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A B S T R A C T

In recent years, technology in medicine has shown a significant advance due to artificial intelligence becoming
a framework to make accurate medical diagnoses. Models like Multilayer Perceptrons (MLPs) can detect
implicit patterns in data, allowing identifying patients conditions that cannot be seen easily. MLPs consist
of biased neurons arranged in layers, connected by weighted connections. Their effectiveness depends on
finding the optimal weights and biases that reduce the classification error, which is usually done by using
the Back Propagation algorithm (BP). But BP has several disadvantages that could provoke the MLP not to
learn. Metaheuristics are alternatives to BP that reach high-quality solutions without using many computational
resources. In this work, the Cellular Genetic Algorithm (CGA) with a specially designed crossover operator
called Damped Crossover (DX), is proposed to optimise weights and biases of the MLP to classify medical data.
When compared against state-of-the-art algorithms, the CGA configured with DX obtained the minimal Mean
Square Error value in three out of the five considered medical datasets and was the quickest algorithm with
four datasets, showing a better balance between time consumed and optimisation performance. Additionally,
it is competitive in enhancing classification quality, reaching the best accuracy with two datasets and the
second-best accuracy with two of the remaining.
1. Introduction

Nowadays, it is impossible to imagine advances in medicine without
talking about artificial intelligence. The incredible amount of data
from different sources, such as medical images, data from clinical
examinations, sensors and many others, outperforms by far the human
capacity to process and analyse them [1]. For example, an average
radiologist technician analyses about 215,000 radiography in about
40 years, while an artificial intelligence method processes that amount
in about an hour [2].

Artificial Neural Networks (ANNs) undoubtedly are one of the arti-
ficial intelligence methods that more contributions to the medical field
have reported [3]. Examples of applications of ANNs to medicine are:
diagnosis of diseases [4,5], prediction of treatments behaviour [6–8]
and preventive medicine [9,10].

Multilayer Perceptron (MLP) [11] is a kind of ANN in which calculus
units, called neurons, are organised in three types of layers. Each
neuron is connected to all the neurons of the following layer, and data
flow from the first to the last layer. Connections between neurons have
a weight representing the strength of the linkage. In addition, both
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hidden and output neurons have a bias that acts as a threshold of
activation of the neuron.

What became attractive from the MLP was its ability to be a
universal classifier that adapts to different distributions, features and
complexities of data [12]. This quality is highly desirable in the medical
field, considering that medical data can have noise, be imbalanced in
the distribution of the classes and can have errors of registration [13].

The MLP effectiveness depends on its learning process, which iden-
tifies the weights and biases values that minimise the classification
error of training samples. The Back Propagation Algorithm (BP) is
the standard way to make the MLP learn. However, BP has several
weaknesses that can lead to a divergence in the MLP learning process,
such as, a tendency to get stuck in local optima or dependency on initial
values of hyperparameters [14,15].

In recent years, metaheuristics have gained attention as alterna-
tives to the BP method. They are iterative algorithms able to find
high-quality solutions in a reasonable time. One of their highlighted
characteristics is that they can be applied to different kinds of prob-
lems without needing specific knowledge [16,17], which makes them
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Nomenclature

𝛽𝑘 Bias for a neuron 𝑘 of the hidden or output
layer.

𝜂 Distribution index.
𝐁 Set of biases of the whole MLP.
𝐋 Set of training samples of a given dataset.
𝐖 Set of weights of the whole MLP.
𝜔𝐻
𝑖,𝑗 A weight from the input neuron 𝑖 to the

hidden neuron 𝑗 in the MLP.
𝜔𝑂
𝑗,1 A weight from the hidden neuron 𝑗 to the

output neuron in the MLP.
𝐵𝐼𝑖 Element 𝑖 of the best solution in the

population.
𝑙𝑏 Lower variables boundary.
𝑚 number of hidden neurons.
𝑛 Number of input neurons.
𝑂𝑓1𝑖 Element 𝑖 of the first offspring of the

crossover operator.
𝑂𝑓2𝑖 Element 𝑖 of the second offspring of the

crossover operator.
𝑝1 First parent for the crossover operator.
𝑝2 Second parent for the crossover operator.
𝑟 Random number.
𝑆 A candidate solution found by an algorithm.
𝑠𝑜𝑙𝑡+1𝑖 Value of the position 𝑖 of the solution 𝑠𝑜𝑙 at

evaluation 𝑡 + 1.
𝑠𝑜𝑙𝑡𝑖 Value of the position 𝑖 of the solution 𝑠𝑜𝑙 at

evaluation 𝑡.
𝑆𝑢𝑚𝑂

1 Result of the summation operation for the
output neuron.

𝑆𝑢𝑚𝐻
𝑗 Result of the summation operation for the

hidden neuron 𝑗.
𝑇 Total number of fitness evaluations to

perform.
𝑡 Number of performed fitness evaluations.
𝑢𝑏 Upper variables boundary.
𝑋𝑖 An input to the MLP.
𝑌 Binary output of the MLP.
𝑦𝐻𝑗 Output of the hidden neuron 𝑗.
𝑦𝑂1 Output of the unique output neuron.
𝑦𝑙 Expected output for a sample 𝑙 of the

training set.
ABC Artificial Bee Colony.
ALO Ant Lion Optimiser.
ANN Artificial Neural Network.
AX Adjusted Crossover.
BAT Bat Algorithm.
BBO Biogeography-Based Optimisation

Algorithm.
BOA Butterfly Optimisation Algorithm.

suitable for solving complex optimisation problems such as the learning
process of the MLP [18,19]. Studies have demonstrated that meta-
heuristics can perform well in training MLP models, even when a large
number of weights and biases must be optimised [20,21].

Cellular Genetic Algorithm (CGA) [22] is a metaheuristic based on
canonical Genetic Algorithm (GA), which works with a decentralised
population where genetic operators act over a small overlapped sub-
population per time. These features improve the performance of the
2

BP Back Propagation Algorithm.
C9 Type of Neighbourhood Compact-9.
CGA Cellular Genetic Algorithm.
CS Cuckoo Search.
DE Differential Evolution.
DX Damped Crossover.
EO Equilibrium Optimiser.
ES Evolutionary Strategy.
FWA Fireworks Algorithms.
GA Genetic Algorithm.
GWO Grey Wolf Optimiser.
IMGWO Inertia Motivated Grey Wolf Optimisation.
LOA Lion Optimiser Algorithm.
MFO Moth–Flame Optimiser.
MLP Multilayer Perceptron.
MPA Marine Predators Algorithms.
MSE Mean Square Error.
MVO Multi-Verse Optimisation.
NUM Non-Uniform Mutation.
PBIL Population-Based Incremental Learning.
PM Polynomial Mutation.
PSO Particle Swarm Optimisation.
RM Random Mutation.
SBX Simulated Binary Crossover.
SCA Sine–Cosine Algorithm.
Sn Sensitivity.
Sp Specificity.
SSA Salp Swarm Algorithm.
TDE Trigonometric Mutation Differential Evolu-

tion.
UM Uniform Mutation.
VEWOA Velocity Enhanced Whale Optimisation Al-

gorithm.
WOA Whale Optimisation Algorithm.

CGA because they contribute to a better exploration and exploitation
of the search space [23]. Previous works demonstrated that the CGA
gets competitive results compared to state-of-the-art algorithms when
the optimisation process is applied in continuous search spaces [24,25].
Nevertheless, evolving large-dimensional solutions could be challeng-
ing for genetic operators, causing the optimiser to diverge. To address
this problem is necessary to design new genetic operators that, by using
external information such as the stage of the evolutionary process, can
speed up and enhance the convergence of the algorithm [26].

In this paper, the CGA is used as an alternative to finding the
optimal weights and biases of the MLP for medical data classification.
A new crossover operator, called Damped Crossover (DX), is proposed
to improve the performance of the CGA at traversing the search space.
The purpose is to obtain a reliable method for training the MLPs and
improving classification quality. The main contributions of this work
can be summarised as follows:

1. A CGA is used for the optimisation of weights and biases of the
MLP.

2. A novel genetic crossover operator called Damped Crossover
(DX) is introduced. It uses the damped harmonic oscillation
function and information related to the best current solution and
the stage of the evolutionary process to determine the direction

and magnitude of recombination.
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3. Different configurations of the DX are evaluated against well-
known genetic operators for the CGA. Five benchmark medical
datasets were considered for experiments.

4. The CGA is compared deeply against state-of-the-art algorithms
previously utilised for optimising a MLP. Comparisons are made
observing how much each one improves the classification quality
of the MLP.

This paper is organised as follows. Section 2 introduces the MLP,
ives a notion about the traditional ways of training, defines the
roblem formally and presents the related works in literature. Section 3
escribes the CGA, the representation of the solution and the DX.
ection 4 is about the experiments configuration, the datasets used
or tests, the state-of-the-art algorithms and genetic operators used in
xperiments and the metrics to evaluate the quality of classification.
esults and their analysis are shown in Section 5. Finally, conclusions
nd future work are presented in Section 6.

. Multilayer perceptron

Multilayer Perceptron (MLP) is an Artificial Neural Network (ANN)
elonging to the feed-forward neural network family. The MLP has a
et of processing units called neurons that transform data to get an
xpected output [27].

Internally, neurons are organised by three well-differentiated layers.
he first layer contains the input neurons, which receives the input
ata and redirect them to the following layer. The number of input
eurons is usually the same as the number of features. The second
ayer, called the hidden layer, contains neurons that map the data using
athematical functions. An MLP can be configured with one or more
idden layers, according to the complexity of the problem. Finally, the
utput layer receives the data transformed by the hidden layer and
eturns a result. The amount of neurons in the output layer depends
n the codification of the expected result.

MLP is hierarchical and fully connected, meaning that neurons
f one layer interact with all the neurons of the following layer by
eighted connections, e.g., each input neuron is connected to all the
eurons in the hidden layer.

Weights (𝜔) of each connection indicates how strong is the con-
nection between two given neurons. In addition, hidden and output
neurons have an element called bias (𝛽), which is a threshold to adjust
the prediction by conditioning the neuron output. Depending on the
𝛽 value, the response of a neuron will be excitatory (positive) or
inhibitory (negative) [28,29]. The learning process of the MLP consist
of finding the optimal set of weights and biases.

An structure of an MLP with 𝑛 input neurons, one hidden layer with
𝑚 neurons and one output neuron is presented in Fig. 1. Weights for
connections from input to hidden layer are represented by 𝜔𝐻

𝑖,𝑗 and
weights for connections from hidden to output layer are showed as
𝜔𝑂
𝑗,1, with 𝑖 = {1,… , 𝑛} and 𝑗 = {1,… , 𝑚}. Biases appear as 𝛽𝑘 with

𝑘 = {1,… , 𝑚 + 1}.
Hidden neurons transform data by performing two operations: Sum-

mation and Activation. The former is the sum of the product between
the outputs of neurons from the previous layer and the weights of the
connections, added to the correspondent bias. Eq. (1) is used to apply
summation on a given neuron 𝑗 of the hidden layer.

𝑆𝑢𝑚𝐻
𝑗 =

𝑛
∑

𝑖=0
𝜔𝐻
𝑖,𝑗 ×𝑋𝑖 + 𝛽𝑗 (1)

where 𝜔𝐻
𝑖,𝑗 is the weight of the connection between an input neuron 𝑖 of

he input layer and the neuron 𝑗 of the hidden layer. 𝑋𝑖 is the output
of neuron 𝑖 that feeds the neuron 𝑗, and 𝛽𝑗 is the bias of the neuron 𝑗.

The activation operation applies a mathematical function to map
3

the result of the summation operation. This function is known as the
activation function. The most-used is the sigmoid function, which is
calculated for a given neuron 𝑗 by Eq. (2).

𝐻
𝑗 = 𝑓 (𝑆𝑢𝑚𝐻

𝑗 ) = 1

1 + 𝑒−𝑆𝑢𝑚
𝐻
𝑗

(2)

Being 𝑦𝐻𝑗 the final output of the hidden neuron 𝑗. This output can
feed either another sub-layer of the hidden layer or the output layer.
If there is a single output neuron, as shown in Fig. 1, the summation
operation is performed by Eq. (3), where 𝑦𝐻𝑗 is the output of a neuron
𝑗 of the hidden layer, and 𝜔𝑂

𝑗,1 is the weight of the connection between
the hidden neuron 𝑗 and the output neuron. 𝛽𝑚+1 is the bias of the
output neuron.

𝑆𝑢𝑚𝑂
1 =

𝑚
∑

𝑗=0
𝜔𝑂
𝑗,1 × 𝑦𝐻𝑗 + 𝛽𝑚+1 (3)

Finally, the result from the MLP to a given instance of a dataset
is determined by the activation operation of the output neuron (see
Eq. (4)).

𝑦𝑂1 = 𝑓 (𝑆𝑢𝑚𝑂
1 ) =

1

1 + 𝑒−𝑆𝑢𝑚
𝑂
1

(4)

When MLP is used for classification, the output of the MLP must
be a discrete value able to distinguish between classes. Binary output
is commonly used. To convert the real output obtained by Eq. (4) to
an ultimate binary output 𝑌 , that distinguishes between two classes,
Eq. (5) is used.

𝑌 =

{

0 if 𝑦𝑂1 < 0.5

1 if 𝑦𝑂1 ≥ 0.5
(5)

2.1. Problem definition

Let a set of weights of connections between neurons 𝐖 and a set of
biases 𝐁 for both hidden and output neurons. The objective is to find
the best combination of weights 𝐖 and biases 𝐁 to minimise the Mean
Squared Error (MSE) of the MLP. Thus, a solution 𝑆 to this problem
is a real vector with a length equal to the sum of the total number of
weights in 𝐖 and biases in 𝐁, where each of its elements is a weight or
a bias to be optimised. The fitness function for a solution 𝑆 is shown
in Eq. (6). It is calculated as the MSE of the output returned by the MLP
using the configuration in 𝑆.

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑆) = 𝑀𝑆𝐸 = 1
|𝐋|

𝐿
∑

𝑙=1
(𝑦𝑙 − 𝑦𝑂1,𝑙)

2 (6)

where |𝐋| is the total amount of training samples, 𝑦𝑂1,𝑙 is the predicted
real value in the range [0, 1] for the 𝑙th training sample in the training
set 𝐋, obtained by Eq. (4). 𝑦𝑙 is the expected binary output for the 𝑙th
training sample.

MSE is frequently used to evaluate regressions. But, in the context
of classifications, it provides a metric of how much error exist when the
predicted float output 𝑦𝑂1,𝑙 (previous to convert it binary) approximates
the expected binary output 𝑦𝑙. The idea is, for negative samples 𝑦𝑂1,𝑙 has
to be near to 0 and for positive samples near to 1 [15].

Since MSE is a quadratic function, it strongly penalises when the
MLP output is far from expected. It is the reason why MSE has been
widely used as a fitness function to optimise weights and biases by
metaheuristics [14,30].

2.2. Traditional approaches to train the MLP

Learning is the process through which the ANN acquire knowledge.
It is why they can perform and be effective in classification and
regression tasks. In MLP, learning is reached by training the neural
network, which is an iterative process for determining the optimal
weights and biases to reduce the error between the obtained and the
expected output.
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Fig. 1. Example of structure of a Multilayer Perceptron (MLP).
One of the most conventional training methods for MLP is Back
Propagation (BP) [31]. It starts setting random values for weights and
biases. Classified samples (referred to as training set) are presented to
the MLP to get an output value. Then, the error between the obtained
and the desired values is calculated and propagated backwards to
correct weights and biases. These steps are repeated until an acceptable
error is reached [29].

The basic BP algorithm uses a first-order gradient descent for the
optimisation of the MLP. Other existent approaches for optimising
MLP are conjugate gradient [32] that is based on a second-order
minimisation method, Quasi-Newton Method [33], Gauss–Newton [34]
or Levenberg–Marquardt [35] that is based on the approximation by
least-squares [15].

Although conventional approaches have shown to be effective in
most of the problems they were applied to, there were situations in
which they stuck in the same error value of MLP during extended peri-
ods or even stuck in local optima. Furthermore, their success strongly
depends on the initial values of weights, the values of momentum and
the learning rate, which can provoke divergence if they are not right
defined [14]. Finally, conventional methods put aside biases, focusing
just on the values of the weights [15,36].

Considering the disadvantages of traditional methods, in this paper,
an MLP optimiser based on the Cellular Genetic Algorithm is proposed
to determine the optimal combination of weights and biases values to
improve the classification quality.

2.3. Related works

In the latest years, it has been demonstrated that metaheuristics
are able to be applied for training MLPs, reaching even better results
than traditional mathematical methods [37]. This motivated different
authors to train MLPs by metaheuristics for different problems in real
life, getting featured results.

The work by Kaveh et al. [38] uses the Biogeography-Based Op-
timisation algorithm (BBO) to train an MLP that classifies sonar data
into three different classes: noises, reverberation, and clutter. A novel
mutation operator is introduced in this work to enhance the exploration
capability of the BBO. Results have demonstrated that the proposal of
new operators can positively impact the behaviour of the algorithm,
increasing the resulting classification performance. Qiao et al. [39]
also worked with sonar data, proposing a modified Whale Optimisation
4

Algorithm (WOA) to train an MLP that classifies sonar signals in real-
time. This work introduces new ways to control the balance between
exploration and exploitation during the evolutionary process using
mathematical functions. This approach shows how the mathematical
approach could help guide the seeking process of the metaheuristics
in large search spaces. Results show that the proposal outperforms
literature algorithms in terms of classification accuracy and speed of
convergence.

An application to the field of robotics was made by Jalali et al. [40],
who compared a set of nature-inspired algorithms to determine the
optimal weights and biases of an MLP used for autonomous robot
navigation. Considered algorithms were the Moth–Flame Algorithm
(MFO), the Particle Swarm Optimisation (PSO), the Grey Wolf Opti-
miser (GWO), the Cuckoo Search (CS) and the Multi-Verse Optimiser
(MVO). The evaluated algorithms overcame the traditional approaches
BP and Levenberg–Marquardt, demonstrating that metaheuristics per-
form a better exploration and local-optima avoidance.

Mansouri et al. [41] implement a GWO hybridised to an Evolu-
tionary Strategy (ES) algorithm to train an ANN to detect unusual
sensor networks behaviour. The GWO is used when accuracy is critical,
and ES is used when it is preferred to perform quickly detections.
Results demonstrated that both approaches perform as expected, being
the ANN capable of accurately recognising anomalies in industrial
sensor networks. It also shows that different metaheuristics can provide
distinct behaviour tailored to the particular context of the problem.

For the energy production problems, Aladejare et al. [42] developed
an ANN trainer based on the PSO to predict the higher heat value
of coal, biomass and other solid fuels to determine their energy con-
tent. The ANN trained by PSO exhibits satisfactory predictive ability
compared to multilinear and multi nonlinear models in the literature.

Several proposals in the literature addressed classification problems
over medical datasets from different specialities by using metaheuristics
for training ANNs.

In [43], a Butterfly Optimisation Algorithm (BOA) is used to train
an MLP. Results showed that the BOA reached a performance similar
to the existing approaches. Tests have just focused on the Parkinson
and vertebral dataset, which suggests that different complexities and
distributions of data need to be considered to confirm that the method
can train the MLP effectively in complex situations. Furthermore, the
author used the canonical version of the BOA, which suggests that bet-
ter results would be achieved if a specific modification to the algorithm
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is proposed. Another bio-inspired algorithm in the literature is the pro-
posal by Das et al. [44] in that a Velocity Enhanced Whale Optimisation
Algorithm (VEWOA) trains an ANN to classify data related to breast
cancer, cervical cancer, and lung cancer. The VEWOA raises that each
whale has to have a velocity, calculated as in PSO, where positions of
the best and the previous positions of particles are considered. Results
were compared against different machine learning approaches and the
canonical WOA, making it difficult to observe whether this approach
enhances the performance of metaheuristics specifically designed for
MLP training.

Kumar et al. [45] propose an Inertia Motivated Gray Wolf Optimisa-
tion Algorithm (IMGWO) that trains an MLP to classify data concerning
breast cancer, heart disease, hepatitis and Parkinson’s disease. The
IMGWO introduces a new method of calculating the balance between
exploration and exploitation using a non-linear function. It also pro-
poses to use velocity concepts similar to the PSO. The number of eval-
uations required for the IMGWO to converge is significantly higher than
the one used in the literature, indicating that those changes could have
a negative effect on the convergence capacity of the algorithm. The
IMGWO performed better than the canonical version of GA, PSO, and
GWO. Despite this, comparisons didn’t make with the metaheuristics
prepared to train MLPs, resulting in an unfair comparison.

Sharifi et al. [46] compared the GA and the PSO in defining
the initial weights and biases of an MLP for detecting thyroid func-
tional disease. After the initialisation phase, the MLP is trained by the
Levenberg–Marquardt method. Results demonstrated that GA and PSO
could contribute to accurate diagnoses, being the GA better than the
PSO at improving the classification quality.

Salman et al. [47] compare GA, PSO and Fireworks Algorithms
(FWA) at optimising weights and biases of an MLP for the classification
of five benchmark medical datasets. Metaheuristics were tried over
different MLP architectures, which contributed to understanding how
metaheuristics performance could be affected by ANN architectural
decisions and different parameters configurations. Results show that
architectural changes did not significantly affect the performance of the
algorithms. Nonetheless, increasing the iterations performed by each
metaheuristic reported improvements in classification quality. Results
inherently imply that metaheuristics perform well even when many
weights or biases have to be optimised.

Bhattacharjee in [48] proposes five different hybridisations between
GA and PSO to train an MLP that classifies human glioma from molec-
ular brain neoplasia data. This paper provides an interesting point of
view about how PSO and GA can be combined and which combination
provides the best results. This work established that hybridisations
between PSO and GA can report good results due to the synergetic
effect generated.

In [49] authors compare eleven recently-proposed metaheuristics
for training an ANN to classify fifteen different medical datasets. Al-
gorithms included in the experiments were the Artificial Bee Colony
(ABC), the Ant Lion Optimiser (ALO), the BBO, the Equilibrium Opti-
miser (EO), the MFO, the Marine Predators Algorithm (MPA), the PSO,
the Sine–Cosine Algorithm (SCA), the Salp Swarm Algorithm (SSA),
the Trigonometric Mutation Differential Evolution (TDE), the WOA, a
hybrid SSA with PSO, a hybrid SSA with SCA and the deterministic
method for training ANN Levenberg–Marquardt. Evaluations focused
on seven different classification quality metrics. Metaheuristics have
proven to be highly effective in training ANNs. However, the evalu-
ation has not considered the BP, overlooking one of the widely used
options for training an ANN. The authors highlighted the EO among the
metaheuristics, which obtained better values when considering all the
classification metrics. Besides, the parameters of the EO were selected
by observing which configuration provides the best results. The other
algorithms were configured by adaptive approaches or setups used in
literature, suggesting that comparisons could have been unfair.

Orozco et al. [50] applied multi-objective CGA to optimise an MLP.
5

The multi-objective approach is focused on optimising the architecture
and weights of the connections of the MLP but not the biases. The
method was tested over two breast cancer medical datasets, and the
CGA was configured with standard genetics operators. The proposal has
reached similar results to algorithms of the literature. However, since
the algorithm did not take biases into account, new approaches should
be raised for optimising all MLP parameters.

After analysing all these contributions, it seems clear that very few
approaches design and evaluate new operators to improve numerically
the search along with the problem space. In this paper, a CGA approach
is proposed to address the problem of optimising the weights and biases
of the MLP. The idea is to take advantage of the properties of the CGA
for better exploration and exploitation, such as the slow spread of the
best solution and exploitation in neighbourhoods. In addition, a novel
specially designed crossover operator is proposed. The aim is to make
the evolutionary process more accurate as it runs and to consider the
best solution in neighbourhoods that do not have it. To the best of our
knowledge, no presented work has encompassed the components of this
paper.

3. Cellular genetic algorithm

The Cellular Genetic Algorithm (CGA) [22] is a decentralised evolu-
tionary algorithm based on the canonical Genetic Algorithm (GA) [51]
that differs in how the population is managed. In CGA, individuals are
distributed on a toroidal mesh where border individuals, in columns or
rows, are connected to those on the opposite border.

During the evolutionary process, where the genetic operators are
applied, individuals can interact just with their neighbours. Neighbours
are the closest individuals determined by a type of neighbourhood,
considering the Manhattan distance. Through the use of neighbour-
hoods, CGA is able to conduct a local search process within each one,
which facilitates the discovery of better near solutions (exploitation of
the search space). It is possible because genetic operators are applied
to neighbourhoods as they were isolated from the whole population.
In addition, neighbourhoods are superposed, which implies that an
individual takes part in more than one neighbourhood. Thus, an in-
dividual spreads the improvements in its genes throughout all of the
neighbourhoods it belongs to. This quality provokes the slowly spread
of better solutions through the population, enhancing the exploration
process.

Fig. 2 presents the way in that CGA evolves a given individ-
ual (white circle). First, the neighbourhood of the individual to be
evolved is obtained. In Fig. 2, the type of neighbourhood used is
called Compact-9 or C9, which includes all the individuals in the mesh
surrounding the individual to be evolved (marked with black circles).
Genetics operators are applied to two individuals from the neighbour-
hood. The resulting individual is evaluated, and a replacement policy
is applied to decide if it will replace the individual being evolved.

A more profound point of view of the operation of the CGA is
presented in Algorithm 1. Three well-differentiated stages can explain
the evolutionary process carried out:

• Initialisation stage: It involves lines 2 to 4. The population
is randomly generated and then evaluated. Next, the auxiliary
variable 𝑡, which is used to count the number of evaluations
performed, is initialised.

• Evolutionary stage: It goes from line 5 to 15. If the stop condi-
tion is not reached (checked on line 5), the iteration is performed.
Per step in the iteration, an individual and its neighbourhood
are selected. Genetic operators are applied to them, generating
two new individuals. After performing the fitness evaluations
(line 11), the selected individual is replaced if one of the gen-
erated individuals is fitter. This process is shown in Fig. 2 and
is performed on all the individuals in the population. In line
13, the auxiliary variable 𝑡 is increased to reflect the number of
evaluations performed. The evolutionary stage is repeated while

the stop condition is not met.
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Fig. 2. Type of neighbourhood C9 and application of genetics operators in an CGA.
Fig. 3. Example of vector representation of an MLP structure.
• Finalisation stage: Involves lines 16 and 17. When the evolution-
ary stage has reached the stop condition, the best solution found
is returned as a final solution.

Algorithm 1 Pseudo-code of the Cellular Genetic Algorithm (CGA)
1: function CellularGA(popSize,crossoverRate, mutationRate, maxE-

valuations)
2: 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑒(𝑝𝑜𝑝𝑆𝑖𝑧𝑒)
3: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)
4: 𝑡 ← 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 ⊳ Evaluations counter
5: while 𝑡 < 𝑚𝑎𝑥𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑠 do
6: for all 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 ∈ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 do
7: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 ← 𝑔𝑒𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙, 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)
8: 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠)
9: 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ← 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑝𝑎𝑟𝑒𝑛𝑡𝑠, 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑅𝑎𝑡𝑒)

10: 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ← 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔, 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒)
11: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔)
12: 𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙, 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔)
13: 𝑡 ← 𝑡 + 2 ⊳ Increased by the number of offsprings
14: end for
15: end while
16: 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 ← 𝑔𝑒𝑡𝐵𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)
17: return 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙
18: end function

3.1. Individual representation

In literature, three kinds of individuals representation are used for
MLP weights and biases optimisation: vector, matrix or binary [14].

The vector is used in this work. It represents each individual as a
real array with a dimension equal to the total number of weights and
biases in an MLP. Each element of the array corresponds to either a
weight or a bias value. An example of this kind of representation, based
on Fig. 1, is presented in Fig. 3.
6

The advantage of using the vector representation is that it results in
a straightforward encoding and decoding process because elements of
the individual do not need to be decoded to be applied to the MLP.

3.2. The damped crossover

This work proposes a novel crossover that considers different fea-
tures of the evolutionary process that can lead the population to reach
points of the search space near to a global optimum. The crossover
operator is called The Damped Crossover (DX) because it is inspired
by the damped harmonic oscillation function, which describes how an
oscillating object tends to an equilibrium point as time runs [52].

The DX operator is based on two premises. The first one is that
the knowledge acquired by the best individual during the evolutionary
process is essential. So, this information must be considered when
parents are crossed. The second premise is that influence from parents
and the best solution has to be more specific as the evolutionary process
runs because it is supposed that the solutions are near-optimal at the
latest iterations.

In a given execution, the DX generates the 𝑖th elements of two
offspring 𝑂𝑓1 and 𝑂𝑓2 by using Eqs. (7) and (8) respectively.

𝑂𝑓1𝑖 = 𝑝1𝑖 + 𝑖𝑛𝑐𝑖 (7)

𝑂𝑓2𝑖 = 𝑝2𝑖 + 𝑖𝑛𝑐𝑖 (8)

where 𝑝1𝑖 and 𝑝2𝑖 are the 𝑖th elements of the parents 𝑝1 and 𝑝2 respec-
tively. 𝑖𝑛𝑐 is the increment performed over each element, calculated
by Eq. (9).

𝑖𝑛𝑐𝑖 = 𝑑𝑖𝑓𝑓𝑖 × (1 + 𝑟𝑎𝑡𝑖𝑜) (9)

𝑑𝑖𝑓𝑓𝑖 is the difference between the 𝑖th element of the best individual
(𝐵𝐼𝑖) and the average of the 𝑖th element of parents. It is obtained
by Eq. (10).

𝑑𝑖𝑓𝑓 = 𝐵𝐼 −
𝑝1𝑖 + 𝑝2𝑖 (10)
𝑖 𝑖 2
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Fig. 4. Behaviour of damped harmonic oscillation function, presented in Eq. (11).

𝑟𝑎𝑡𝑖𝑜 is determined by Eq. (11). It applies the damped harmonic
oscillation function to determine how big the influence of parents
and the best individual will be. This function provides a desirable
behaviour because it applies more variable changes at the beginning of
the evolutionary process but is more precise at the end, doing minimal
changes to the influence of the best individual and the parents.

𝑟𝑎𝑡𝑖𝑜 = 𝐴 × 𝑒(−𝐶𝑡) × sin (𝑃 + 99.75 × 𝑡) (11)

where 𝑡 is the number of evaluations performed at the moment of the
execution of the DX. 𝐴 is the initial amplitude of the function set to
.0. 𝐶 is the variable that controls how fast 𝐴 decreases. The bigger is

𝐶, the faster 𝐴 will decrease. 𝑃 is the phase of the function. The values
f 𝐶 and 𝑃 used are 3 and 0.5, respectively. The Eq. (11) configured
ith the mentioned values of 𝐴, 𝐶 and 𝑃 behaves like it is shown in
ig. 4, where a value of 0.0 in the 𝑥 axis represents the initial step
f the evolutionary process, and a value of 1.0 is when the process is
ompleted. The values of 𝐴, 𝐶 and 𝑃 were selected to make the curve
ave a sustained decrease, thereby allowing precise variations at final
valuations but avoiding performing insignificant movements.

Both the 𝑟𝑎𝑡𝑖𝑜 and the 𝑑𝑖𝑓𝑓𝑖 functions aim to improve the exploita-
ion of the DX by focusing on reaching the best individual and reducing
he changes when the end of the evolutionary process is near. At the
ame time, 𝑑𝑖𝑓𝑓 and 𝑟𝑎𝑡𝑖𝑜 act as direction indicators as they make

the new element increase or decrease the 𝑖th element of the parents
according to the difference with the 𝐵𝐼 .

. Experiments configuration

This section presents the experimental setup. It provides informa-
ion related to the evaluations to be performed, considered algorithms,
tandard configurations of the MLP and characteristics of the used
atasets.

Comparisons were performed against different variations of the
GA, introduced in Section 4.1, and state-of-the-art algorithms. Consid-
red algorithms and their configurations are presented in Section 4.2.

The MLP uses the sigmoid function as the activation function. The
itness function for the learning process performed by metaheuristics
s the MSE, also known as cost function in the ANN scope [43,53].
he structure of the MLP is always the same. The number of input
eurons (𝑛) matches the number of features of the dataset. The MLP
s configured with a unique hidden layer where the number of hidden
eurons (𝑚) is determined by Eq. (12), following the rule established
n [14].

= 2 × 𝑛 + 1 (12)
7

Each weight and biases values are restricted to the interval [−1,1]
according to the values handled in other approximations [30,54,55].

The training dataset aims to present the greatest amount of samples
to the MLP to identify the optimal weights and biases values and
obtain a reliable classification model. It is the only dataset involved
in the training phase in traditional methods, so it is also used for the
training process made by metaheuristics [14,37]. The test dataset is
used when the metaheuristics have finished their training phase to
corroborate the ultimate performance of classification reached by the
MLP, observe its generalisation ability and confirm whether there was
or not over-fitting.

The stop condition for all the algorithms is to reach 10 000 fitness
evaluations. Due to the non-deterministic nature of metaheuristics,
30 independent runs are executed for each algorithm and with each
dataset [53–55]. The tables in the results section mark a result with
boldface when it is the best and with italic when it is the second-best
according to the used performance metric. The Wilcoxon rank-sum [56]
test is applied to check whether the differences between the CGA
variations and the other algorithms are statistically significant or just
a matter of chance. The statistically significant differences are high-
lighted in the corresponding tables. This work considers a confidence
level of 99% (i.e., a significance level of 𝛼 = 0.01) for the statistical
ests.

Algorithms are executed in the Toko cluster1 with an AMD Opteron/
pyc processor (64 cores and 128 GB of RAM). The operating sys-
em is Ubuntu 18.04 LTS. Metaheuristics are implemented using the
metalpy [57] library, and for MLPs the neurolab2 library is utilised.

.1. CGA operators

Experiments compare the CGA configured with the Damped
rossover(DX) against other configurations that vary the genetic op-
rators. Crossover operators used for experiments are:

• Adjusted Crossover (AX): It was proposed by Yasojima et al.
[58] to deal with two problems of the crossover operators for
real-coded solutions. The first problem is that crossover methods
may be stuck in local optima or reach not feasible solutions.
The second problem is that generated solutions are limited to
the values of their parents. To deal with it, elements 𝑂𝑓1𝑖 and
𝑂𝑓2𝑖 of first and second offspring, are generated by Eqs. (13)
and (14).

𝑂𝑓1𝑖 = 𝑝1𝑖 +
((

𝑝1𝑖 − 𝑝2𝑖
)

× 𝛼
)

× 𝑔𝑖 (13)

𝑂𝑓2𝑖 = 𝑝2𝑖 +
(

(𝑝1𝑖 − 𝑝2𝑖) × 𝛼
)

× 𝑔𝑖 (14)

where 𝑝1𝑖 is the element 𝑖 of the first parent, 𝑝2𝑖 is the element 𝑖
of the second parent. 𝑔𝑖 is the gradient value of the element 𝑖. It
is 1 if the value of the element 𝑖 in the fittest parent is bigger than
in the other parent. Otherwise 𝑔𝑖 is −1. Finally, 𝛼 is the weight of
the crossover. In this paper, 𝛼 is 0.02 as recommended in [58].

• Simulated Binary Crossover (SBX): It was proposed by Deb and
Agrawal [59]. SBX simulates the single-point crossover of binary
representations. The elements of the offspring 𝑂𝑓1𝑖 and 𝑂𝑓2𝑖 are
obtained by Eq. (15) and Eq. (16) respectively.

𝑂𝑓1𝑖 = 0.5 × [(1 + 𝛽𝑞) × 𝑝1𝑖 + (1 − 𝛽𝑞) × 𝑝2𝑖] (15)

𝑂𝑓2𝑖 = 0.5 × [(1 − 𝛽𝑞) × 𝑝1𝑖 + (1 + 𝛽𝑞) × 𝑝2𝑖] (16)

1 https://toko.uncu.edu.ar/.
2 https://pythonhosted.org/neurolab/.

https://toko.uncu.edu.ar/
https://pythonhosted.org/neurolab/
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where 𝑝1𝑖 is the element 𝑖 of the first parent, 𝑝2𝑖 is the element 𝑖
of the second parent and 𝛽𝑞 is an ordinate obtained by Eq. (17).

𝛽𝑞 =

⎧

⎪

⎨

⎪

⎩

(2 × 𝑟)
1

𝜂+1 if 𝑟 ≤ 0.5
[

1
2×(1−𝑟)

]
1

𝜂+1 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(17)

Being 𝑟 a random number between 0 and 1, and 𝜂 a distribution
index fixed to 20 as considered in [60].

CGA variations are produced using four different mutation operators
that vary in the strategy to diversify the population. The mutation
operators are:

• Non-Uniform Mutation (NUM): It was first proposed by
Michalewicz et al. [61]. The objective of this operator is to avoid
generating new elements randomly. The mutated value 𝑠𝑜𝑙𝑡+1𝑖 of
the 𝑖th element of a solution in the evaluation 𝑡 is generated
by Eq. (18) according to a mutation probability.

𝑠𝑜𝑙𝑡+1𝑖 =

{

𝑠𝑜𝑙𝑡𝑖+ ▵ (𝑡, 𝑢𝑏 − 𝑠𝑜𝑙𝑡𝑖) if 𝑟 ≤ 0.5

𝑠𝑜𝑙𝑡𝑖+ ▵ (𝑡, 𝑠𝑜𝑙𝑡𝑖 − 𝑙𝑏) 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(18)

With 𝑙𝑏 and 𝑢𝑏 as the lower and the upper bounds of the element
𝑠𝑜𝑙𝑡𝑖 , a random number 𝑟 ∈ [0, 1] and the function ▵ (𝑡, 𝑑)
calculated by Eq. (19).

▵ (𝑡, 𝑑) = 𝑑 ×
(

1 − 𝑟(1−
𝑡
𝑇 )𝑏

)

(19)

𝑇 is the maximum number of evaluations, and 𝑏 establishes the
dependency on the evaluations number, set to 0.5. As the value
of 𝑏 is bigger, more disturbance is applied by the operator as
evaluations are performed. Thus, small values of 𝑏 mean that
more precise movements will be made.

• Uniform Mutation (UM): In this case, the element 𝑠𝑜𝑙𝑡𝑖 is substi-
tuted by a mutated value 𝑠𝑜𝑙𝑡+1𝑖 obtained by Eq. (20).

𝑠𝑜𝑙𝑡+1𝑖 = 𝑠𝑜𝑙𝑡𝑖 + (𝑟 − 0.5) × 𝑢 (20)

With a random number 𝑟 ∈ [0, 1] and the disturbance level of the
operator 𝑢 set to 0.5. If the value generated is out of the range
delimited by the lower and the upper bounds, the new value will
be one of the bounds.

• Polynomial Mutation (PM): This mutation operator was pro-
posed by Deb and Agrawal [62]. A polynomial probability dis-
tribution is used in this proposal to mutate each element of the
individual (𝑠𝑜𝑙𝑡𝑖), taking into account the lower (𝑙𝑏) and upper (𝑢𝑏)
bounds. Eq. (21) is used to obtain the new value 𝑠𝑜𝑙𝑡+1𝑖 for the 𝑖th
element of the solution to mutate.

𝑠𝑜𝑙𝑡+1𝑖 =
{

𝑠𝑜𝑙𝑡𝑖 + 𝛾𝐿 × (𝑠𝑜𝑙𝑡𝑖 − 𝑙𝑏) if 𝑟 ≤ 0.5
𝑠𝑜𝑙𝑡𝑖 + 𝛾𝑅 × (𝑢𝑏 − 𝑠𝑜𝑙𝑡𝑖) 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(21)

where 𝑟 is a random number belonging to the range [0, 1] and the
functions 𝛾𝐿(𝑑) and 𝛾𝑅(𝑑) are calculated by Eqs. (22) and (23)
respectively.

𝛾𝐿(𝑟) = (2 × 𝑑)
1

1+𝜂 (22)

𝛾𝑅(𝑟) = 1 −
(

2 × (1 − 𝑑)
)

1
1+𝜂 (23)

With 𝜂 fixed to 5, which is a user-defined parameter that controls
the perturbation applied to elements of the individuals.

• Random Mutation (RM): This operator is one of the simplest
ways to mutate real-coded individuals. It mutates the value of
an element 𝑠𝑜𝑙𝑡𝑖 by generating a completely new value between
the lower bound (𝑙𝑏) and the upper bound (𝑢𝑏) of the element,
considering a random number 𝑟 in the range [0, 1]. For this, it
uses Eq. (24).

𝑠𝑜𝑙𝑡+1 = 𝑙𝑏 + (𝑢𝑏 − 𝑙𝑏) × 𝑟 (24)
8

𝑖

In order to increase the rigour of evaluations and observe if DX
crossover can improve the performance of the CGA, twelve possible
variations of CGA are obtained by combining crossover and muta-
tion operators. The DX variations arise from combining the Damped
Crossover, proposed in this paper, with the four mutation operators, re-
sulting in the DX+NUM, DX+PM, DX+RM and DX+UM variations. The
AX variations are the different combinations of the Adjusted Crossover,
AX+NUM, AX+PM, AX+RM and AX+UM. Finally, the SBX variations
combine the Simulated Binary Crossover with the four mutation oper-
ators, obtaining the SBX+NUM, SBX+PM, SBX+RM and SBX+UM.

4.2. Algorithms for comparison

Experiments compare the DX variations of the CGA against AX
variations, SBX variations and state-of-the-arts approaches that repre-
sent different strategies to optimise weights and biases of the MLP.
Evaluations focus on the convergence ability of each metaheuristic
and the classification quality reached for the MLP configured with
weights and biases determined by metaheuristics. Eight state-of-the-art
algorithms are considered for comparisons:

• Bat Algorithm (BAT) is a metaheuristic proposed by Yang and
Gandomi [63]. It is based on the behaviour of bats, which detect
prey by an echolocation mechanism. In the algorithm, each bat
moves through the search space by modifying its speed and based
on the proximity of the prey.

• Cuckoo Search Algorithm (CS) was proposed by Yang and
Deb [64]. Cuckoo birds substitute eggs of other nests to their
ones with the aim of another bird to breed them. If the host bird
realises that an egg is not its own, the host can destroy the egg or
leave the nest. The algorithm mimics this behaviour, considering
that a cuckoo egg is laid in a nest if it is better than the egg in
the nest.

• Differential Evolution (DE) proposed in [65], the DE evolve a
current individual by generating each element of a new individual
considering a differential weight and the elements of three par-
ents selected by a selection method. The new individual replaces
the current one if it is better.

• Genetic Algorithm (GA) [51] is a metaheuristic based on the
Darwinian theory of the evolution of species. In GA, a population
evolves by iterations called generations. Three genetic operators
are applied. The selection operator selects a set of individuals to
go on to the next generation or be recombined by the crossover
operator. The crossover operator exploits the shared space of
two individuals. Finally, the mutation operator performs random
changes to increase the diversity over the population.

• Gray Wolf Optimisation (GWO) [66] is a bio-inspired algorithm
based on the hunting mechanism of the grey wolf and the leader-
ship hierarchy of the herd. The algorithm establishes four types of
grey wolves to represent the hierarchy. Three hunting behaviours
are simulated in the optimisation process, search for prey, encircle
the prey, and attack the prey.

• Moth–Flame Optimisation (MFO) [67] is based on the moth
behaviour. Moth usually navigates in the direction of the moon
because it is an efficient way to go through considerable dis-
tances. But, due to the artificial lights, moths get disoriented and
are kept in circles around the light up to they die. MFO mimics
this behaviour mathematically to perform optimisation.

• Multi-Verse Optimisation (MVO) was developed by Mirjalili
et al. [68]. It performs optimisation by mathematically mod-
elling the concepts of white hole for exploration, black hole for
exploitation of the search space and wormhole for local search.

• Particle Swarm Optimisation (PSO) was proposed by Kennedy
et al. [69]. PSO works imitating the behaviour of different organ-
isms like bird flocking. It begins generating a swarm of particles
distributed in the search space. At each iteration, the position and
velocity of each particle are updated according to its previous

position and the position of the best particle.
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Table 1
Algorithms parameters configurations.

Algorithm Parameter Value

CGA (This paper)

Population size 10 × 10
Neighbourhood C9
Crossover probability 0.9
Mutation probability 0.01
Selection operator Binary tournament

BAT

Population size 50
Loudness 0.5
Pulse rate 0.5
Frequency minimum 0
Frequency maximum 1

CS Number of nests 50
Discovery rate 0.25

DE
Population size 50
Crossover probability 0.9
Differential weight 0.5

GA

Population size 50
Crossover operator SBX (Prob.: 0.9)
Mutation operator UM (Prob.: 0.01)
Selection operator Binary tournament

GWO Population size 50
𝑎̂ Decrease linearly from 2 to 0

MFO
Population size 50
𝑏 1
𝑡 [−1, 1]

MVO
Population size 50
Min. wormhole existence prob. 0.2
Max. wormhole existence prob. 1.0

PSO
Number of particles 50
Inertia weight 0.721
Cognitive component 1.193

Table 1 presents a summary of the configuration for each considered
lgorithm. All the CGA versions use the same parameters configuration.
arameters utilised by state-of-the-art algorithms are established based
n previous works oriented to adjust weights and biases of the MLP
ith metaheuristics [30,55,70,71].

.3. Datasets

Evaluations of the MLP optimised by metaheuristics were performed
sing five different medical datasets obtained from the UCI machine
earning repository.3 Each dataset is described in the following para-
raphs and a summary is provided in Table 2.

• Breast: This dataset is composed of 699 instances, where each
one corresponds to a patient submitted to surgery. Eight vari-
ables were measured, and the instances are distinguished between
benign or malignant cases [72,73].

• Diabetes: It is composed of 768 instances which are classified
as positive or negative diabetes cases. Data were collected from
a population of Pima-Indian women at least 21 years old living
near Phoenix, Arizona, USA [74].

• Liver: Instances come from blood tests performed over 345
male patients with apparent liver disorders by excessive alco-
hol consumption. Instances are split into positives and negative
classes [75].

• Parkinson: This dataset was obtained from voice analysis per-
formed over thirty-one patients. Specialists took almost 6 record-
ings for each individual. Recordings have 22 different metrics,
and each one is classified as Parkinson’s disease or normal [76].

3 https://archive.ics.uci.edu/.
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Table 2
Summary of datasets features.

Dataset Attributes Instances Class 1 Class 2

Breast 8 699 Benign (458) Malignant (241)
Diabetes 8 768 Positive (268) Negative (500)
Liver 6 345 Liver Disorders (200) Normal (145)
Parkinson 22 195 Parkinson (147) Healthy (48)
Vertebral 6 310 Abnormal(210) Normal (100)

• Vertebral: This dataset contains 310 patients classified as abnor-
mal (cases of disk hernia or spondylolisthesis) or normal. Each
instance contains a set of six different variables [77].

Datasets were split into 66% for the training set and 34% for the
test set. Stratified sampling is used to ensure that each subset respects
the original distribution of classes. Features of every dataset were
normalised into the interval [0, 1] by using the max–min normalisation
method, calculated by Eq. (25).

𝐴′
𝑖 =

𝐴𝑖 − 𝑚𝑖𝑛𝐴
𝑚𝑎𝑥𝐴 − 𝑚𝑖𝑛𝐴

(25)

where 𝐴𝑖 is the value for the feature 𝐴 corresponding to the instance 𝑖,
𝐴′
𝑖 is the new value resulting from the normalisation, 𝑚𝑖𝑛𝐴 and 𝑚𝑎𝑥𝐴 are

the minimum and the maximum value for the feature 𝐴 respectively.
This process is fundamental because it prevents that variables with big
range values affect the other features of the dataset.

4.4. Classification measures

A set of classification quality measures evaluates the performance of
every MLP trained by the considered algorithms. Each metric provides a
different point of view about how well the classification was performed,
taking as a basis the amounts of True Positives (TP) or positive in-
stances classified as positive, False Positives (FP) or negative instances
classified as positive, True Negatives (TN) or negative instances classi-
fied as negative and False Negatives (FN) or positive instances classified
as negative.

Accuracy: it is the proportion of instances well classified to the total
amount of instances. This metric is calculated by Eq. (26).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁

(26)

Specificity (Sp): it is the proportion of negative instances classified
s negative to the total of negative instances. It provides an idea about
he ability of the MLP to identify patients that do not have a given
isease rightly. It is obtained by Eq. (27).

𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(27)

Sensitivity (Sn): it is the proportion of positive instances classified
as positive to the total of positive instances. It provides a notion about
the ability to detect positive cases of a given disease. It is calculated
by Eq. (28).

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(28)

5. Experimental results

Experiments are divided into two parts. The first part analyses the
convergence ability of each metaheuristic to optimal points of the
search space and their time consumption. The second part evaluates
the quality of the classification of the MLP configured with the weights

and biases yielded by the metaheuristics.

https://archive.ics.uci.edu/
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Table 3
Mean and standard deviation of the fitness quality indicator.

Algorithm Breast Diabetes Liver Parkinsons Vertebral

BAT 0.0360.002 0.1520.002 0.1960.006 0.0940.007 0.1320.004
CS 0.0530.004 0.1710.005 0.2110.004 0.2200.027 0.1480.006
DE 0.0480.002 0.1640.004 0.2080.004 0.1820.018 0.1440.003
GA 0.0360.002 0.1530.001 0.1990.002 0.1040.006 0.1330.002
GWO 0.0350.002 0.1530.001 0.2000.003 0.0920.004 0.1340.002
MFO 0.0350.002 0.1530.002 0.1950.004 0.1070.010 0.1310.002
MVO 0.0300.002 0.1470.002 𝟎.𝟏𝟕𝟔𝟎.𝟎𝟎𝟑 0.0770.007 𝟎.𝟏𝟏𝟖𝟎.𝟎𝟎𝟑
PSO 0.0300.001 0.1480.001 0.1860.002 0.0760.005 0.1250.002
AX+NUM 0.0360.002 0.1550.002 0.2020.002 0.1070.007 0.1370.003
AX+PM 0.0360.002 0.1550.002 0.2020.002 0.1080.007 0.1370.002
AX+RM 0.0360.002 0.1560.002 0.2040.002 0.1090.007 0.1380.003
AX+UM 0.0380.002 0.1570.003 0.2070.004 0.1150.013 0.1410.004
SBX+NUM 0.0370.002 0.1560.001 0.2050.003 0.1260.008 0.1390.002
SBX+PM 0.0370.001 0.1560.001 0.2050.002 0.1270.009 0.1390.002
SBX+RM 0.0370.001 0.1560.001 0.2060.002 0.1260.009 0.1400.002
SBX+UM 0.0370.001 0.1550.001 0.2060.002 0.1170.008 0.1390.002
DX+NUM 0.0290.002 0.1460.002 0.1820.002 0.0870.006 0.1220.002
DX+PM 0.0280.001 0.1460.001 0.1820.002 0.0870.006 0.1220.002
DX+RM 0.0300.002 0.1470.001 0.1840.002 0.0920.005 0.1230.002
DX+UM 𝟎.𝟎𝟐𝟖𝟎.𝟎𝟎𝟏 𝟎.𝟏𝟒𝟓𝟎.𝟎𝟎𝟏 0.1810.002 𝟎.𝟎𝟔𝟔𝟎.𝟎𝟎𝟒 0.1210.001

5.1. Fitness and time analysis

This section begins with an analysis of the numerical performance
of metaheuristics. Then, a comparison of the time consumed in seconds
to reach the stop criteria is presented. Tests are made by applying the
algorithms to the five considered benchmarks datasets during the 30
independent runs.

Table 3 reports the mean fitness and the standard deviation reached
by the evaluated algorithms. The first column contains the considered
algorithms, and the results obtained are presented in columns two to
six. Results show that the CGA configured with DX crossover and the
UM mutation (DX+UM) overcomes the other metaheuristics in three
ut of the five datasets (Breast, Diabetes and Parkinsons). A possible
xplanation for these results could be that the UM does not apply a
ignificant disturbance over the genes, contributing to finding better
ear solutions and not diverting the seek. Furthermore, UM is not
nfluenced by the number of evaluations done (already considered by
he DX), which helps when the algorithm is stuck. DX+UM also reached
he second-best solution for liver and vertebral datasets, falling behind
he MVO, which got the best average of fitness values in both instances.
hese results appear to be related to how the neural network learns,
hich can be affected when a small number of attributes is used for

raining, as in liver and vertebral datasets. Results could be even worse
o if those attributes are noisy. Beyond that, the DX+UM kept very near

the best results obtained by the MVO, meaning that it achieves minimal
values of MSE.

In general, DX variations have shown similar behaviour, suggesting
that the DX characteristics of taking into account the best current
solution and making more minor changes as the population evolves can
increase in a significant way the exploration and exploitation capability
of the CGA.

Table 4 shows the results of the statistical analysis obtained by
applying the Wilcoxon rank-sum test over the fitness value obtained
by each algorithm. The table compares the DX variations of the CGA
(located in columns) against the other metaheuristics (placed in rows).
Each table cell contains a set of five symbols, representing the result
of the comparison using each of the datasets, namely Breast Cancer,
Diabetes, Liver, Parkinson and Vertebral. A leftward triangle (⊲) means
that the row algorithm gets statistically better values than the column
algorithm. An upward triangle (▵) means that the column algorithm
ets better values than the row metaheuristic. If no significant differ-
nces are found, the place is completed with a dash (–). For example,
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he first upward triangle in the table means that with the dataset Breast,
Table 4
Wilcoxon values of the fitness quality indicator (Breast, Diabetes, Liver, Parkinsons,
Vertebral). A confidence level of 99% (a significance level 𝛼 = 0.01) was considered.

Algorithm DX+NUM DX+PM DX+RM DX+UM

BAT ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ – ▵ ▵ ▵ ▵ ▵ ▵
CS ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵
DE ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵
GA ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵
GWO ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ – ▵ ▵ ▵ ▵ ▵ ▵
MFO ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵
MVO ▵ ▵ ⊲ ⊲ ⊲ ▵ ▵ ⊲ ⊲ ⊲ – – ⊲ ⊲ ⊲ ▵ ▵ ⊲ ▵ ⊲
PSO ▵ ▵ ▵ ⊲ ▵ ▵ ▵ ▵ ⊲ ▵ – – ▵ ⊲ ▵ ▵ ▵ ▵ ▵ ▵
AX+NUM ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵
AX+PM ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵
AX+RM ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵
AX+UM ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵
SBX+NUM ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵
SBX+PM ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵
SBX+RM ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵
SBX+UM ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵
DX+NUM – – – – – – ⊲ ⊲ ⊲ – ▵ ▵ ▵ ▵ ▵
DX+PM ⊲ ⊲ ⊲ ⊲ – ▵ ▵ – ▵ ▵
DX+RM ▵ ▵ ▵ ▵ ▵

the DX+NUM was statistically better in the fitness value than the BAT
algorithm over the 30 runs.

The Wilcoxon test results confirm the tendency shown in Table 4.
The variation DX+UM has beaten all the other algorithms at fitness
value, except for the liver and vertebral datasets where the MVO was
better.

DX+NUM and DX+PM have shown a similar performance, overcom-
ing the BAT, CS, DE, GA, GWO, MVO, and all the CGA versions using AX
and SBX as crossover operators. The DX+RM performed a little worse
than the other DX variations. These results confirm the capability of
the CGA and, specifically, the DX operator to be a robust alternative in
that featured results are obtained most of the time they are executed.

The convergence curves for DX+UM (which obtained the best fitness
results) compared to the state-of-the-art algorithm are presented from
Figs. 5(a) to 5(e). Each plot shows how fitness is enhanced as the
evolutionary process advance. As can be seen, the DX+UM converges
to minimal values of the fitness function (MSE) rapidly, independent
of the dataset to classify. Furthermore, it reached the minimal value of
MSE in four datasets and was the second-best with the liver dataset
(Fig. 5(c)). The second algorithm that better converges to optimal
points is the MVO which performed similarly to the DX+UM and was
the best with the liver dataset. The worst algorithm was the CS, which
appears to be stuck in local optima in all the datasets.

Finally, Table 5 shows the average and standard deviation of time
consumed (in seconds) by each algorithm to reach the stop condition.
The first column shows the considered metaheuristics, and the follow-
ing columns inform the results of the time evaluations for each dataset.
The best algorithm was the CGA with the DX crossover and the NUM
mutation in four datasets. The second-best was the DX+PM which stood
out in the same datasets as DX+NUM. However, all the DX variations
have spent similar execution times, showing that they can reach op-
timal points of the search space quicker than the other approaches.
The CS performed better in the parkinsons dataset, but it is irrelevant
because CS could not reach acceptable fitness values. The MVO, which
had the best average fitness with liver and vertebral datasets, showed
considerable high execution times (except with the Parkinson dataset),
reflecting that the DX variations are better at balancing time consumed
and performance.

Results presented in this section have demonstrated that the CGA
variations can successfully tackle optimising weights and biases of the
MLP, reaching fitness values comparable to or even better than other
state-of-the-art algorithms. Furthermore, the results suggest that the
characteristics of the DX crossover, of considering the best solution
and the number of evaluations carried out, enable the CGA to achieve
featured results in a short period of time, being even better than using
a different crossover operator.
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Fig. 5. Convergence curves of fitness value (MSE) of the five datasets.
5.2. Classification metrics analysis

This section provides a point of view about the performance of the
MLP configured by the metaheuristics. First of all, the accuracy reached
by each MLP is informed. Next, Sensitivity (Sn) and Specificity (Sp)
are analysed to observe if the classification model has been balanced
11
in classifying both classes or has had a preference for one of them. In
general, both metrics should be near 1, which suggests a minor number
of classification errors. In medicine, it is more relevant to inform the
results of Sn and Sp because, depending on the situation, it could be
necessary to obtain a high sensitivity (e.g. when it is crucial not to miss
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Table 5
Mean and standard deviation of the time quality indicator.

Algorithm Breast Diabetes Liver Parkinsons Vertebral

BAT 670.0853.469 731.0708.384 326.2351.927 273.5075.402 296.5532.318
CS 671.2013.404 733.28010.611 324.9891.397 𝟐𝟓𝟑.𝟏𝟔𝟖𝟑.𝟔𝟑𝟑 289.59410.815
DE 679.6063.443 741.7857.983 332.5021.428 339.1174.780 297.4329.723
GA 675.9244.141 732.09610.269 329.2436.266 333.2895.370 299.9224.780
GWO 858.6347.135 922.1998.422 442.4382.194 1503.95962.336 409.9006.772
MFO 694.2845.010 755.43611.762 339.7925.065 389.8377.562 311.2313.031
MVO 688.6382.860 751.5527.176 337.8465.612 426.7264.205 306.3357.593
PSO 684.3853.963 739.88011.074 332.4986.024 392.3564.975 302.3035.761
AX+NUM 664.88824.317 728.18129.326 330.5785.546 311.9291.758 297.8356.342
AX+PM 665.01823.633 731.38026.913 324.70010.418 312.5431.231 297.1187.528
AX+RM 669.45522.040 728.37328.904 327.5958.761 310.7511.378 297.4606.379
AX+UM 667.60621.882 726.21525.157 329.5816.725 311.3411.342 295.2098.767
SBX+NUM 666.91023.772 729.47824.990 330.4256.960 319.0252.191 299.6255.178
SBX+PM 672.32721.499 728.70629.179 330.3326.679 318.3611.847 299.1045.860
SBX+RM 668.75820.317 726.25926.142 330.4066.855 317.4621.934 299.7605.351
SBX+UM 664.90923.683 725.25326.871 330.3016.435 318.3812.309 298.6486.704
DX+NUM 𝟒𝟏𝟎.𝟑𝟑𝟔𝟑𝟒.𝟎𝟒𝟓 𝟒𝟑𝟓.𝟒𝟕𝟖𝟒𝟗.𝟑𝟕𝟐 𝟐𝟏𝟕.𝟓𝟒𝟒𝟖.𝟖𝟕𝟗 621.92888.362 𝟏𝟗𝟗.𝟑𝟖𝟗𝟏𝟓.𝟐𝟏𝟕
DX+PM 425.73720.098 454.12825.014 219.9896.717 674.76367.467 203.6918.301
DX+RM 427.16819.789 456.10227.252 220.7005.058 673.41964.273 204.1958.599
DX+UM 426.24624.491 461.05335.099 221.6834.913 676.34064.095 204.6558.437

Table 6
Mean and standard deviation of accuracy metric reached by each algorithm.

Algorithm Breast Diabetes Liver Parkinsons Vertebral

BAT 0.9760.005 0.7540.007 0.7510.018 0.8610.017 0.8750.013
CS 0.9570.011 0.7240.030 0.6910.030 0.6990.060 0.8070.033
DE 0.9620.006 0.7380.021 0.7270.028 0.7540.060 0.8380.031
GA 0.9730.005 0.7510.007 0.7580.016 0.8480.036 0.8730.014
GWO 0.9780.004 0.7510.005 𝟎.𝟕𝟔𝟎𝟎.𝟎𝟏𝟗 𝟎.𝟖𝟕𝟔𝟎.𝟎𝟐𝟏 𝟎.𝟖𝟕𝟔𝟎.𝟎𝟏𝟎
MFO 0.9760.006 0.7520.009 0.7570.014 0.8420.037 0.8710.014
MVO 0.9730.007 0.7570.009 0.7280.017 0.8540.032 0.8690.014
PSO 0.9780.005 0.7530.008 0.7530.018 0.8670.026 0.8730.011
BP 0.9530.011 0.7160.026 0.6470.043 0.8610.059 0.8180.036
AX+NUM 0.9740.005 0.7470.010 0.7440.019 0.8320.036 0.8640.017
AX+PM 0.9750.007 0.7500.010 0.7530.021 0.8320.027 0.8720.020
AX+RM 0.9750.005 0.7470.012 0.7400.020 0.8460.032 0.8680.019
AX+UM 0.9710.005 0.7440.008 0.7310.021 0.8240.043 0.8470.031
SBX+NUM 0.9710.006 0.7470.011 0.7430.019 0.8160.038 0.8570.026
SBX+PM 0.9730.005 0.7480.013 0.7390.019 0.8050.049 0.8690.023
SBX+RM 0.9750.007 0.7510.011 0.7400.020 0.8020.034 0.8610.020
SBX+UM 0.9720.006 0.7490.010 0.7430.016 0.8400.026 0.8680.020
DX+NUM 0.9810.004 0.7540.007 0.7480.019 0.8700.021 0.8730.009
DX+PM 0.9810.005 0.7570.011 0.7510.015 0.8630.025 0.8730.013
DX+RM 0.9800.006 0.7540.011 0.7520.014 0.8600.021 0.8750.015
DX+UM 𝟎.𝟗𝟖𝟐𝟎.𝟎𝟎𝟓 𝟎.𝟕𝟓𝟖𝟎.𝟎𝟏𝟎 0.7490.018 0.8700.025 0.8750.016

a diagnosis) or a high specificity value (e.g. when mislabelling a sample
as positive is detrimental) [78].

Table 6 shows the average of the accuracy values and the standard
deviation obtained by the MLP configured with weights and biases
generated by metaheuristics. Results were calculated using the test
subset of every dataset.

Metaheuristics have overcome the mean accuracy of the Back Prop-
agation algorithm (BP) in all the considered datasets. Focusing on the
DX variations, the DX+UM has stood out in two out of the five datasets
Breast and Diabetes) and has had the second-best mean accuracy in
wo other datasets (Parkinson and Vertebral). The GWO has emerged
s the best solution with Liver, Parkinsons and Vertebral datasets.
ecause the algorithms that achieved the best fitness value did not
each the best accuracy with these datasets, it is evident that there is no
elationship between fitness value and accuracy. As can be seen, all the
etaheuristics have obtained very similar results. In particular, CGA
ith DX crossover has proven to achieve competitive accuracy results
ith all the datasets.

Table 7 displays the mean of the Sn and the Sp for the DX variations
nd the algorithms of the state-of-the-art. The best results are marked
12

ith bold font, and the second-best is marked with italic font.
Table 7
Averages of classification metrics, Specificity (Sp) and Sensitivity (Sn), reached by each
algorithm.

Algorithm Breast Diabetes Liver Parkinsons Vertebral

Sp Sn Sp Sn Sp Sn Sp Sn Sp Sn

BAT 0.981 0.967 0.505 𝟎.𝟖𝟗𝟖 0.661 0.818 0.988 0.458 0.916 0.777
CS 0.950 0.970 0.431 0.894 0.539 0.802 0.713 0.652 0.848 0.709
DE 0.957 0.972 0.468 0.894 0.607 0.816 0.809 0.577 0.889 0.714
GA 0.976 0.967 0.502 0.895 0.662 𝟎.𝟖𝟐𝟖 0.955 0.506 𝟎.𝟗𝟏𝟖 0.765
GWO 𝟎.𝟗𝟖𝟒 0.967 0.503 0.895 𝟎.𝟔𝟖𝟐 0.818 𝟎.𝟗𝟗𝟏 0.510 𝟎.𝟗𝟏𝟖 0.776
MFO 0.977 0.975 0.502 0.896 0.673 0.819 0.920 0.592 0.911 0.775
MVO 0.979 0.961 0.519 0.895 0.607 0.816 0.952 0.540 0.900 0.792
PSO 0.981 0.973 0.514 0.892 0.664 0.819 0.973 0.531 0.905 0.794
BP 0.956 0.947 0.446 0.872 0.435 0.803 0.844 𝟎.𝟗𝟏𝟓 0.827 0.798
DX+NUM 0.982 0.977 0.511 0.894 0.651 0.820 0.982 0.510 0.905 0.797
DX+PM 0.982 𝟎.𝟗𝟖𝟏 0.517 0.896 0.654 0.823 0.980 0.487 0.901 0.805
DX+RM 0.983 0.974 0.506 0.987 0.659 0.820 0.975 0.492 0.903 𝟎.𝟖𝟎𝟗
DX+UM 0.983 0.980 𝟎.𝟓𝟐𝟑 0.894 0.653 0.819 0.977 0.529 0.905 0.803

Regarding the breast dataset, all the compared algorithms have
shown an outstanding balance between sensitivity and specificity met-
rics, which implies that samples of both classes mostly were well
classified, reducing the rate of false positives and false negatives.
DX+UM was the second-best at classifying both positive and negative
amples. DX+PM was the best at classifying positives samples, while
WO was the best with negatives samples.

For the diabetes dataset, DX+UM was the best at classifying negative
amples, showing a high specificity value. At classifying positive cases,
he best was the BAT algorithm, while the second-best was DX+RM.

For the liver dataset, all the algorithms showed to better classify
positive samples (high sensitivity). The best algorithm for classify-
ing negative samples was GWO which showed higher specificity val-
ues. The best with sensitivity values was the GA. DX+PM was the
second-best in sensitivity values and was near to the best algorithm
in specificity values.

Concerning the Parkinson dataset, the BP was better at classify-
ing positive cases but kept under the other algorithms at classifying
negative samples. The GWO was the second-best, obtaining the best
specificity and a similar sensitivity value as the other metaheuristics.
Among the DX variations, DX+NUM showed to be competitive at
classifying positive and negative samples. Metaheuristics performed
better at determining negative samples, suggesting they could learn
patterns from a few samples (48 samples). But, the performance with
positive samples was poor, which might have been related to noise
in the data. In particular, BP appears to better tolerate noise in the
Parkinson dataset.

Finally, with the vertebral dataset, the DX+RM showed the best
result on sensitivity and an acceptable specificity value, which suppose
a better classification. GA and GWO shared the best result of specificity.

All the previous analyses indicate that CGA using the DX crossover
offers better capabilities for exploring and exploiting solutions than the
other approach, which enhances the classification ability of the MLP. It
is necessary to remark that all the metaheuristics overcame the typical
BP, except in the Parkinsons dataset.

6. Conclusion

This work proposes a CGA approach to determine the optimal
weights and biases of a MLP to classify medical data accurately. The
idea was to take advantage of the properties of the CGA that im-
prove exploration and exploitation of the search space. One of the
main contributions of this paper was the Damped Crossover (DX), a
specially designed crossover operator, which based on the damped
harmonic oscillation function, determines the magnitude and direction
of recombination between two parents, using external information as
the knowledge of the best solution and the stage of the evolutionary
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process. DX operator has demonstrated to improve the exploration and
exploitation of the search space of CGA even more.

Experiments use five well-known benchmark medical datasets. Com-
parisons are against state-of-the-art algorithms and CGA versions con-
figured with well-known genetic operators. Two aspects were eval-
uated, the convergence capability of the algorithms and the quality
of classification achieved by the MLP optimised by the evaluated
metaheuristics.

In general, DX variations have demonstrated that they can rapidly
converge to optimal points of the search space. Regarding MSE values,
the CGA+DX was the best in three out of the five considered datasets
and the second-best in the remaining two. The DX operator combined
with the UM mutation achieved better results than the other algorithms
and reached minimal fitness values. Considering the times consumed
by each algorithm, the DX variations were the best in four out of
five datasets, overwhelming even to the CGA with other crossover
operators. It is reliable proof that the DX operator performs its task
efficiently, making the CGA work quicker.

The DX+UM produced better accuracy results in two datasets and
was the second-best in the other two datasets. The other DX variations
showed to be very near to the results of the DX+UM and the state-of-
the-art algorithms. These results suggest that the optimisation process
depends on the fitness function definition, because minimal values of
MSE do not necessarily imply better accuracy values. Despite that, these
results confirm that DX variations can have a featured performance in
optimising weights and biases of the MLP, being able to improve the
classification.

Besides, metrics of classification quality showed that solutions CGA
variations with DX crossover get competitive results of specificity and
sensitivity, deriving in a level of learning and generalisation com-
parable to other approaches. Specifically, DX variations highlight in
the Breast dataset by reaching the second-best result. With the other
datasets, the performance was very similar to the state-of-the-art algo-
rithms.

To conclude, results demonstrate that the CGA can be a robust and
reliable tool for identifying the optimal weights and biases of the MLP
for classifying medical data.

For future work, extending the CGA application to optimise the
parameters and structure of neural networks is proposed. Furthermore,
it is desirable to study alternatives to MSE function as fitness functions
to obtain a better relationship between the fitness function of the
metaheuristic and the accuracy reached by the MLP.
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