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The hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is a rare
autosomal recessive inborn error of the urea cycle caused by mutations in the
SLC25A15 gene. Besides the well-known metabolic complications, patients often
present intercurrent infections associated with acute hyperammonemia and metabolic
decompensation. However, it is currently unknown whether intercurrent infections are
associated with immunological alterations besides the known metabolic imbalances.
Herein, we describe the case of a 3-years-old girl affected by the HHH syndrome caused
by two novel SLC25A15 gene mutations associated with immune phenotypic and
functional alterations. She was admitted to the hospital with an episode of recurrent
otitis, somnolence, confusion, and lethargy. Laboratory tests revealed severe
hyperammonemia, elevated serum levels of liver transaminases, hemostasis alterations,
hyperglutaminemia and strikingly increased orotic aciduria. Noteworthy, serum protein
electrophoresis showed a reduction in the gamma globulin fraction. Direct sequencing of
the SLC25A15 gene revealed two heterozygous non-conservative substitutions in the
exon 5: c.649G>A (p.Gly217Arg) and c.706A>G (p.Arg236Gly). In silico analysis indicated
that both mutations significantly impair protein structure and function and are consistent
with the patient clinical status confirming the diagnosis of HHH syndrome. In addition, the
immune analysis revealed reduced levels of serum IgG and striking phenotypic and
functional alterations in the T and B cell immune compartments. Our study has identified
two non-previously described mutations in the SLC25A15 gene underlying the HHH
syndrome. Moreover, we are reporting for the first time functional and phenotypic
immunologic alterations in this rare inborn error of metabolism that would render the
patient immunocompromised and might be related to the high frequency of intercurrent
infections observed in patients bearing urea cycle disorders. Our results point out the
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importance of a comprehensive analysis to gain further insights into the underlying
pathophysiology of the disease that would allow better patient care and quality of life.
Keywords: urea cycle defects, HHH syndrome, infection, hyperammonemia, immunodeficiency, T cells, B cells,
case report
INTRODUCTION

The mammalian urea cycle provides a pathway for the synthesis
of the non-essential amino acid arginine and serves to detoxify
ammonia, keeping plasma ammonium concentrations within a
narrow range despite ten-fold variations in dietary nitrogen
intake (1, 2). The mitochondrial transporter ornithine carrier 1
(ORC1) plays a crucial role in the cycle by transferring cytosolic
ornithine into the mitochondrial matrix in exchange for
citrulline (3, 4). Mutations in the solute carrier family 25
member 15 (SLC25A15) gene, which encodes for ORC1,
are causative of the rare autosomal recessive urea cycle
disorder (UCD) called hyperornithinemia–hyperammonemia–
homocitrullinuria (HHH) syndrome (OMIM 238970) (1, 5). In
affected patients, ORC1 deficiency reduces the rate of the urea
cycle leading to hyperammonemia, a typical feature of most
UCD (1, 6, 7). A founder effect was reported in the French-
Canadian population (1) and then 50 affecting function variants
have been already identified in 122 patients worldwide pointing
out the diversity of mutations and pan-ethnic distribution (8–
10). The disease usually manifests in early infancy or childhood;
however, cases of adult onset have also been reported (6, 11, 12).
Typical clinical features include lethargy, episodic confusion or
coma due to postprandial hyperammonemia, hepatitis-like
vomiting, spastic paraplegia, cerebellar ataxia, seizures, failure
to thrive, coagulation factor defects, and liver failure (1, 7, 12).
Different precipitants such as dietary carelessness, enhanced
protein catabolism consequent to dietary over-restriction or
infections may trigger an acute deterioration of the metabolic
status, which is characterized by potentially life-threatening
episodes of hyperammonemia (13), which may lead to cerebral
edema, lethargy, anorexia, vomiting, hyperventilation (or
hypoventilation), hypothermia, neurologic posturing, coma and
death. Interestingly, intercurrent infections are often observed in
UCD patients and have been reported as the most frequent
precipitant of acute hyperammonemia episodes and metabolic
decompensation (13, 14). Furthermore, they are the most
dangerous precipitant since the induced inflammation is a
catabolic stressor that usually aggravates the patient clinical
status significantly increasing morbidity and mortality risks
(13, 15–17). Although a considerable advance in the
knowledge about the pathophysiology of UCD and their
neurologic and metabolic consequences has been achieved
during recent years, very scarce data about their putative
ia–hyperammonemia–homocitrullinuria;
rea cycle disorder/s; OTCD, ornithine
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consequences on the immune system have been reported up to
date (12, 17–19). Certainly, it is currently unknown whether the
frequently observed intercurrent infections are associated with
putative immune alterations, which could render patients
susceptible to infections further increasing the severity of the
hyperammonemia episodes and thus resulting in higher
hospitalization rates and longer hospital stays (13, 17).

Herein, we report the case of a patient with HHH
syndrome caused by two novel mutations in the SLC25A15
gene associated with recurrent otitis episodes that precipitated
hyperammonemia crises. These non-previously reported
mutations consisted of two missense mutations in exon 5 of
the SLC25A15 gene, namely c.649G>A (p.Gly217Arg) and
c.706A>G (p.Arg236Gly). Interestingly, the patient showed
functional and phenotypic immune alterations that could
render her immunocompromised and thus explaining her
history of recurrent otitis.
CASE DESCRIPTION

We present the case of a girl aged 3.4 years, who was admitted to
the emergency room on August 5, 2019, for recurrent acute otitis
with vomiting, intermittent sensory disturbance, and irritability.
She is the second child of healthy non-consanguineous
Caucasian parents. She was born at term by spontaneous
delivery with a weight of 3500 g and no history of perinatal
complications or developmental delay. Interestingly, her parents
report that 11 months earlier (September 2018) the child was
admitted into another hospital because of a similar episode of
acute infectious otitis with somnolence, confusion, and lethargy.
When the patient was examined in our hospital, the neurological
assessment found her sleepy but reactive to stimuli, with no
neurologic deterioration (Glasgow coma score of 15/15), and
normal brain computed tomography scan. As shown in Table 1,
the patient presented with severe hyperammonemia, increased
serum levels of aspartate aminotransferase (AST) and alanine
aminotransferase (ALT), metabolic alkalosis, and markedly
reduced prothrombin activity and prolonged aPTT. Analysis of
amino acids in serum revealed increased levels of glutamine.
Furthermore, urine analysis revealed strikingly increased orotic
acid excretion. Noteworthy, blood cytology showed increased
proportions and counts of monocytes and atypical lymphocytes
(20) (Table 1), probably a consequence of the ongoing otitis
episode. Besides, and remarkably, serum protein electrophoresis
revealed low levels of total proteins mainly due to decreased
levels of the gamma globulins fraction indicating a possible
underproduction of antibodies. Interestingly, reduced levels of
IgG and slightly increased levels of IgM were detected (Table 1).
Owing to the severe hyperammonemia and increased orotic
May 2022 | Volume 13 | Article 861516
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aciduria, the patient was suspected to suffer from a UCD, more
specifically a case of ornithine transcarbamylase deficiency
(OTCD) or HHH syndrome. An OTCD was excluded by
genetic analysis, which revealed no mutations in the OTC gene.
However, direct sequencing of the SLC25A15 gene identified two
novel heterozygous mutations in exon 5 of the SLC25A15 gene
(ENST00000338625.9): c.649G>A (p.Gly217Arg) and c.706A>G
(p.Arg236Gly) (Figure 1A), different from the 50 already
reported SLC25A15 gene mutations (5, 8–10), strongly
suggesting a case of HHH syndrome.

The putative structural and functional consequences of the
newly identified SLC25A15 gene missense mutations were
assessed in silico. The mitochondrial ORC1 transporter is
composed of 301 amino acids with six transmembrane
segments. Arginine 217 resides in the fifth transmembrane
domain, and Glycine 236 is located in an alpha helix along the
Frontiers in Immunology | www.frontiersin.org 3
substrate translocation pore. As shown in Figure 1A, multiple
sequence alignment analysis revealed that G217R and R236G are
both non-conservative substitutions in amino acid residues
evolutionarily conserved among species, which suggests they
are crucial for protein structure and function. Moreover,
different bioinformatics prediction tools such as Clustal W
(21), SIFT (22), Polyphen (23), CADD (24), REVEL (25) and
Metal R (26) indicated that both mutations are highly
detrimental for the secondary structure and function of the
protein since both substituted amino acids differ in polarity,
charge, size, and other biochemical properties (Figure 1B). The
majority of the single-residue mutations reported causing the
HHH syndrome are non-conservative substitutions that
introduce changes in the charge and size of the amino acid
side chain (5, 27). Moreover, computer modelling and mapping
of both missense mutations using the 3D structural homology
TABLE 1 | Laboratory findings in a patient with HHH syndrome.

At admission At relapse (18 months later) Reference values*

Plasma ammonia (mmol/L) 360 230 ≤ 40
Plasma aminoacids Citrulline 33 – 0-50
(mmol/L) Ornithine 113 436 0-250

Ornithine/citrulline ratio 3.5 – 1.5-20.0
Arginine 31 – 0-100
Glutamine 1346 1154 333-809
Glutamic acid 238 142 0-600

Metabolite urinary excretion Orotic acid (mmol/mmol creatinine) 684.5 – < 10.0
Liver enzymes aspartate aminotransferase (AST) 70 36 5-25
(U/L) alanine aminotransferase (ALT) 160 40 3-25

alkaline phosphatase (ALP) 303 696 70-448
gamma glutamyl transferase (GGT) 30 14 5-39

Hemostasis Prothrombin activity (%) 42 – 80-100
aPTT (seg) 94 – 28-46

Blood cytology Red blood cell count (x 106/mL) 4.51 4.85 4.00-5.20
Hematocrit (%) 38.5 38.5 33.0-42.5
Hemoglobin (g/dL) 12.1 12.3 11.0-14.2
Leukocyte cell count (x 103/mL) 9.54 11.87 5.50-15.50
Neutrophils [/mL, (%)] 3530 (37) 2968 (25) 1500-7300 (27-50)
Eosinophils [/mL, (%)] 191 (2) 237 (2) 0-500 (0-3)
Basophils [/mL, (%)] 0 (0) 0 (0) 0-100 (0-2)
Lymphocytes [/mL, (%)] 4293 (45) 7834 (66) 2300-8000 (50-56)
Monocytes [/mL, (%)] 1145 (12) 356 (3) 0-900 (0-5)
Atypical lymphocytes [/mL, (%)] 286 (3) 475 (4) 0-100 (0-1)

Lymphocyte subsets NK cells [/mL, (%)] – 260 (3.3) 246-461 (6.0-14.0)
(flow cytometry) B cells [/mL, (%)] – 671 (8.6) 411-685 (11.0-18.0)

T cells [/mL, (%)] – 5664 (72) 2054-3169 (67.0-75.0)
CD4+ T cells [/mL, (%)] – 4452 (78.6) 1129-1581 (33.0-43.5)
CD8+ T cells [/mL, (%)] – 1212 (21.4) 711-1121 (22.5-29.5)
CD4:CD8 – 3.67 1.12-1.93

Serum protein Total proteins (g/dL) 6.3 6.62 6.4-8.3
electrophoresis Albumin [g/dL, (%)] 3.89 (61.8) 4.03 (60.9) 3.85-4.83 (55.0-69.0)

Alpha-1 globulin [g/dL, (%)] 0.27 (4.3) 0.17 (2.5) 0.07-0.42 (1.0-6.0)
Alpha-2 globulin [g/dL, (%)] 0.74 (11.8) 0.77 (11.7) 0.42-0.84 (6.0-12.0)
Beta-1 globulin [g/dL, (%)] 0.44 (7.0) 0.71 (10.7) 0.42-0.84 (6.0-12.0)
Beta-2 globulin [g/dL, (%)] 0.33 (5.3) 0.19 (2.8) 0.07-0.21 (1.0-3.0)
Gamma globulin [g/dL, (%)] 0.62 (9.8) 0.75 (11.4) 0.77-1.26 (11.0-18.00)
Albumin/Globulin 1.62 1.56 1.00-2.00

Serum IgM (mg/dL) 109 126 38-90
immunoglobulins IgG (mg/dL) 608 690 701-1157

IgE (UI/mL) 32 17 < 90
IgA (mg/dL) 112 80 66-120
May 2022 | Volum
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model of ORC1 (28) indicated that residue Arg236 is located in
the matrix gate area and plays a crucial role in conformational
changes which allow substrate translocation (29). Conversely, the
residue Gly217 belongs to the Pro-Gly level 1 immediately above
the substrate binding region (30), playing the crucial hinge/kink
function, which allows conformational changes and the access of
the substrate to the ORC1 binding site (Figure 1C). The above
reported observations indicate that both mutations have a high
likelihood to impair ornithine translocation, coherently with the
patient clinical phenotype supporting/confirming a diagnosis of
HHH syndrome.

After the initial diagnostic work-up, the patient was treated
with intravenous sodium benzoate, sodium phenylacetate, and L-
arginine that rapidly normalized plasma ammonia levels in less
than 24 hours. Immediately after, the patient was put on a
protein restricted diet (1.3 g/kg/day) supplemented with L-
carnitine (100 mg/kg/day), L-arginine (100 mg/kg/day), and
sodium benzoate (230 mg/kg/day) that resulted in metabolic
correction, remarkable clinical and biochemical improvement,
without any complications or sequelae. In addition, the otitis
episode resolved after amoxicillin treatment (80 mg/kg/day) for
7 days. However, 18 months later (February 2021) the patient
relapsed and was re-admitted to the hospital with a similar
clinical picture as at first admission: an episode of recurrent
Frontiers in Immunology | www.frontiersin.org 4
otitis associated to irritability, intermittent sensory disturbance,
and confusion. Once again, severe hyperammonemia
accompanied with increased serum levels of ornithine,
glutamine, AST, ALT and also alkaline phosphatase (ALP)
were detected. Interestingly, blood cytology revealed increased
proportions of lymphocytes and elevated counts of atypical
lymphocytes once more (Table 1). Moreover, serum protein
electrophoresis consistently revealed reduced levels of the
gamma globulins fraction of serum proteins. In addition,
reduced levels of IgG and increased levels of IgM were
detected again (Table 1). Taking into consideration these data
and the patient history, we then performed a comprehensive
phenotypic and functional analysis of cellular and humoral
adaptive immune compartments once the patient was
metabolically compensated and released from the hospital.

Immunocompromised patients usually present a profound
immune dysregulation associated with increased morbidity and
mortality, which has been characterized by reduced in vitro
lymphocyte proliferative capacity in response to mitogens and
alterations in the production of pro-inflammatory cytokines (31,
32). Therefore, proliferative responses from peripheral blood
mononuclear cell (PBMC) from the patient and sex and age-
matched healthy control individuals to well-defined mitogens
including concanavalin A (Con A), phytohemagglutinin (PHA),
A

B

C

FIGURE 1 | In silico analysis of c.649G>A (p.Gly217Arg) and c.706A>G (p.Arg236Gly) mutations on the ORC1 protein structure and function. (A) Partial
electropherograms showing the detected mutations. Multiple alignment of the modified ORC1 aminoacid residues with the protein sequence from different species
using the Clustal W2 software. (B) In silico validation of the two SLC25A15 gene mutations identified. (C) Modeling of the tridimensional protein structural changes
introduced by the two identified mutations using the human ORC1 homology model. Normal residues are marked in blue (top) and the changes introduced by
mutations in red (bottom).
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Pokeweed (PKW), candidin, and antigens of Mycobacterium
tuberculosis or Trychophyton spp. were assessed. As shown in
Figure 2A, significantly reduced proliferation rates in response
to most of the mitogens assayed were observed in the patient
with respect to controls. When assaying the production of
inflammatory cytokines, significantly reduced levels of IFNg,
IL-17A and TNFa secretion were detected in culture
supernatants of PBMC from the patient compared with
controls (Figure 2B). Conversely, significantly higher levels of
the IL-10 were detected in culture supernatants from the patient
PBMC stimulated with Con A, PKW, and candidin with respect
to controls (Figure 2B). In parallel, we quantified the levels of
CD4+ and CD8+ T cells, B cells and NK cells in the patient
peripheral blood by flow cytometry. Whereas normal counts of
NK and B cells were observed, significantly higher counts of T
cells were detected, mainly due to an increase in the CD4+ T cell
subset (Table 1). These findings indicated an expansion of that
particular T cell population and were in agreement with the
increased levels of atypical lymphocytes revealed by blood
cytology (Table 1). Considering that, we then evaluated the
distribution of CD4+ and CD8+ T cell subsets in the patient
under study and sex and age-matched healthy control
individuals. CD45RA and CCR7 cell surface markers were used
Frontiers in Immunology | www.frontiersin.org 5
to identify four phenotypically and functionally distinct subsets
of CD4+ and CD8+ T-cells: naïve (Naïve: CD45RA+ CCR7+),
central memory (CM: CD45RA- CCR7+), effector memory (EM:
CD45RA- CCR7-) and terminally differentiated effector memory
(TEMRA: CD45RA+ CCR7-) (Figures 3A–C) as previously
reported (34–36). Figure 3B shows that, within the CD4+ T-
cell compartment, the frequency of naïve and CM T cells were
significantly lower in the patient than in controls (p<0.01). In
contrast, the patient revealed significantly higher proportions of
EM and TEMRA CD4+ T cells than control individuals (p<0.01,
Figure 3B). When analyzing the CD8+ T-cell compartment,
significantly reduced naïve and increased EM and TEMRA CD8
+ T cells were respectively observed in the patient with respect to
controls (Figure 3C). These results indicated alterations in the T
cell compartment from the patient under study.

As serum protein electrophoresis analyses revealed low levels
of gamma globulins, which was further confirmed by the
detection of low levels of serum IgG, we then analyzed B cell
subsets in peripheral blood by flow cytometry. Although total B
cell counts were within reference values, significantly reduced
frequencies of plasmablasts, immature and memory B cells were
found in the patient with respect to sex and age-matched healthy
controls (Figure 3D). Conversely, the patient revealed
A

B

FIGURE 2 | Functional analysis of cellular adaptive immune compartment. (A) Lymphoproliferative responses of peripheral blood mononuclear cells (PBMC) from the
patient (P) and control (C) individuals to different mitogenic stimuli [concanavalin A (Con A), phytohemagglutinin (PHA), Pokeweed (PKW), candidin, and antigens of
Mycobacterium tuberculosis or Trychophyton spp.] or medium alone (mock). Cells were cultured (3.0x105/well) in quadruplicate for each condition and incubated for
96 h at 37°C/5% CO2 as previously described (33). During the last 18 h of culture, wells were pulsed with 1 µCi of [methyl-3H] thymidine in fresh medium. Cells were
harvested onto glass fiber filters and labeled material was counted in a b scintillation counter. Results were expressed as counts per minute (cpm). (B) IFNg, IL-17A,
TNF-a and IL-10 concentrations in PBMCs culture supernatants determined by sandwich ELISA and results expressed as pg/ml. Experiments were performed at
least in quadruplicate and repeated twice with similar results. Data are shown as mean ± SEM, the patient and sex and age-matched control individuals (n=6 healthy
females, aged 3-7 years old). Red bars correspond to the average values of the patient and white bars correspond to the average values of the controls analyzed.
Mann-Whitney test; *p< 0.05, **p< 0.01 and ***p< 0.005.
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significantly higher frequencies of mature B cells than control
individuals (Figure 3D). These data revealed that the patient had
reduced counts of circulating plasmablasts and memory B cells
that could be related to the detected hypogammaglobulinemia
and low levels of serum IgG but increased IgM. Altogether,
the results show alterations in the adaptive T and B cell
immune compartments that would render the HHH patient
immunocompromised and might explain her history of
recurrent otitis episodes.
DISCUSSION

Several inborn errors of metabolism affecting effectors of the urea
cycle or UCD have already been described in humans, including
the HHH syndrome (12, 18). Although hyperammonemia and
related complications are the main and best described
Frontiers in Immunology | www.frontiersin.org 6
consequences of the HHH syndrome and other UCD, little is
known about other putative consequences on different tissues
and cells such as those from the immune system.

Herein, we are reporting a case of a girl that was admitted to the
hospital with an episode of recurrent otitis together with signs and
symptoms compatible with a UCD. Due to the clinical presentation,
laboratory findings, and local prevalence (37), an OTCD was
initially suspected. However, sequencing of the OTC gene revealed
no alterations excluding OTCD as the underlying pathology. Based
on its prevalence, we then suspected a case of HHH syndrome even
though the metabolic triad that usually defines the HHH syndrome,
hyperammonemia, hyperornithinemia, and urinary excretion of
homocitrulline was not observed in the patient at admission.
Nevertheless, genetic analysis revealed two novel heterozygous
mutations in trans of the SLC25A15 gene that in silico analysis
further indicated to likely impair the functionality of the transporter
protein thus confirming a diagnosis of HHH syndrome. These
A

B

D

C

FIGURE 3 | Phenotypic analysis of T and B cells. (A) Flow cytometry gating strategy for the assessment of phenotypic cell markers in live CD4 and CD8 T cells, and B cells
from PBMC after red blood cell depletion by lysing buffer treatment. (B, C) Frequencies of naïve T cells, central memory (CM), effector memory (EM), and terminally
differentiated effector memory cells (TEMRA) within the CD4+ (B) or CD8+ (C) T cell populations from the patient (P) under study and controls (C). (D) Frequencies of mature,
immature and memory B cells, and plasmablasts in peripheral blood from the patient (P) under study and controls (C). Representative flow cytometry dot plots. Experiments
were performed in triplicates. Data are shown as mean ± SEM, the patient and sex and age-matched control individuals (n=6 healthy females, aged 3-7 years old). Red bars
correspond to the average values of the patient and white bars correspond to the average values of the controls analyzed. Mann-Whitney test; *p< 0.05 and **p< 0.01. The
following fluorescent-labeled anti-human antibodies (BioLegend) were used: CD3 (PerCP), CD4 (APC), CD19 (APC), CD45RA (PE-Cy7), CCR7 (PE), CD24 (FITC) and CD38

(PE). Dead cells were excluded using LIVE-DEAD™ fixable (Invitrogen). Data were collected on FACS-CANTO II flow cytometer (BD Biosciences) and analyzed using FlowJo
software (version 7.6.2). Proper compensation using Fluorescence Minus One (FMO) controls were used.
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results support previously reported data by Mahmoud et al., 2019,
who predicted several possible HHH syndrome causative mutations
(38). Interestingly, the R236G mutation is listed in the Single
Nucleotide Polymorphism Database (dbSNP; rs142236568) with
an allele frequency of 0.02% but it has never been reported as
causative of the HHH syndrome or any other disease.

The patient presented hyperammonemic crises after recurrent
infectious otitis episodes, which was not surprising since
intercurrent infections are commonly observed in UCD patients
(13, 15, 16). As it has been shown that the inability to ingest food
and medications did not seem to be associated with infection, and
cannot readily explain the observed increasing morbidity in UCD
patients (13), the pathophysiology of intercurrent infections could
be due in part to immune alterations. The assessment of the T cell
compartment revealed increased counts of T cells, mainly due to an
increase in the CD4+ T helper cell subset. Interestingly, higher levels
of effector memory cells and low levels of naïve cells were found in
both CD4+ and CD8+ T cell populations. Strikingly, the patient
showed significantly increased levels of terminally differentiated
effector memory (TEMRA) CD4+ and CD8+ T cells. These results
mirrored the dynamics of T cell changes associated with T cell
dysfunction typically observed in the elderly and cytomegalovirus
infected patients (39–42). Indeed, TEMRA is a hallmark of cellular
senescence, including reduced proliferation and defective
mitochondrial function (43, 44). In agreement, the patients
showed strikingly reduced PBMC proliferative responses to
polyclonal stimuli or memory recall antigens associated with
reduced secretion of IFNg, IL-17A, and TNFa, and increased
secretion of IL-10. These results indicated an altered lymphocyte
proliferation state with reduced ability to produce pro-
inflammatory cytokines and enhanced production of
immunoregulatory cytokines, a phenotype compatible with
immunosuppression (31, 32, 45–47). On the other hand, the
patient showed hypogammaglobulinemia and reduced serum IgG
but increased IgM levels both at first admission and after relapsing
18 months later. Noteworthy, when assessing B cell subpopulations
in peripheral blood, the patient showed strikingly reduced levels of
circulating plasmablasts andmemory cells but increased frequencies
of mature cells suggesting a possible impairment in the activation
and differentiation of B cells, and/or an inability to sustain
the survival of the former B cell subpopulations. Altogether,
these results show alterations in the adaptive T and B cell
immune compartments that would render the HHH patient
immunocompromised thus explaining recurrent infections.

Although no immune alterations have been reported in HHH
syndrome or other UCDs so far, our results suggest they might be
present in patients bearing these rare inborn errors of
metabolism, which is a still overlooked area in medical
research and clinical practice. In fact, our results could be
related to the well-known high frequency of intercurrent
infections typically observed in these patients. Interestingly,
Monaco et al. revealed that the SLC25A15 gene is expressed by
most leukocyte subpopulations with plasmablasts and CD4+ T
cells showing the highest levels (48, 49). Although the specific
implications of defective SLC25A15 gene expression in these cells
still need to be unveiled, our results suggest that a defective
Frontiers in Immunology | www.frontiersin.org 7
expression of this gene might alter B and T cell function paving
the way for future research in the area. In that regard,
argininosuccinate synthetase 1 (ASS1), another component of
the urea cycle that when defective causes citrullinemia type I
(OMIM# 215700), is also expressed in several organs and cells of
the immune system. Interestingly, experimental models have
shown that the deficiency of ASS1 leads to abnormal T cell
differentiation and function despite normal hepatic expression
(50). Moreover, it has been shown that some patients bearing
lysinuric protein intolerance, another rare hereditary disorder
that secondarily affects the urea cycle and manifests with
hyperammonemia, showed decreased levels of serum IgG sub-
classes and suboptimal vaccine responses pointing to a B-cell
dysfunction (51).

In agreement with our study, these reported data further suggest
that in addition to metabolic disturbances, UCD patients may have
impaired immune responses. Besides the putative consequences of
the deficiency of components of the urea cycle in immune cells, it
has been shown that hyperammonemia per se also affects immune
cell function. The in vitro exposure to high levels of ammonia
impairs neutrophil and dendritic cell phagocytic function and
reduces the ability of the latter to induce lymphocyte activation
and proliferation (52, 53). Moreover, cirrhotic patients, who are
usually hyperammonemic and metabolically decompensated
although to a lesser degree than UCD patients, are susceptible to
opportunistic infections. Noteworthy, impaired phagocytic
neutrophil function, aberrant immunoglobulin glycosylation, and
increased exhaust CD8+ T cells have been found in cirrhotic
patients indicating a state of immunocompromise associated with
hyperammonemia (54–57). A limitation of this study is that the
levels of different leukocyte subsets and T and B cell subpopulations
from the patient at admission and at different times during her
evolution are unknown. In that regard, it would be interesting to
assess if correction of hyperammonemia correlates with
improvements in T and B cell number and function. In that
regard, we believe that the identified immune alterations herein
may also be occurring in othermetabolic diseases where ammonia is
a common factor. Future studies may help confirm the hypothesis
that stricter ammonia control is required in these patients, probably
much lower than current recommendations (<80 mmol/L) (12),
which could improve the overall health status of patients beyond
just avoiding neurotoxicity. In addition, although the in silico
analyses indicated that both mutations detected would very likely
affect the activity of the ORC1 transporter, being compatible with
the patient clinical phenotype, the definitive pathogenicity of both
mutations should be demonstrated by experimental models in vitro
and/or in vivo designed ad hoc.

In conclusion, our study identified two non-previously
described mutations in the SLC25A15 gene underlying HHH
syndrome. Moreover, we are reporting for the first time
functional and phenotypic immunologic alterations in this rare
inborn error of metabolism that would render the patient
immunocompromised and might be related to the high
frequency of intercurrent infections typically observed in UCD
patients. Our results highlight the need of a more comprehensive
evaluation of patients and warrant further investigation of the
May 2022 | Volume 13 | Article 861516
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putative implications of the HHH syndrome and other UCD on
the immune system, which will allow a better understanding of
these rare diseases and thus a better patient care and quality
of life.
PATIENT PERSPECTIVE

The patient has remained stable and with no further
complications after adhering to the treatment proposed. Family
was satisfied with the improvement in the clinical condition, has
been committed to maintain medical care at home and regularly
attend to periodic controls.
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