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Abstract In this paper we present rigorous results on the critical behavior of the Activated
Random Walk model. We conjecture that on a general class of graphs, including Z

d , and
under general initial conditions, the system at the critical point does not reach an absorb-
ing state. We prove this for the case where the sleep rate λ is infinite. Moreover, for the
one-dimensional asymmetric system, we identify the scaling limit of the flow through the
origin at criticality. The case λ < +∞ remains largely open, with the exception of the
one-dimensional totally-asymmetric case, for which it is known that there is no fixation at
criticality.

Keywords Non-equilibrium phase transition · Activated random walk · Absorbing-state
phase transition

1 Introduction

In this work we investigate the behavior of the Activated Random Walk (ARW) model
at the critical density of particles. Along with the fixed-energy sandpiles with stochastic
update rules, the ARW constitutes one of the paradigm examples of conservative lattice
gases which exhibit non-equilibrium phase transition from an active phase into infinitely
many absorbing states. It is believed that the transitions in these models belong to an
autonomous universality class of non-equilibrium phase transitions, the so-called Manna
class. While the existence of such transition is broadly supported numerically, rigorously
it is proven only for few particular cases. Much less is known about the behavior of these
systems at the critical point. For comprehensive background and historical remarks we refer
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Non-equilibrium Phase Transitions 1113

to [4,6,7], and for ongoing discussion on the existence of an independent Manna class,
see [2,5].

Our goal here is to show that, at the critical density, the system does not reach an absorbing
state, and thus each individual particle is in active state for infinitely many time intervals
(although the density of active particles vanishes as t → ∞). We prove this for some
particular cases, as discussed below. We also compute the critical exponent and find the
scaling limit for a one-dimensional model.

The ARW is defined as follows. Initially, there are infinitely many particles spread over Z
d

with density μ, e.g. i.i.d. Poisson with mean μ. Particles can be in state A for active or S
for passive, and at t = 0− they are all active. Each active particle, that is, each particle
in the A state, performs a continuous-time random walk with jump rate DA = 1 and with
translation-invariant jump distribution. Several active particles can be at the same site, and
they do not interact among themselves. When a particle is alone, it may become passive, a
transition denoted by A → S, which occurs at a sleeping rate λ > 0. In other words, each
particle carries two clocks, one for jumping and one for sleeping. Once a particle is passive,
it stops moving, i.e., it has jump rate DS = 0, and it remains passive until the instant when
another particle is present at the same vertex. At such an instant the particle which is in S
state flips to the A state, giving the transition A + S → 2A. A particle in the S state stands
still forever if no other particle ever visits the vertex where it is located. At the extreme case
λ = +∞, when a particle visits an empty site, it becomes passive instantaneously. This case
is thus essentially equivalent to internal diffusion-limited aggregation with infinitely many
sources. For a more formal definition of the model, see [7, Section 2].

In this paper we are mostly concerned with the question of fixation. We say that the system
fixates if, for every finite box, there exists a random time after which there is no activity in
that box.

The behavior of the ARW is expected to be the following. For each 0 < λ < ∞ there
exists 0 < μc < 1 such that, if the initial density μ of particles satisfies μ < μc the system
fixates, and if μ > μc the system does not fixate. The critical density satisfies μc → 0 as
λ → 0 and μc → 1 as λ → ∞. The value of μc should not depend on the particular μ-
parametrized distribution of the initial configuration (geometric, Poisson, etc.). At μ = μc,
the density of active particles vanishes as t → ∞, but we conjecture that the system does not
fixate in this case. The asymptotic decay of density of activity as t � 1 when μ = μc should
obey a power law. Also, for the stationary regime, i.e., letting t → ∞ first, the density of
activity should decay with a power law as 0 < μ − μc � 1.

However, from a mathematically rigorous point of view, all the above predictions are still
open problems. The few exceptions are presented in the next sections.

The only existing general result is for d = 1, and states that 0 < μc � 1, but there is
no proof that μc < 1. Here we consider two cases: infinite sleep rate λ = ∞, and a one-
dimensional system with totally asymmetric jumps. These extreme cases share some but not
all of the qualitative aspects of the ARW.

In Sect. 2 we define the particle-hole model and discuss its relation with the ARW. We
present two alternative constructions for these models, and describe the Abelian property.

In Sect. 3 we present known and new results concerning fixation and non-fixation for the
ARW. For a quick glance the reader may look at the main statements. We also comment on
open problems.

In Sect. 4 we study the scaling limit for the flow of particles in the asymmetric one-
dimensional particle-hole model, and finish with a brief discussion of this scaling limit.

The theorems presented here are valid for any dimension, any nearest-neighbor jump
distribution, and any value of λ, unless different assumptions are explicitly stated.
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1114 M. Cabezas et al.

2 Models, Time-Change, and Fixation

We start introducing two related models which will be helpful in the study of the ARW, and
then discuss the Abelian property.

All the systems considered in this paper, including the ARW, are particle systems on Z
d .

The configuration (ηt (x) : x ∈ Z
d) denotes the state of the system at each site x at time t . The

particle jumps are distributed as p(x, x + y) = p(o, y) = p(y), where p(·) is a probability
function on Z

d and o denotes the origin in Z
d . It is assumed that the initial configuration η0

is i.i.d. with finite mean μ and non-constant. For simplicity we also assume that p(y) = 0
unless y is one of the 2d nearest-neighbors of o.

Particle-hole model. Each particle performs a continuous-time random walk at rate 1. We
refer to the sites not containing particles as holes. At the time when the particle visits an
empty site, it settles, i.e., it stops moving and stands still at that site forever after. After that
time the site becomes available for other particles to go through. If a site is occupied by
several particles at t = 0−, we choose one of them uniformly to fill the hole at t = 0, and the
other particles remain free to move. In this setting, particles can be either unsettled if they
have never stepped on an unoccupied site, or otherwise they are settled at some site if they
have filled the corresponding hole.

Two-type annihilating random walks. There are two types of particles, A and B. The
particles evolve according to continuous-time random walks at rates DA = 1 and DB � 0,
respectively. When two particles of different types meet, both are removed from the system.
If a particle meets several particles of the other type, it chooses one of them uniformly to
annihilate.

For special choices of parameters, the above models and the ARW are closely related.
The connection between the particle-hole model and the two-type annihilating random

walks is more evident. For the latter, suppose that at t = 0− every site contains one B-particle
and that DB = 0, i.e., B-particles do not move. If we identify A-particles at t = 0− with
unsettled particles, and B-particles at t = 0− with holes, the evolutions of both systems will
be identical. At t = 0, sites containing A-particles loose one A-particle, which is annihilated
by the only B-particle present at t = 0− (resp. one of the unsettled particles settles and fills
the corresponding hole). At positive times, each site x containing k particles of type A (resp.
k unsettled particles) sends a particle to z = x + y at rate k · p(y). If the target site z still
contains a B-particle (resp. has an unfilled hole), both particles annihilate each other (resp.
the unsettled particle settles at z).

Now consider the ARW with λ = ∞. Compared to the particle-hole model, sites contain-
ing 0 particles are equivalent to a hole, and sites containing 1 particle are equivalent to a site
with one settled particle. In both cases, particles are not sent to neighboring sites at any rate.
Sites x with k+1 particles correspond to sites with one settled particle and k � 1 unsettled par-
ticles. In this case, a particle is sent to a neighboring site at rate k+1 for the ARW and at rate k
for the particle-hole model, and the target site is chosen as z = x + y with probability p(y).

The continuous-time evolution of the ARW and the particle-hole model are thus different.
However, due to the Abelian property of those models, fixation for the ARW with λ = ∞ is
equivalent to fixation for the particle-hole model.

We now describe the Abelian property. The reader can find the details in [7, Section 3].
These models can be constructed explicitly in a number of ways.1 One way, which we refer
to as the particle-wise randomness, is as follows. First sample the number of particles present

1 The constructions described here are well-defined even when the total number of particles in the system is
infinite, see [3,7]. Alternatively, one can approximate the probability of any event by a construction with only
finitely many particles.
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at each site at t = 0−, and then sample, for each particle, a continuous-time trajectory (with
an extra rate-λ Poisson clock to make the particle sleep in case λ < ∞). A particle follows
the corresponding trajectory until it settles or goes to sleep, and at such moment we stop
progressing in both its trajectory and sleep clock.

Another construction, which we refer to as the site-wise randomness, is as follows. First
sample the number of particles present at each site at t = 0−, and then sample, for each
site x , a sequence of instructions and a Poisson clock. We now progress in the Poisson clock
of each site x with a speed proportional to the number of active or unsettled particles present
at x . Each time a new Poissonian mark if found in the clock of a given site x , we topple
site x , that is, we perform the action indicated by the first unused instruction in the sequence
assigned to x .

The particle-wise randomness is especially useful for playing with particle addition and
deletion in the particle-hole model. The site-wise randomness, on the other hand, has the
big advantage of decoupling the property of fixation from the order at which topplings are
performed, and is thus robust with respect to the details of jump rates, etc. In particular,
one can combine the site-wise randomness to get equivalence between both models and the
particle-wise randomness to prove fixation or non-fixation for one of them.

From now on we discuss combinatorial properties of the toppling operation, and conclude
this section by stating the relationship between such properties and fixation for the continuous-
time models.

A site x is unstable in a given configuration η if x contains active or unsettled particles in
that configuration, and stable otherwise. Let α denote finite sequences of sites in Z

d , which
we think of as the order at which a sequence of topplings will be applied. Toppling a site is
legal if the site is unstable, and a sequence α is said to be legal if each subsequent toppling is
legal. Let V denote finite subsets of Z

d . A configuration η is said to be stable in V if all the
sites x ∈ V are stable in η. We say that α is contained in V if all its elements are in V . We
say that α stabilizes η in V if every x ∈ V is stable after performing the topplings indicated
in α. Let mα(x) count the number of times that a site x ∈ Z

d appears in α.
The main property of this construction is that the order at which topplings are performed

is irrelevant. In order to stabilize a configuration η in a box V , the number of topplings
performed at each site depends only on the sequences of instructions.

Lemma 1 (Abelian Property) If α and β are both legal toppling sequences for η that are
contained in V and stabilize η in V , then mα(x) = mβ(x) ∀x ∈ Z

d .

We can therefore define the random fields mV = mα , which do not depend on the particular
choice of α that is legal and stabilizing for η in V . These fields depend on the randomness
only through η and the sequences of instructions.

In particular, since a configuration η is stable in the ARW with λ = ∞ if and only if it is
stable in the particle hole-model, mV is the same for both models.

Lemma 2 (Monotonicity) If V ⊆ V ′, then mV (x) � mV ′(x) ∀x ∈ Z
d .

In particular, the limit m = limn mVn exists and does not depend on the particular sequence
Vn ↑ Z

d .

Lemma 3 For both the ARW and the particle-hole model, with i.i.d. initial configuration,

P[o is visited finitely often] = P[m(o) < ∞] = 0 or 1.

In particular, fixation for the ARW with λ = ∞ is equivalent to fixation for the particle-hole
model, since m is the same for both models.
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3 Critical Behavior of Activated Random Walks

We start with an “exactly solvable” case, for which a more complete description can be
derived. The following result comes from discussions with C. Hoffman.

Theorem 1 For the one-dimensional totally-asymmetric ARW, μc = λ
1+λ

. Moreover, this
system does not fixate at criticality.

Proof We know from Lemma 3 that fixation is equivalent to

P[m(o) � k] → 0 as k → ∞,

or alternatively

P[more than k particles ever jump out of o] → 0 as k → ∞.

Fix some L ∈ N. Let the site x = −L topple until it is stable, and denote by Y0 the indicator
of the event that the last particle remained passive on x = −L . Conditioned on η0(−L),
the distribution of Y0 is Bernoulli with parameter λ

1+λ
(in case η0(−L) = 0, sample Y0

independently of anything else). Define N0 be the number of particles which jump from
x = −L to x = −L + 1, that is N0 := [η0(−L)− Y0]+. Note that, after stabilizing x = −L ,
there are N0 + η0(−L + 1) particles at x = −L + 1. Let the site x = −L + 1 topple until
it is stable, and denote by Y1 the indicator of the event that the last particle remained passive
on x = −L + 1. Again, conditioned on η0(−L), η0(−L + 1), and Y0, the distribution of Y1

is Bernoulli with parameter λ
1+λ

(in case N0 + η0(−L + 1) = 0, sample Y1 independently
of anything else). Let N1 be the the number of particles which jump from x = −L + 1
to x = −L + 2, i.e., N1 := [N0 + η0(−L + 1) − Y1]+. By iterating this procedure, the
number Ni of particles which jump from x = −L + i to x = −L + i + 1 after stabilizing
x = −L , . . . ,−L − i is given by Ni = [Ni−1 + η0(−L + i) − Yi ]+. Note that the process
(Ni )i=0,1,...,L is a random walk with independent jumps distributed as η(x)−Y , reflected at 0.

Now observe that E[η(−L + k)−Yk ] = μ− λ
1+λ

. If this quantity is positive, the reflected

random walk is transient, and P[NL � 1
2 (μ− λ

1+λ
)L] → 1 as L → ∞, which, by Lemma 3,

implies non-fixation. On the other hand, if μ− λ
1+λ

< 0, the reflected random walk is positive
recurrent, and as L → ∞, NL converges in distribution to a finite random variable, which
implies tightness of NL . Therefore, by Lemma 3, we have fixation.

Finally, at criticality E[η(−L + k) − Yk] = 0. Then the reflected random walk (Ni )i�0

defined above is null-recurrent and, as L → ∞, NL converges in probability to +∞, which
implies non-fixation. ��

The above theorem provides good support for the predictions discussed in Sect. 1. We
now turn our attention to more general results about fixation.

Theorem 2 ([7]) For d = 1 and μ < λ
1+λ

, the ARW fixates.

Theorems 1 and 2 are the only available results for finite λ. The problem of fixation for
some μ > 0 and some λ < ∞ is still wide open in higher dimensions. In the sequel we
consider λ = ∞.

Theorem 3 ([8]) For λ = ∞ and μ small enough, the ARW fixates.

Using a mass-conservation argument we push this result to a sharp estimate.

Theorem 4 For λ = ∞ and μ < 1, the ARW fixates.
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Proof The proof makes use of the spatially ergodic, continuous-time evolution of the particle-
hole model. We follow the idea introduced in [3].

We claim that for μ < 1 some holes are never filled, as a consequence of the mass-transport
principle. Indeed, the density of holes that are filled by time t equals the density of particles
settled by time t , and thus for any t � 0

P[o contains an unfilled hole at time t] � 1 − μ > 0.

To see that, let A(x, y) denote the event that a particle starting at x settles at y by time t ,
and let w(x, y) = 1A(x,y). Then

∑
y w(x, y) equals the number of particles starting at x

that have settled by time t , and
∑

y w(y, x) is the indicator that the hole at x is filled by
time t . Translation-invariance implies that E[∑y w(x, y)] = E[∑y w(y, x)], and therefore
the probability of the latter event is bounded from above by the density of particles at t = 0−,
yielding the above inequality. Finally, letting t → ∞ we see that some holes are never filled,
proving the claim.

Therefore, the probability that o is visited finitely many times in the particle-hole model
is positive, and finally by Lemma 3 the ARW with λ = ∞ fixates. ��

From now on we consider results on non-fixation. All the known approaches work for
λ = ∞ and, by monotonicity, imply non-fixation for any λ. With the exception of Theorem 1,
proving non-fixation for some λ > 0 and some μ < 1 is still an open problem, in any
dimension.

Theorem 5 ([1,8]) For μ > 1 the ARW does not fixate.

Comparing Theorems 4 and 5, we get

μc = 1 for λ = ∞.

The result below implies non-fixation at criticality for this case.

Theorem 6 For μ = 1 the ARW does not fixate.

Proof By monotonicity in λ it suffices to consider λ = ∞. By Lemma 3, the theorem follows
from Proposition 1 below. �

Proposition 1 If the particle-hole model fixates, then necessarily μ < 1.

In the sequel we give the proof of Proposition 1 following the lines of [3], where the
equivalent model of two-type annihilating random walks is considered. The proof uses a
surgery technique.

Lemma 4 If the particle-hole model fixates, then P [o is never visited] > 0.

Proof Consider the particle-wise construction described in Sect. 2. We denote by (X x,i
t )t�0

the trajectory assigned to the i th particle potentially present at x at t = 0−. We will refer
to the set of trajectories as the evolution rules. The trajectories are independent over x
and i and independent of the initial configuration η0. The evolution of the system is deter-
mined by the evolution rules and the initial configuration, and we denote this pair by
ξ =(

(X x,i
t )t�0,i∈N,x∈Zd ,(η0(x))x∈Zd

)
.

Suppose that the system fixates. Then, necessarily, there exists k ∈ N such that
P[the number of particles which ever visit o equals k] > 0. Moreover, there exist x1, . . . ,

xk ∈ Z
d such that P[A] > 0, where

A = [
the particles which ever visit o are initially at the sites x1, . . . , xk

]
.

123



1118 M. Cabezas et al.

Consider two copies ξ and ξ̃ of the system, coupled as follows. We sample the same
evolution rules for ξ and ξ̃ , and also the same initial configuration outside {x1, . . . , xk}. The
initial configuration in {x1, . . . , xk} is sampled independently for ξ and ξ̃ . Now notice that
by independence

P

[
A occurs for ξ̃ and η0(x1) = · · · = η0(xk) = 0 for ξ

]
=

= P

[
A occurs for ξ̃

]
× P

[
η0(x1) = · · · = η0(xk) = 0 for ξ

]
> 0.

We conclude the proof with the observation that, on the above event, no particle ever visits o
in the system ξ . Indeed, on the above event, the initial configuration of ξ is the same as
that of ξ̃ except for the deletion of the particles present in {x1, . . . , xk}. In particular, all the
particles which visit the origin in ξ̃ are deleted in ξ . Recalling that ξ and ξ̃ share the same
evolution rules, we leave to the reader to check that in this case no particles can visit o in the
system ξ . ��
Proposition 2 If the particle-hole model fixates, then every particle eventually settles.

Proof A more general version of the proposition is the main result in [1]. Below we give a
simpler argument, following ideas from two-type annihilating random walks [3].

As in the previous proof, we construct the system using the particle-wise randomness,
and denote by ξ the pair of initial configuration and evolution rules from which the process
is constructed. The law of this evolution is invariant under permutation of labels of particles
initially present at the same site. Thus, it suffices to show that, almost surely on the event
that η0(o) � 1, the first particle born at the origin eventually settles.

Consider two copies ξ and ξ̃ of the system, coupled as follows. First, use the same initial
configuration η0 for ξ and ξ̃ . As for the evolution rules, use the same (X x,i

t )t�0 for ξ and ξ̃ ,
except at (x, i) = (o, 1). Finally, sample (X o,1)t�0 and (X̃ o,1)t�0 independently, and assign
them to ξ and ξ̃ , respectively.

Define B be as a random subset of Z
d given by the set of sites which are never visited

by a particle in the system ξ̃ . Since B is a translation-covariant function of ξ̃ , which in turn
is distributed as a product measure, it follows that B is ergodic with respect to translations.
Assuming that the system fixates, by Lemma 4 the set B is a.s. non-empty, and moreover it
has positive density.

On the event [η0(o) � 1], system ξ can be obtained from system ξ̃ by deleting a particle
with trajectory (X̃ o,1)t�0, and adding another one with trajectory (X o,1)t�0. The effects of
deleting a particle may only be propagated as follows. Label the deleted particle ρ1. Since
it is now is absent, it will not settle where it would, say at x1 at t1 (if ρ1 would not settle,
its deletion has no effect on the other particles). This may cause another particle ρ2 to visit
x1 after time t1, and now ρ2 will settle at x1, whereas without deletion it would have settled
at x2 at t2 > t1, and so on. This deletion thus cannot cause sites in B to be visited. Now notice
that (X o,1

t )t�0 is independent of B. By Lemma 5 below, this trajectory a.s. hits B at some
random time T and random site z. Therefore, on the system ξ , particle (o, 1) either settles
before time T or it settles at z at time T . ��
Lemma 5 Let B is a random subset of Z

d , ergodic for translations in each direction.
Let (Xn)n=0,1,2,... be a random walk on Z

d starting at X0 = o, and independent of B.
Then P[Xn ∈ B i.o.] = 1.

Proof Assume for simplicity that q := p(e1) > 0. For each n ∈ N0, let dn = inf{ j ∈ N0 :
Xn + j · e1 ∈ B}, that is, dn is the distance from Xn to the first site in B lying on the same
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horizontal line as Xn and to the right of Xn . Since B is ergodic with respect to translations
by e1, we have P[d0 < ∞] = 1. Now notice that (dn)n∈N0 is a stationary sequence, and
therefore P[dn → ∞] = 0. Finally, each time dn � k, with probability at least qk the
walk Xn hits B within the next k steps, and since the former event must happen infinitely
often for some k, so must the latter. ��
Proof of Proposition 1 Assume that the particle-hole model fixates. By Lemma 4, the density
of unfilled holes does not decrease to 0. By Proposition 2, the density of unsettled particles
tends to 0 as t → ∞. Since the system locally preserves the difference between unsettled
particles and unfilled holes, the density of unsettled particles minus the density of unfilled
holes is constant in time (see the proof of Theorem 4). Hence, the density of unsettled particles
at t = 0− is strictly smaller than the density of holes at t = 0−, which equals 1, proving the
proposition. ��

4 Critical Flow in One Dimension

In this section we consider the flow process, i.e., the process which counts the amount of
particles which have passed through o. We find the scaling limit of this process for the biased
particle-hole model in Z, which is given by the running maximum of a Brownian motion.

A similar scaling limit should hold for the ARW with asymmetric walks at λ = ∞. It
would be interesting to understand the scaling limit of totally-asymmetric walks with finite λ

at critical density μc = λ
1+λ

, but we have not been able to find the correct description. The
case of asymmetric walks and finite λ is much less clear, let alone that of symmetric walks.

Consider the particle-hole model with jump probabilities p > 1
2 to the right and q = 1− p

to the left, and initial condition having mean μ = 1 and positive finite variance σ 2.
We define the flow process as

Ct := number of particles which have passed through o before time t, t � 0.

Let (Bt )t�0 be a one-dimensional Brownian motion started at 0 and B̃t := max{Bs : s � t}
denote its running maximum. The theorem below states that the scaling limit of the flow
process (Ct )t�0 is (B̃t )t�0. The plateaux of B̃ (given by excursions of B below its running
maximum) correspond to the ever longer intervals of inactivity at the origin in the model.

Moreover, the scale invariance B̃L2t
d= L B̃t indicates that the amount of particles which

pass through the origin before time t is of order
√

t , providing a critical exponent. The above
observations are in agreement with the predictions of vanishing activity and non-fixation.

Theorem 7 For d = 1, let v = p − q > 0 denote the average speed of a moving particle in
the particle-hole model. Assume E[η0(o)] = 1 and E[η0(o)2] = 1 + σ 2 with 0 < σ < ∞.
Then the scaling limit of the flow process (Ct )t�0 is given by

(
1

σ L C L2 t
v

)

t�0

d−→
(

B̃t

)

t�0
,

where
d→ denotes convergence in distribution in D[0,∞) with the M1-topology.

Before presenting the proof of the theorem, we will give a intuitive explanation of the
result. Define

St :=
0∑

i=�−t�
(η0(i) − 1).
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Observe that Sn is the number of particles minus the number of holes in [−n, 0]. Assume
for simplicity that the system is totally asymmetric and that particles jump at discrete times.
Let n1 := min{n ∈ N : Sn > 0}. Then, all the particles to the right of −n1 will settle before
crossing the origin. Moreover, all the holes to the right of −n1 will be filled by one of such
particles. This will create a “carpet” that will allow the particles initially at −n1 to achieve
the origin. Analogously, setting n2 := min{k > n1 : Sk > Sn1}, all the particles initially at
sites x ∈ [−n2 + 1,−n1 − 1] will create a carpet in [−n1,−n2] over which the particles
initially at −n2 will reach −n1 and, therefore, achieve the origin afterwards. An iteration of
this argument gives that, for any n ∈ N, the amount of particles initially in [−n, 0] which
ever reach the origin is max{Sk : k � n}. Assuming that particles travel at speed v, we get
that Ct := max{Sk : k � vt}.

Finally, observe that, under the assumptions of the theorem, S is a random walk whose
jump distribution has mean 0 and finite second moment. Therefore S scales to a Brownian
motion and, consequently, the flux C scales to the maximum of a Brownian motion. The proof
of the theorem consists in making this argument rigorous and valid in the continuous-time,
asymmetric setting.

In the remainder of this section we prove Theorem 7 and conclude with a few observations
about this scaling limit.

The first step in the proof is to replace the convergence in distribution of rescaled S to
Brownian motion by almost sure convergence. We do this in order to maintain the proof as
simple as possible. Applying Donsker’s invariance principle we have that (σ−1ε1/2Sε−1t )t�0

converges in distribution to a Brownian motion. Hence, using Skorohod’s representation
theorem we have that there exists a coupled sequence of initial configurations, (ηε

0(z))z∈Z,
and a Brownian motion (Bt )t�0 defined on a common probability space such that, for all
ε � 0, (ηε

0(z))z∈Z is distributed as (η0(z))z∈Z and

(
σ−1ε1/2Sε

ε−1t

)

t�0

u→ (Bt )t�0 P-a.s, (1)

as ε → 0, where
u→ denotes uniform convergence over compacts and

Sε
t :=

0∑

i=�−t�

(
ηε

0(i) − 1
)
.

For each ε > 0, let (ηε
t )t�0 be a particle-hole model with initial configuration (ηε

0(z))z∈Z.
We define Cε

t as the amount of particles which pass through o up to time t in the system ηε .
Having constructed the coupling, now we turn our attention to prove that Cε

t is close
to max{Sε

s : s � vt}. More precisely, we will get a lower bound Cε
ε−1t

� max{Sε
s : s �

vε−1t}− Eε
1 and an upper bound Cε

ε−1t
� max{Sε

s : s � vε−1t}+ Eε
2 , where Eε

1 and Eε
2 are

negligible terms.
First we will deal with the lower bound. Let t∗ be the point where B attains his maximum

in [0, vt] and

t
 := min{s � 0 : Bs � Bt∗ }. (2)

Note that t∗ < vt < t
 almost surely. By the continuity of the Brownian paths, display (1),
and the fact that t
 > vt , it follows that the maximum of Sε in the interval [0, vε−1t] is

attained at a point jε ∈ N0 such that ε jε
ε→0→ t∗.

For each particle initially in [− jε, 0], one and only one of the three following possibilities
must occur:
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1. They pass through the origin,
2. They fill an empty site in [− jε, 0] (and stay there forever),
3. They fill an empty site in (−∞,− jε − 1] (and stay there forever).

Let Eε
1 be the amount of particles for which item 3 holds. Since at most one particle can

settle at a given site, we have that the particles in item 2 are at most jε (which is the number
of sites in [− jε, 0]). On the other hand, Sε

jε measures the initial difference between particles
and sites in [− jε, 0]. Hence we have that

#
{
particles initially in [− jε, 0] which pass through the origin

}
� Sε

jε − Eε
1 . (3)

Let Bε be the event that all particles initially in [− jε, 0] which pass through the origin,
do it before time ε−1t . Using the fact that the particles perform biased random walks with

asymptotic speed v and ε jε
ε→0→ t∗ < vt it follows that

P
[Bc

ε

] ε→0→ 0. (4)

On the other hand, by display (3), on the event Bε we have that

Cε
ε−1t � Sε

jε − Eε
1, (5)

which is the desired lower bound. The next lemma shows that Eε
1 is negligible.

Lemma 6 For all α > log(p/q)−1, we have that P[Eε
1 � α log(ε−1)] ε→0→ 0.

Proof Let N ε be the number particles initially in [− jε, 0] (in the system ηε). Let (Y i
t )t�0, i =

1, . . . , N ε be the trajectories of those particles. Note that, if one of those particles settles at a
site x < − jε , then necessarily x � min{Y i

t : t � 0, i = 1, . . . , N ε}. Hence, since at most one
particle can settle at a given site, we have that Eε

1 � − jε − min{Y i
t : t � 0, i = 1, . . . , N ε}.

Moreover, since Y i
0 � − jε for all i = 1, . . . , N ε , we have that

Eε
1 � − min

{
Y i

t − Y i
0 : t � 0, i = 1, . . . , N ε

}
. (6)

Furthermore, we have that, for all i = 1, . . . , N ε , (Y i
t − Y i

0)t�0 is a biased random walk
started at o (at least up to the time of settlement). Hence, for the proof of the lemma, first we
will control the quantities N ε and min{Yt : t � 0}, where Y is a biased random walk started
at o whose jump probabilities are p to the right and q to the left. We start with the control of
N ε . Let c > 1 be fixed. Since E[η0(o)] = 1, by the law of large numbers we have that

P
[
N ε � cjε

] ε→0→ 0. (7)

Now we proceed to control min{Yt : t � 0}. Since Y is biased to the right, it follows that
P[∃s � 0 : Ys = −1] = q/p < 1. Let θz := min{s � 0 : Ys = z}. Note that, by repeatedly
applying the strong Markov property of Y at the stopping times θi , i = −1, . . . ,−k + 1, we
find that

P [min{Ys : s � 0} � −k] =
(

q

p

)k

. (8)

Now we are ready to prove the lemma. By displays (6) and (8), we can write

P
[
Eε

1 � α log(ε−1)|N ε < cjε
]

� cjε
(

q

p

)α log(ε−1)

,

which goes to 0 as ε → 0 due to our choice of α and because jε = O(ε−1). That, plus (7),
proves the lemma. ��
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We have obtained the desired lower bound for Cε
ε−1t

, now we aim for the corresponding
upper bound. The strategy is to first obtain the upper bound for a truncated version ηc,ε of
our system ηε . Then we will show that the difference of the flow processes of ηc,ε and ηε up
to time ε−1t is negligible.

In order to understand the coupling between ηε and ηc,ε , we will assume that the system ηε

is given by its initial configuration ηε
0 and a set of evolution rules, as in the construction of

the particle-hole models in Lemma 4. When truncating the system, we will modify only the
initial configuration, the evolution rules will be preserved.

Next, we construct the truncated system. Define tc := t + t
−t
2 , where t
 is as in (2). For

each ε > 0 let ηc,ε be the system with initial configuration

η
c,ε
0 (z) :=

{
ηε

0(z) : z ∈ [−�vε−1tc�, 0]
0 : z /∈ [−�vε−1tc�, 0],

and the same evolution rules as ηε . Define also

Sc,ε
t :=

0∑

i=�−t�
η

c,ε
0 (i).

Let the system ηc,ε evolve until every particle has occupied an empty site (that time exist and
is finite because the system ηc,ε has a finite number of particles). Let − j∗,ε be the rightmost
site in (−∞, 0] which remained empty after the evolution. By definition, all the sites in
[− j∗,ε + 1, 0] eventually were occupied by a particle. Moreover, those particles must have
been initially in the interval [− j∗,ε + 1, 0], because no particle ever passed through − j∗,ε

(otherwise, the site would have not remained empty). Hence, since Sc,ε
j∗,ε−1 measures the initial

difference between particles and sites in [− j∗,ε + 1, 0], we have that Sc,ε
j∗,ε−1 gives an upper

bound for the amount of particles initially in [− j∗,ε + 1, 0] which passed through the origin.
Furthermore, since all particles in [− j∗,ε+1, 0] which do not settle in [− j∗,ε+1, 0] must pass
through o, we have that Sc,ε is, in fact, equal to the number particles initially in [− j∗,ε +1, 0]
which passed through the origin. On the other hand, since no particle in (−∞,− j∗,ε] ever
crossed the origin (because no particle ever pass through − j∗,ε), we have that

#
{
particles that pass through o in the system ηc,ε} = Sc,ε

j∗,ε+1.

Since tc < t
, we have that the maximum of Sc,ε in N0 (i.e., the global maximum) is attained
at jε , for ε small enough (recall that jε is the point at which Sε attains his maximum in
[0, vε−1t]). Hence, by the display above we get that

#{particles that pass through o in the system ηc,ε} � Sε
jε ,

for ε small enough, which clearly implies that

Cc,ε
t � Sε

jε , (9)

for ε small enough, where

Cc,ε
t := #{particles that pass through o in the system ηc,ε before time t}.

Having obtained the upper bound for the truncated system, we turn our attention to control
the difference between the flow processes of the truncated and original systems. First, we
will explain how the differences between the systems ηε and ηc,ε evolve according to a set
of tracers. As a warm up, first we will explain how evolve the difference between systems
which differ by a single particle. Let η1 and η2 be particle-hole models which evolve under
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the same evolution rules and whose initial configurations differ by a single particle a1, that
is, there exists x ∈ Z such that η1

0(x) = η2
0(x) + 1 and η1

0(y) = η2
0(y) for all x �= y. We will

define a tracer (Y x
t )t�0 which will follow the difference due to a1 (the extra particle at η1).

We set Y x
0 = x and, initially, Y x will follow the trajectory of a1 until it settles at an empty

site z. Note that on the system η2 the site z remains empty. Eventually, a particle a2 will
settle at z in the system η2. However, a2 will not settle at z in the system η1, because z was
already occupied by a1. At that time, our tracer Y x will start to follow the path of a2 (in the
system η1). The tracer continues to follow the path of a2 until it settles. We can indefinitely
continue this procedure to obtain a tracer Y x defined for all times with the property that, for
all t � 0, we have that η1

t (Y
x
t ) = η2

t (Y
x
t ) + 1 and η1

t (y) = η2
t (y) for all y �= Y x

t . Moreover,
the tracer perform a continuous time random walk with the same transition probabilities as
the particles, with the only difference that the tracer is “stopped” when it is tagging a settled
particle.

The initial difference between ηε and ηc,ε consists in an infinite amount of particles present
in ηε and absent at ηc,ε . Using the same procedure as above, we can simultaneously define
an infinite family of tracers (one for each particle present at ηε and absent at ηc,ε) which
give the evolution of the differences between the systems. Let Nt be the number of times that
one of those tracers pass trough o up to t . Hence, since the tracers give the evolution of the
difference between ηε and ηc,ε , we have that

Cε
t − Cc,ε

t � Nt . (10)

Those tracers can be of two types

1. Starting in (−∞,−�vε−1tc� − 1],
2. Starting in [1,∞).

Let Eε
2 be the number of times that a tracer starting at [1,∞) pass through o. Let

Dε := {No tracer starting in [−∞,−�vε−1tc� − 1] reaches o before time ε−1t}.
Since tc > vt and the (unsettled) particles perform biased random walks with asymptotic
speed v, we have that

P[Dc
ε] ε→0→ 0. (11)

Moreover, by displays (9) and (10), on the event Dε we have that

Cε
ε−1t � Sε

jε + Eε
2 . (12)

The following lemma shows that Eε
2 is negligible.

Lemma 7 E[Eε
2] � v−1 q

2p

Proof Since the tracers are either tagging a particle or an empty site, their trajectories are
time changes of biased random walks. Hence, using display (8), we find that

E
[
# {tracers starting in [1,∞) which visit o}] �

∞∑

i=1

E[η0(i)]
(

q

p

)i

= q

2p
.

On the other hand, using the same tools, we get that the expected number of visits to o of
each one of the tracers which visit o equals v−1 Hence we have that

E[Eε
2] � v−1 q

2p
.

��
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We have obtained the desired lower and upper bounds. We are ready to prove the following
lemma.

Lemma 8 For all t � 0, we have that

ε1/2Cε
ε−1t

P→ max{σ Bs : s � vt} as ε → 0,

where
P→ denotes convergence in probability and σ is as in Theorem 7.

Proof First note that, by displays (5) and (12), on event Bε ∩ Dε we have that

Sε
jε − Eε

1 � Cε
ε−1t � Sε

jε + Eε
2 .

Hence, using Lemmas 6 and 7 we get that, for any δ > 0

P

[
|ε1/2Cε

ε−1t − ε1/2Sε
jε | � δ

∣
∣Bε ∩ Dε

]
ε→0→ 0.

By the display above and displays (4) and (11), we get that

P

[
|ε1/2Cε

ε−1t − ε1/2Sε
jε | � δ

]
ε→0→ 0.

Furthermore, recalling the fact that ε jε
ε→0→ t∗ and display (1), we get that

P
[|ε1/2Cε

ε−1t − σ Bt∗ | � δ
] ε→0→ 0.

That is, ε1/2Cε
ε−1t

converges in probability to Bt∗ = max{Bs : s � vt}. ��
Using the previous lemma we now show Theorem 7. Let l ∈ N and 0 � t1 � t2 � . . . �

tl � ∞. Applying Lemma 8 at times v−1ti , i = 1, . . . , l we get that

(σ−1ε1/2Cε
v−1ε−1t1

, . . . ,σ−1ε1/2Cε
v−1ε−1tl

)
P→ (max{Bs : s � t1}, . . . ,max{Bs : s � tl}),

(13)

as ε → 0. Since convergence in probability implies convergence in distribution and, for each
ε > 0, (Cε

t )t�0 is distributed as (Ct )t�0, we have that display (13) implies the convergence
of the finite-dimensional distributions of (σ−1ε1/2Cv−1ε−1t )t�0 to those of (max{Bs : s �
t})t�0. On the other hand, the function t �→ Ct is monotone, hence convergence of finite-
dimensional distributions implies convergence in (D[0,∞), M1) (see [9], Theorem 12.12.3).
This finishes de proof of the theorem.

The above theorem provides a rather complete description of the large-scale behavior of
the model at the critical density. Recalling that B̃ can also be expressed as the inverse of an
α-stable subordinator, with α = 1

2 , we see that our result also provides scaling exponents.
We expect the same scaling limit for the flow of the asymmetric ARW with λ = ∞ and

μ = 1. Nevertheless, for the asymmetric ARW with λ < ∞ at criticality, we expect an
intermittency between periods of inactivity followed by bursts of high activity. That is, the
system should display an “avalanche”-type of relaxation after periods of load of particles. This
should be reflected in a discontinuous scaling limit of the flow process, with discontinuities
corresponding to avalanches. Since B̃ is continuous, we expect a different scaling limit in
that case.
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