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1. Introduction

Lotka-Volterra delayed systems are extensively used to model prey-predator population dynamics. For example, the
system

Xi(t) = Xi(8) |ci(t) = Y _ay(6)x;(t — Ti(t)):| (1.1)
=1

was under study in [9,19,21,26,28,34]; Gilpin-Ayala model

Xi(t) = xi(t) | ¢ Zau (- Ty(t))] (1.2)

in [8,9]; logarithmic Lotka-Volterra

X(t) =x(0)|a Zbu )l (1) — ey (0 Ing ¢~ w(r))} (13)
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in [43]; Hopfield neuron network models

Xi(t) = —ai(t)xi(t) + Y _ag(E)fy(x(t) + D _by(Of(x(t — T5(t))) (1.4)
J J
were studied in [7,13,16,25,29,44].
In [15,30,36,39] the following general models for an n-dimensional vector x(t) = [x;(t),X;(t),...,X.(t)]" were under

investigation

X'(t) = A(OX(t) + A (£, x(t — (1)), (1.5)

X'(t) = A(t,x(£))x(t) + f(t,x(t — 7)) (1.6)
and

X(t) = Vgx(t)) + f(t,x(t - 1)). (1.7)

Here, A(t, x) is a continuous n x n matrix, f(t, x) is a continuous n-dimensional vector function and g(x) is a C' scalar function.

There have been various approaches developed to examine the existence of periodic solutions for delay differential equa-
tions since the first study published by Browder in 1962, such as fixed point theorems, Hopf bifurcation theorems, Poincaré-
Bendixson theorems, Lyapunov functions, the spectral theory of matrices, Morse theory, Galerkin methods and coincidence
degree theory (see, for example, [1-4,10,11,27]). Some interesting results were recently obtained in
[17,22,24,32,33,39,40,42]. Multiple systems of population dynamics were recently studied in [3,5,6,18,20,23,35,37,38,41].

Motivated by these models, we introduce and study the most general system and discuss its applications. Some new and
interesting sufficient conditions are obtained to guarantee the existence, non-existence and multiplicity of periodic
solutions.

2. Continuation theorem for the abstract model and applications

Let
X:={xeCR,R"):x(t+w)=x(t) forall t}
and consider the functional differential equation
X(t) = O(X)(0), (2.1)

where @ : X — X is continuous and maps bounded sets into bounded sets. For x € X, its absolute maximum and minimum
values and its average % 5"x(t) dt are denoted by X, Xmin and X, respectively. The euclidian norm of a vector y € R" shall
be denoted by |y|. Let U be an open and bounded subset of X and denote its closure by cl(U). If 27" : cl(U) — X is compact with
A#u#u for uedU, then the Leray-Schauder degree of the Fredholm operator # =Id — # at 0 shall be denoted by
deg,;s(#,U,0) (for a detailed definition and properties of the degree see for example [27]). Finally, we identify the subset
of constant functions of X with R"; thus, a vector y € R" may be interpreted as an element of X so the function
¢ : R" — R" given by
‘l w
b0 =0 = [ omd
0

is well defined. The following continuation theorem will be the key for further studies. The proof follows essentially the same
outline of analogous results (see e. g. [10]) so it is omitted.

Theorem 2.1. Assume there exists a bounded open subset U C X such that

1. If X' (t) = 2D(x)(t) for some x € cl(U) and 0 < A < 1, then x € U.
2. ¢(x) #0 for x e BOUNR".
3. degg(¢p, UNR",0) # 0 (degy stands for the Brouwer degree).

Then (2.1) has at least one solution x € cl(U).
Consider the system
X/(t) :F(t,x(t),x(t—l—]),...,X(t—Tm)) (22)

with F : R x R"™*) — R" continuous and w-periodic in t and 7; = 7;(t,x(t)), with 7; : R x R" — R continuous, positive and w-
periodic in t. For convenience, given an arbitrary bounded open set Q c R", we define

Xo:={xeX:x(t)eQ forall t}.
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Assume, for simplicity, that Q is smooth, but a more general version of the result can be also obtained. The Euler character-
istic of Q shall be denoted by y(€2) and the outer normal vector of Q at x shall be denoted by v,.
Theorem 2.2. Let Q C R" be smooth, open and bounded with y(Q) # 0 and assume that

V- F(t,%,Y1,...,Ym) <0 (2.3)
or

Ve - F(£,%,¥1,...,Ym) >0 (2.4)
forall t, x € 0Q and y; € Q such that

Vi =X < Tmax  SUP  |F(6,2,Y1,-- -, Ym)l-
te[0,m).y5,zeQ

Then (2.2) admits at least one w-periodic solution in Xq.

Proof. Letx € cl(Xp) satisfy x'(t) = AF(t,x(t),x(t — T1),...,X(t — Tm)) for some 1 € (0,1). If x(to) € 9Q for some ¢, € [0, w], then
X'(to) is tangent to oQ at the point x(to), that is

Vx(to) /lF(th(to),X(to — T]), R ,X(tg — Tm)) = Vx(to) * X'(tg) =0.

On the other hand, for all j it is seen that

to
/ X (t)dt
to—Tj

< Trmax Sup ‘F(t7x7yl7'“7ym)‘;

te[0,0] XX, €Q

<z/t0 IF(E, X(£),X(E — T1), ... X(t — )| dt

0—Tj

[X(to) — X(to — 7)) =

so using (2.3) or (2.4) a contradiction is obtained, thus, x € Xo. Finally, for x € R" observe that

q&(x):%/olF(t,x,..wx)dt

and hence v, - ¢(x) # 0 for all x € Q. This implies that ¢ or —¢ is homotopic to the outer normal vector field, and the con-
clusion follows from a theorem by Hopf [12], which establishes that the degree of the outer normal is equal to ¥(Q). O

Remark 2.3. The preceding theorem is rather general but it can be applied to specific situations in order to obtain more pre-
cise results. In particular, if Q is homeomorphic to a ball then the condition on the Euler characteristic is automatically ful-
filled since y(Q) = 1; this is the case in [ 11], where it was assumed that Q is convex. However, the general version allows Q to
have holes, and thus can be also adapted to deal with singular problems, as shown in the following example.

Example 2.4. Consider the system
x(t)—v
x(t) — |

w(t) = a(t,x(t — 7)) ‘:& bt x(t - 1)

where v € R"\ {0} is a fixed vector, a,b : R x R" — R are continuous, bounded and w-periodic in the first coordinate, T > 0
and n,m > 1. Assume:

= F(t,x(t),x(t — 7)) (2.5)

1. There exists R > |v| such that a(t,x) > 0 and b(t,x) > 0 for all ¢ and all x such that |x| = R.
2. a(t,0) < 0 and b(t, v) < O for all .

Then (2.5) admits at least one w-periodic solution, provided that 7 is small enough.
Indeed, we may consider Q := Bg(0) \ (cl(B;(0)) U cl(B/(v))) for some r < ‘zﬂ such that

a(t,x)

iz T b(6X) (*x=2) X0 forallt and [x =r,

X — v

(x — z;) N b(t,x)
‘X' rm72

a(t,x) <0 forallt and [x—v|=T.

Observe that
F(t,x,9)| < llafl r'™" + [[b]|,r'™ := M(r)
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and F(t,x,x) -x > 0 for |x| =R and all ¢, so taking T small enough we deduce:
F(t,x,y) - x>0 forallt,|x =R and R-—tM(r)<|y| <R

Moreover, letting T to be smaller if necessary, it is verified that

(X - Z))

(=) % bit.y)
W

a(t.y) +b(t,y) L

2 <0 forallt,|xj=r and |y—x|<tM(r),

a(t,y)

<0 forallt|x—2|=r and [y—x| < TM(r).

Finally, note that y(Q) =1 —2(-1)" # 0. Thus, all the conditions of Theorem 2.2 are satisfied. It is worth noticing that,
when n is odd, the same approach can be also applied to a system with an odd number of singularities.
Concerning the nonlinearity F, a special case of remarkable interest is

F(t7x7yl7" . 7ym) :A(LX)X— ;“H(tvxmyly' N 7Ym) (26)

withA: R x R" — R™" continuous and w-periodic and H : R x R"™*D _, R" continuous and w-periodic in its first coordinate
and 4 > 0. Consequently, existence results for (1.4), (1.5) and (1.6) are obtained.
In [31] a planar system was firstly introduced and studied

X1 () = =@ (6)x1(t) + by (O)fy (X1 (£ = T11 (), Xa(t = T12(1)))
X5 (t) = =@ (6)x2(t) + ba(O)f (X1 (t — T21(1)), X2(t — T22(1))).
The following result was obtained in [14], as a corollary of a more general existence theorem: if a;, b;, 7; > 0 are continuous

and w-periodic and f; € C(R?, R) is bounded, then system (2.7) has at least one periodic solution [14, Corollary 2.1]. This fact
follows trivially from Theorem 2.2. Indeed, we may set

—a;(t) 0 ) =b1(OfiV11,¥12)
A t) = ( ) H td’ 7}/ 7y 7y = ( )
® 0 —ay(t) (611 Yiz:Yor: Vo) —b2(0)f2(¥21,¥22)
If we take Q = Bg(0) C R", then v, = £ for all x € 9Q and hence

W

(2.7)

Vi F(6,X, Y115 Y22) = | | ( 1(t )X1 +ax(t )X% —bi(O)x1f1(V11,Y12) — b2(t)x2f2(y217)’22))~

As aq(t),a(t) > O forall t and f;, f> are bounded, it is seen that (2.3) is fulfilled when R is large enough. We remark that, in this
particular case, a simpler proof can be given using Schauder Theorem which, compared with the degree method, is usually
more restrictive, since it is required to find a convex bounded and closed subset C that is invariant for the fixed point
operator, i.e., T(C) c C. Whereas using degree, the homotopy invariance is a very strong tool, since in many situations the
problem is reduced to a degree computation of a finite-dimensional mapping. More generally, using the fact that
X-A(t)x = x - ATy for a]] ¢ and all x, we obtain:

Corollary 2.5. Let F be defined by (2.6), Q = Br(0) c R", and denote by p,(t,x) < ... < U, (t,x) the eigenvalues of the symmetric
matrix AltX)+A(EX) +A(tx If

M'H(tvxvyla"w)’m) < /"Ll(tvx)Rz
or
;“X 'H(tvx7y17"' 7ym) > lun(t7X)R2

forallt € R,x € 9Bg(0) and y,, ...,y as in Theorem 2.2, then Eq. (2.2) admits at least one w-periodic solution in Xg.

Corollary 2.6. Let F be defined by (2.6) and assume there exists a constant ¢ > 0 such that p, (t,x) = c or u,(t,x) < —c forall t
and x. Then there exists 1, > 0 such that the problem

X' (t) = A(t,x(£))x(t) — AH(t,x(t), x(t — T1),...,X(t — Tm))

has at least one w-periodic solution for || < A..

Note that if F is C' with respect to X,y,,...,y,,, then the previous corollary may be deduced from the implicit function
theorem.

The same function F provides very elementary non-existence results, for example:

Proposition 2.1. Let F be defined by (2.6) and assume that

IX-HEX V1Y) < (60X
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or
IX-HEX Y1, Ym) > W (X))

for all x # 0 and y; such that |y;| < |x| for j=1...,m, then the problem has no nontrivial w-periodic solutions.

Proof. Suppose that x is a nontrivial m-periodic solution and the first condition holds, then
X(F) - X'(£) = —x(£) - A(E,X(O)X(E) + AX(£) - H(E,X(0),X(E = T1),... X(t — Tn))-

Now consider 6(t) = @ and let tpqx be the point where the absolute maximum of 0 is achieved. Then |X(tme — Tj)| < [X(Emax)|
for all j and

0= 0/(tmax) = X(tmax) - X (tmax)

< =l (tmamx(tmax)ﬂx(tmux)‘z + (tmax7x(tmax))|x(tmw<)|2 =0,

a contradiction. O

Corollary 2.7. Let F be defined by (2.6) and assume that

. x-H(t,x,yq,...,
liminf (&, y12 Yin)
=0 3312 x|

=C

uniformly on t for some positive constant c. Then there exists A* > 0 such that the problem
X'(t) = A(t, x()x(t) — 2H(E,X(t),X(t — T1),...,X(t — Tm))

has no nontrivial w-periodic solutions for /. > ).

Example 2.8. In [29], the following system was studied:
Xi(t) = ai(£)g;(x(t)) — 2bi(O)fi (x(t — T(1))). (2.8)

Here, we shall assume that a;, b;, 7 : R — R are continuous, positive and w-periodic and A > 0. Further, assume that

1. fi(x) > O for all x 0 and all i.
2. g is bounded, g(x) # 0 for x # 0 and degy(g,B1(0),0) # 0.

3.
im%%) _ 0 < liminf &)
x—0 ‘X‘ x—0.g;(x)>0 |X|
and
limfi(x) =0 < liminf g;(x)
Il o0 Il —0c.g;(x)>0
for all i.

Then there exists 2* > 0 such that the problem has at least two nontrivial solutions for 1 > A"

In this case the proof does not follow from Theorem 2.2, but we may apply a direct argument using Theorem 2.1. In first
place, fix an arbitrary s such that s > (a;),,0x(81)max + 1 for all i. If x € X is such that x{(t) = o[a;(t)g;(x(t)) — b;(£)fi(x(t — T(1)))]
for some o€ (0,1), then X/(f)<s—1 and hence (X;),ox < (Xi)min +S— 1. In particular, if x;(¢) = ||xil|, =S, then
1< X(&—71(8)| < s and thus, if 2 is large enough, then it is seen that x{(¢) > 0, a contradiction. Moreover, in this case
$i(x) = a;g;(x) — 2bifi(x) so it is clear that degg(¢, Bs(0),0) = 0. On the other hand, if ||x;||,, =1 < s, then
8i(x(9)) fix(¢€ = 1(9) [x(¢ = 7(9)]

x(9)] (I C9DI (9]

as r — 0, a contradiction. By the same token, if ||x;]|, =R > s, then
a;(€)gi(x(£)) = Abi(&)fi(x(¢ — 1())) — 0

as R — oo, a contradiction. Furthermore, observe that
degp (¢, B;(0),0) = degy(¢, Br(0), 0) = deg(g, B:1(0),0) # 0,

a;(¢) = bi(9) -0
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and we conclude that the problem has at least one solution in each of the following sets:
Ui={xeX:r<|x|,<s}
Ul = {xeX:s<|x|, <R}
Next, consider the following system:
X' (t) = —B(t) + H(t,x(t),X(t — T1),...,X(t — Tm)), (2.9)

with B: R — R" continuous and w-periodic, B;(t) > 0 for all t and H : R x R"™! — (0, +00)" continuous and w-periodic in t.

Theorem 2.9. Let p,0 € R" satisfy p; < o; fori=1,...,n and Q := I} ;(p;, 7;). Assume that
[Hi(t,r,r',...,r™) — Bi(t)].[Hi(t,s,s',....s™) = Bi(t)] <0 (2.10)

forallte R, i=1,...,nand for any r,r,s,s € Qwith r; = p;, s;i = 07;, ré < p; + 0B;, s{ > g;— wB; forj=1,...,m. Then (2.9)
admits at least one w-periodic solution in Xo.

Proof. It suffices to apply the continuation theorem, with
DO(x)(t) := —B(t) + H(t,x(t), X(t—T1),...,X(t —Tm)).

If x'(t) = A®(x)(t) for some e (0,1), then x{(t) > B;(t) for all t and all i. Thus, for 0 <t; <t; < w we deduce that
Xi(t2) —x(t1) > —wB; and, by periodicity, that (%), < Xi)m, +®Bi. If x(t)eQ for all t and, for example,
Xi(1) = (Xi)nax = 0i» then x}(n) = 0 and thus

Hi(n.x(1),x(n — t1),...,x(N — Tm)) — Bi(1) = 0.

This contradicts inequality (2.10) with s = x(1),$ = x(1 — T;). A similar conclusion holds if we suppose that (x;),,,, = p; for
some i. Furthermore, as

‘l w _
400 =5 [ Hitx..0d-B
it follows that

Pi(x)p;(y) <0

for all x,y € Q such that x; = r; and y; = s;. This implies that deg(¢,Q,0) = 0 and the proof is complete. O
It is worthy to observe that, in particular, condition (2.10) implies that, for each t, over two opposite faces of the domain
Q, the field —B(t) + H(t,x, ..., x) is both inwardly or outwardly pointing.

Remark 2.10.

1. The same result holds for the “mirror” equation
X (t) = B(t) — H(t, x(t), X(t — T1),..., X(t = Tm)).
In particular, the theorem can be applied to models (1.1), (1.2) and (1.3). For example, take (1.1) and substitute
y;(t) = In(x;(t)) to obtain the system
n
Vi) = cit) =y _ay(t)en .
=1

Fix o; such that
ci(t) < ag(t)ei o
for all t, then (1.1) has at least one w-periodic positive solution, provided that

ci(t) > > ay(t)e”

j#i

for all t. However, in this case a direct analysis allows to obtain a more precise sufficient condition. Indeed, it was proven in
[34] that the system has a positive w-periodic solution, provided that the linear system

n
Y @Gx=¢ i=1,....n
=

has a positive solution.
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Also, we may consider system (1.7) where g : R" — R is a continuously differentiable function and f : R x R" — R" is con-
tinuous and w-periodic in its first coordinate. Here, we shall assume that 7 is a constant. For convenience, we define the func-
tions y : R x R" — R" and ¥ : R" — R" by

W (t,x) = Vgx) + f(t,X)

0 = 90 - Vel + o [ fewde

Theorem 2.11. Assume that |f(t,x)| < c|x| + d for some constants ¢,d with 0 < ¢ < Furthermore, assume there exists an

open Q C Br(0) C R" for some R > 0 large enough such that

(l+n

1. 0 ¢ co(y([0,w] x B,(x))) for all x € 5Q, where co(.«) denotes the convex hull of a set o/ C R" and p := ;%R
2. deg(\¥,Q,0) # 0.

Then system (1.7) has at least one w-periodic solution.

Proof. We shall apply the continuation theorem over the set
U={xeX:|x-X|| <p, xeQ}

Thus, it suffices to prove that the w-periodic solutions of the equation

X'(t) = A(Vg(x(t)) + f(t,x(t - 1))
with 4 € (0,1) and X € cl(Q) satisfy:

1 x=x|. <p
2. X ¢ 0Q.

Multiply by x'(t) the previous equation and integrate to obtain

/ \x’(t)|2dt</ (c|x(t—r)|+d)\x’(t)|dt<c/ IX(t - T) — XX (O)]dE + (d + RN X ]2
0 0 0

., o _
<2 + (d+ RN X o

Hence,
27 PRY
¥l < 5= (d + R,
Moreover, as
_ w
1 =%l < =—IX,
we deduce that
_ w7
X—X d+clx
ot =% < 5 (d+c[x]).

In other words, if [x| < R with R large enough, then it follows that ||x — X|| . < p. Next, suppose that X € 9Q and integrate the
equation to obtain:

/Ow [Vg(x(t)) + f(t,x(t — 7))]dt = 0.
By periodicity,
[ gttt ) + e xe - e <o

that is: ["y(t,x(t — T))dt = 0. As x(t — T) € B,(X) for all ¢, from the first condition we conclude that 0 ¢ co(ImI'), where
I'(t) = y(t,x(t — 1)). This contradicts the mean value theorem for vector-valued integrals. O
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Example 2.12. In [15, 1999], the following result was proven. Suppose there are constants a,b,c,d such that
a>c>0,co<1and, for all (¢,x) € [0,w] x R,

1. x-Vg(x) = ajx|> - b.
2. [f(t,x)| < clx| +d.

Then (1.7) has at least one w-periodic solution. This result can be easily obtained as a corollary of our methods. Indeed, in
this case

X Y(t,x) > (@—O)xP —dx| —b > %mz >0

for |x| > 0. This implies that ¥ has degree equal to 1 over large balls centered at 0.
Note that our results yields in fact a generalization of the result in [15], since the smallness condition on c can be relaxed.
Furthermore Theorem 2.11 also covers some cases not contained in [15]. For example, assume that Vg is sublinear and that

f(t,x) = c(t)x + h(t,x) where c(t) is continuous and w-periodic such that 0 < |c(t)| < ﬁ for all t and h is continuous and w-

periodic in t with "¢

— 0 uniformly on t as |x| — co. Then the problem has at least one w-periodic solution.

Moreover, Theorem 2.11 provides examples of multiple solutions. For simplicity, assume that |f(t, x)| < d for all t and all x,
then the previous theorem is valid for arbitrary R > 0 and p = dw'/2. Then, we may consider the radial case Vg(x) = n(|x|)x,
where 7 : [0, +00) — R is continuous, which corresponds to g(x) = 0(|x|), with 0(u) := [; sn(s)ds. From the theorem, existence
of w-periodic solutions is guaranteed if there exist intervals I= (a; —p,a; +p) and J=(a; —p,a, +p) with
a, — p > a; + p > 2p such that n(r)n(s) < 0 for all r € I and s € J, provided that #(a;)a; > d and that n is odd. Indeed, in this
case we may take Q = By, (0) \ cl(B,, (0)): the first condition is fulfilled since the angle between Vg(z) and Vg(x) is less than ©
for all ze B,(x) and |x| = a;; the second condition follows from the fact that deg(Vg,Bg(0),0) = [sgn(n(a;))]" = sgn(n(a;))

(since n is odd), and hence deg(Vg,Q,0) = sgn(n(ax)) — sgn(n(a1)) # 0. In particular, if # oscillates, and oscillations are ‘large
enough’, then the problem has infinitely many solutions. This is the case, for example, of the system

X' (t) = cos(|x))x + f(t,x(t — 1))

with f continuous and w-periodic in t such that |f(t,x)| < 1 forallt e R,xe R". If w < 7;—2 and n is odd, then the system has
infinitely many w-periodic solutions. Indeed, in the previous situation it suffices to take a; = kn, a; = (k+ 1)m: if k € N is
sufficiently large, then there exists at least one w-periodic solution x such that kn < x| < (k+ 1)7.
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