ween the operators appearing in the decomposition
is ½αðkÞ; α†ðk0Þ� ¼ δðk − k0Þ.
The initial state will be of the form jii ¼ j0i ⊗ j0i,

where the first factor refers to the electron and the second
one to the field. For this kind of initial state, the only
nonvanishing contribution to Tfi will be of the form

jfi¼ j1i⊗ jki; j1i≡a†j0i; jki≡ 1

N
α†ðkÞj0i: ð31Þ

The factor 1
N is included in order to normalize the state jki,

what is needed in order to obtain probabilities from Tð1Þ
fi . If

the system is put in a cubic box of length L, N ¼
ffiffiffiffiffiffiffiffi
L3

ð2πÞ3
q

.

We find

Tfi ¼
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mΩωðkÞL3
p

Z þ∞

−∞
dteitðΩþωðkÞÞe−ikk·rkðtÞ

× sin½kzrzðtÞ�: ð32Þ

For parallel motion: rzðtÞ≡ a, and to the lowest non-
trivial order in the departure ykðtÞ ¼ rkðtÞ,

Tfi ≃ −i
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mΩjkjL3
p sinðkzaÞkk · ỹkðΩþ jkjÞ: ð33Þ

Thus, the probability for the process, with the final particle
in an infinitesimal volume in momentum space, dPfi, is

obtained by multiplying d3kjTð1Þ
fi j2 by the density of final

states: 1
2

L3

ð2πÞ3. Note the factor of 1
2
with respect to the free

space case, due to the fact that states with the third
component of the momentum reversed are now identical.
Then

dPfi ¼
d3k
ð2πÞ3

g2

2mΩk
sin2ðkzaÞkakb

× ỹað−ðΩþ kÞÞỹbðΩþ kÞ; ð34Þ

where a, b ¼ 1, 2. It is convenient to introduce spherical
coordinates centered at the mean position of the atom, such
that ỹ is along the x1 axis. With this choice, the spatial
dependence of the probability is explicitly given by

dPfi¼
g2

2ð2πÞ3mΩ
k3sin3θsin2ðkacosθÞcos2φ

× jỹkðΩþkÞj2dkdθdφ

≡ g2

2ð2πÞ3mΩ
pD
k ðka;θ;φÞjỹkðΩþkÞj2k3 sinθdkdθdφ;

ð35Þ

where pD
k is proportional to the probability per unit solid

angle. In Fig. 3 we plot this function for different values
of the product ka. We see that for ka ≤ Oð1Þ the angular
dependence corresponds to quadrupole radiation, as
expected from the images method; indeed, in this regime
the retardation between a wave emitted by the atom and the
one due to its image can be ignored, and therefore the
parallel oscillating dipole behaves as a quadrupole when
combined with its image companion.
For intermediate values of ka, retardation cannot be

ignored, and the angular dependence shows a complex
structure of peaks, while at very large values sin2ðka cos θÞ
averages to 1=2, the radiation becomes dipolar and coin-
cides with that of an atom oscillating in free space.
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The total probability of this kind of process Pfi is
obtained by integrating out over all the possible momenta.
Rather than integrating over the variables above, it is more
convenient to proceed as follows:

P ¼
Z

dPfi

¼
Z

d3k
Z

∞

−∞
dνδðjνj −Ω − kÞ g2

2mΩk
sin2ðkzaÞ

× kakbỹaðνÞỹbð−νÞ: ð36Þ

Interchanging the order of the integrals, the one over kmay
then be performed exactly. This produces an expression of
the form

P ¼ 1

2

Z
dν
2π

ρkðνÞjỹðνÞj2: ð37Þ

ρkðνÞ ¼
g2

4πmΩ
θðjνj −ΩÞðjνj − ΩÞ3

×

�
2

3
þ cosð2ðjνj − ΩÞaÞ

2½ðjνj − ΩÞa�2 −
sinð2ðjνj −ΩÞaÞ
4½ðjνj −ΩÞa�3

�
:

ð38Þ

Note that this is in agreement with our results for the
imaginary part, since P is twice the imaginary part of the
effective action.
For motion perpendicular to the plane,

Tfi ≃
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mΩjkjL3
p cosðkzaÞkzỹ⊥ðΩþ jkjÞ; ð39Þ

and

dPfi ¼
d3k
ð2πÞ3

g2

2mΩk
cos2ðkzaÞk2z jỹ⊥ðΩþ kÞj2: ð40Þ

In this case there is of course axial symmetry with respect to
the direction of motion; therefore we may integrate the
probability along φ angle

dPfi ¼
g2

2ð2πÞ2mΩ
k3 sin θcos2θcos2ðka cos θÞ

× jỹ⊥ðΩþ kÞj2dkdθ

≡ g2

2ð2πÞ2mΩ
pD⊥ðka; θÞjỹ⊥ðΩþ kÞj2k3 sin θdkdθ:

ð41Þ

In Fig. 4 and we plot the function pD⊥ðka; θÞ for different
values of ka. We can see that the radiation has a dipolar
pattern both at small and very large distances: at very small
distances the image dipole reinforces (without retardation
and therefore no interference) the effect of the vertical
oscillating dipole associated to the moving atom, while at
large distances we recover the result for the oscillating atom
in free space.
Again, the total probability becomes identical to twice

the imaginary part of the effective action (evaluated to the
second order in g).
In the same way, we shall study the spontaneous

decay process in which the initial state is now given by
jii ¼ j1i ⊗ j0i (i.e., the atom in the excited state and
the field in vacuum) and the final state is given by
jfi ¼ j0i ⊗ j1i. It is straightforward to check that in this

(a)

(b)

(c)

FIG. 3. We plot here pD
k from Eq. (36) as a function of spherical

angles θ and φ, for Dirichlet boundary condition and parallel
motion.
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case there is no threshold at jνj ¼ Ω and the result is given
for the matrix element Tfi in the parallel motion is

Tfi ¼
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mΩωðkÞL3
p

Z þ∞

−∞
dteitð−ΩþωðkÞÞe−ikk·rkðtÞ

× sin½kzrzðtÞ�; ð42Þ

for rzðtÞ≡ a, and to the lowest nontrivial order in the
departure ykðtÞ ¼ rkðtÞ,

Tfi ≃
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mΩjkjL3
p sin½kza�½2πδðΩ − ωðkÞÞ

− ikk · ỹkð−Ωþ jkjÞ�; ð43Þ

where, unlike the excitation case examined previously,
there is a first term independent of the amplitude of the
oscillation ỹk that corresponds to the spontaneous decay for
a static atom in front of a mirror. The probability for the
decay process is now given by

dPfi ¼
d3k
ð2πÞ3

g2

2mΩk
sin2ðkzaÞ½4π2TδðΩ − jkjÞ

þ kakbỹað−ð−Ωþ jkjÞÞỹbð−Ωþ jkjÞ�: ð44Þ

For the motion perpendicular to the plane we have

Tfi ≃
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mΩjkjL3
p ½2πδðΩ − jkjÞ sinðkzaÞ

þ kzỹ⊥ð−Ωþ jkjÞ cosðkzaÞ� ð45Þ

and

dPfi ¼
d3k
ð2πÞ3

g2

2mΩk
½4π2TδðΩ − jkjÞ sin2ðkzaÞ

þ k2z jỹ⊥ð−Ωþ jkjÞj2 cos2ðkzaÞ�; ð46Þ

assuming that ỹ⊥ð0Þ ¼ 0.
It is worth to remark that in both situations (parallel

or perpendicular motions), if the atom’s center of mass
oscillates harmonically with a frequency Ωcm < Ω, the
spectrum of the emitted photons will have three different
frequencies ω ¼ Ω;Ω�Ωcm. A similar phenomenon
occurs for an atom in front of an oscillating mirror [6,7],
in the adiabatic approximation. Only two frequencies
would be present in the spectrum when Ωcm > Ω.

B. Neumann plane

We now have a different expansion for the field:

ϕðxÞ ¼
Z

d2kk

Z
∞

0

dkz½αðkÞgkðxÞ þ α†ðkÞg�kðxÞ�; ð47Þ

where

gkðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4π3jkj
p e−ijkjtþikk·xk cosðkzzÞ: ð48Þ

Since the interaction term is exactly the same as for the
Dirichlet case, it is immediate to find the probabilities in
this case. For parallel motion:

dPfi ¼
g2

2ð2πÞ3mΩ
k3sin3θ cos2ðka cos θÞcos2φ

× jỹkðΩþ kÞj2dk dθ dφ

≡ g2

2ð2πÞ3mΩ
pN
k ðka; θ;φÞjỹkðΩþ kÞj2k3

× sin θ dk dθ dφ; ð49Þ

while perpendicular departures are endowed with the
probabilities

(a) (b)

(c)

FIG. 4. We plot here pD⊥ from Eq. (42) as a function of spherical
angles θ and φ, for Dirichlet boundary condition and perpendicular
motion.
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dPfi ¼
g2

2ð2πÞ2mΩ
k3 sin θ cos2θ sin2ðka cos θÞ

× jỹ⊥ðΩþ kÞj2dk dθ

≡ g2

2ð2πÞ2mΩ
p⊥ðka; θÞjỹ⊥ðΩþ kÞj2k3 sin θ dk dθ:

ð50Þ

In Figs. 5 and 6 we plot the function pN
k and pN⊥,

respectively. Although less evident than in the Dirichlet
case, pN⊥ shows a quadrupole pattern at small distances,
being proportional to cos4ðθÞ.
Yet again, the total probabilities are consistent with the

results obtained in the effective action approach.
For completeness we will study in this section the case of

the spontaneous decay process with Neumann boundary

conditions on the perfect mirror. In the case of parallel to
the plane oscillatory motion of the atom, the probability
density for such process is obtained

dPfi ¼
d3k
ð2πÞ3

g2

2mΩk
cos2ðkzaÞ½4π2TδðΩ − kÞ

þ kakbỹað−ð−Ωþ kÞÞỹbð−Ωþ kÞ�: ð51Þ

For the perpendicular motion we get

dPfi ¼
d3k
ð2πÞ3

g2

2mΩk
½4π2TδðΩ − kÞ cos2ðkzaÞ

þ k2z jỹ⊥ð−Ωþ kÞj2 sin2ðkzaÞ�: ð52Þ

The spectrum of the emitted particles is similar to that of the
Dirichlet plane. Note, however, that the dependence with

(a)

(b)

(c)

FIG. 5. We plot here pN
k from Eq. (49) as a function of spherical

angles θ and φ, for Neumann boundary condition and parallel
motion.

(a) (b)

(c)

FIG. 6. We plot here pN⊥ from Eq. (51) as a function of spherical
angles θ andφ, forNeumann boundary condition and perpendicular
motion.
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the mean distance to the mirror is different, as well as the
relative weight between the static and nonstatic contribu-
tions for the case of perpendicular motion.

IV. CONCLUSIONS

In this paper we have studied the phenomena of
excitation and spontaneous emission of a moving atom
in front of a perfect mirror, in a model where the atom is
coupled to a quantum real scalar field, and the perfect
conductor boundary conditions have been mimicked by
Dirichlet and Neumann boundary conditions.
Assuming that the atom performs small amplitude

motions, we computed the vacuum decay probability to
the second order in the coupling constant between the
electron and the field. This probability is determined by the
imaginary part of the effective action, which is a functional
of the trajectory of the atom’s center of mass. When the
atom is close enough to the mirror, the results for Dirichlet
and Neumann boundary conditions admit simple interpre-
tations in terms of the images method.
The physical process behind vacuum decay is, up to this

order, the transition of the atom from the ground state to the
first excited state, along with the emission of a photon.
Thus, there is a threshold for the process dictated by energy
conservation which is Ωcm > Ω. We have also computed
the probability for the decay process as a function of the
direction of the emitted particle, and checked that the
integration over all directions reproduce the vacuum
decay probability. The angular dependence of the proba-
bility can also be understood in terms of the images

method. In particular, for Dirichlet boundary conditions,
the radiation emitted by an atom in parallel motion
becomes quadrupolar when the atom is close to the mirror.
For Neumann boundary conditions this happens for
perpendicular motion.
Finally, we analyzed the spontaneous decay of an

oscillating atom in front of a mirror. Both the presence
of the mirror and the oscillation of the atom induce
corrections to the spontaneous emission in free space.
The presence of the mirror modifies the angular depend-
ence of the probability, that turns out to be a function of the
atom-mirror distance, but not the energy of the emitted
photons. When the atom oscillates, the spectrum of the
emitted particles is modified by the appearance of two
lateral peaks, symmetric with respect to the central peak
that corresponds to the static atom. These results are similar
to those for a static atom in front of an oscillating mirror,
and opens new possibilities for the eventual experimental
observation of the effect. The extension of our results to the
more realistic case of the electromagnetic field can be
addressed, in the dipole approximation, using similar
techniques. Work in this direction is in progress.
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