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a b s t r a c t

For some abstract classes of nonlinear non-autonomous systems with variable and
state-dependent delays existence, non-existence and multiplicity of periodic solutions
are discussed. To illustrate the efficiency of the method, we obtain some well-known
results for applied systems as corollaries of our existence theorems.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Lotka–Volterra delayed systems are extensively used to model prey-predator population dynamics. For example, the
system

x0iðtÞ ¼ xiðtÞ ciðtÞ �
Xn

j¼1

aijðtÞxjðt � siðtÞÞ
" #

ð1:1Þ

was under study in [9,19,21,26,28,34]; Gilpin-Ayala model

x0iðtÞ ¼ xiðtÞ ciðtÞ �
Xn

j¼1

aijðtÞx
hj

j ðt � sijðtÞÞ
" #

ð1:2Þ

in [8,9]; logarithmic Lotka–Volterra

x0iðtÞ ¼ xiðtÞ aiðtÞ �
Xn

j

bijðtÞ ln xjðtÞ �m
n

j
cijðtÞ ln xjðt � sijðtÞÞ

" #
ð1:3Þ
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in [43]; Hopfield neuron network models

x0iðtÞ ¼ �aiðtÞxiðtÞ þ
Xn

j

aijðtÞfijðxðtÞÞ þ
Xn

j

bijðtÞfijðxðt � sijðtÞÞÞ ð1:4Þ

were studied in [7,13,16,25,29,44].
In [15,30,36,39] the following general models for an n-dimensional vector xðtÞ ¼ ½x1ðtÞ; x2ðtÞ; . . . ; xnðtÞ�T were under

investigation

x0ðtÞ ¼ AðtÞxðtÞ þ kf ðt; xðt � sðtÞÞÞ; ð1:5Þ

x0ðtÞ ¼ Aðt; xðtÞÞxðtÞ þ f ðt; xðt � sÞÞ ð1:6Þ

and

x0ðtÞ ¼ rgðxðtÞÞ þ f ðt; xðt � sÞÞ: ð1:7Þ

Here, Aðt; xÞ is a continuous n� n matrix, f ðt; xÞ is a continuous n-dimensional vector function and gðxÞ is a C1 scalar function.
There have been various approaches developed to examine the existence of periodic solutions for delay differential equa-

tions since the first study published by Browder in 1962, such as fixed point theorems, Hopf bifurcation theorems, Poincaré–
Bendixson theorems, Lyapunov functions, the spectral theory of matrices, Morse theory, Galerkin methods and coincidence
degree theory (see, for example, [1–4,10,11,27]). Some interesting results were recently obtained in
[17,22,24,32,33,39,40,42]. Multiple systems of population dynamics were recently studied in [3,5,6,18,20,23,35,37,38,41].

Motivated by these models, we introduce and study the most general system and discuss its applications. Some new and
interesting sufficient conditions are obtained to guarantee the existence, non-existence and multiplicity of periodic
solutions.

2. Continuation theorem for the abstract model and applications

Let

X :¼ fx 2 CðR;RnÞ : xðt þxÞ ¼ xðtÞ for all tg

and consider the functional differential equation

x0ðtÞ ¼ UðxÞðtÞ; ð2:1Þ

where U : X ! X is continuous and maps bounded sets into bounded sets. For x 2 X, its absolute maximum and minimum
values and its average 1

x

Rx
0 xðtÞdt are denoted by xmax; xmin and x, respectively. The euclidian norm of a vector y 2 Rn shall

be denoted by jyj. Let U be an open and bounded subset of X and denote its closure by clðUÞ. If K : clðUÞ ! X is compact with
Ku – u for u 2 @U, then the Leray–Schauder degree of the Fredholm operator F ¼ Id�K at 0 shall be denoted by
degLSðF;U;0Þ (for a detailed definition and properties of the degree see for example [27]). Finally, we identify the subset
of constant functions of X with Rn; thus, a vector c 2 Rn may be interpreted as an element of X so the function
/ : Rn ! Rn given by

/ðcÞ :¼ UðcÞ ¼ 1
x

Z x

0
UðcÞðtÞdt

is well defined. The following continuation theorem will be the key for further studies. The proof follows essentially the same
outline of analogous results (see e. g. [10]) so it is omitted.

Theorem 2.1. Assume there exists a bounded open subset U � X such that

1. If x0ðtÞ ¼ kUðxÞðtÞ for some x 2 clðUÞ and 0 < k < 1, then x 2 U.
2. /ðxÞ – 0 for x 2 @U \ Rn.
3. degBð/;U \ Rn;0Þ – 0 (degB stands for the Brouwer degree).

Then (2.1) has at least one solution x 2 clðUÞ.
Consider the system

x0ðtÞ ¼ Fðt; xðtÞ; xðt � s1Þ; . . . ; xðt � smÞÞ ð2:2Þ

with F : R� Rnðmþ1Þ ! Rn continuous and x-periodic in t and sj ¼ sjðt; xðtÞÞ, with sj : R� Rn ! R continuous, positive and x-
periodic in t. For convenience, given an arbitrary bounded open set X � Rn, we define

XX :¼ fx 2 X : xðtÞ 2 X for all tg:
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Assume, for simplicity, that X is smooth, but a more general version of the result can be also obtained. The Euler character-
istic of X shall be denoted by vðXÞ and the outer normal vector of X at x shall be denoted by mx.

Theorem 2.2. Let X � Rn be smooth, open and bounded with vðXÞ– 0 and assume that

mx � Fðt; x; y1; . . . ; ymÞ < 0 ð2:3Þ

or

mx � Fðt; x; y1; . . . ; ymÞ > 0 ð2:4Þ

for all t, x 2 @X and yj 2 X such that

jyj � xj 6 smax sup
t2½0;x�;yk ;z2X

jFðt; z; y1; . . . ; ymÞj:

Then (2.2) admits at least one x-periodic solution in XX.

Proof. Let x 2 clðXXÞ satisfy x0ðtÞ ¼ kFðt; xðtÞ; xðt � s1Þ; . . . ; xðt � smÞÞ for some k 2 ð0;1Þ. If xðt0Þ 2 @X for some t0 2 ½0;x�, then
x0ðt0Þ is tangent to @X at the point xðt0Þ, that is

mxðt0Þ � kFðt0; xðt0Þ; xðt0 � s1Þ; . . . ; xðt0 � smÞÞ ¼ mxðt0Þ � x0ðt0Þ ¼ 0:

On the other hand, for all j it is seen that

jxðt0Þ � xðt0 � sjÞj ¼
Z t0

t0�sj

x0ðtÞdt

�����
����� 6 k

Z t0

t0�sj

jFðt; xðtÞ; xðt � s1Þ; . . . ; xðt � smÞÞjdt

< smax sup
t2½0;x�;x;xk2X

jFðt; x; y1; . . . ; ymÞj;

so using (2.3) or (2.4) a contradiction is obtained, thus, x 2 XX. Finally, for x 2 Rn observe that

/ðxÞ ¼ 1
x

Z x

0
Fðt; x; . . . ; xÞdt

and hence mx � /ðxÞ – 0 for all x 2 @X. This implies that / or �/ is homotopic to the outer normal vector field, and the con-
clusion follows from a theorem by Hopf [12], which establishes that the degree of the outer normal is equal to vðXÞ. h

Remark 2.3. The preceding theorem is rather general but it can be applied to specific situations in order to obtain more pre-
cise results. In particular, if X is homeomorphic to a ball then the condition on the Euler characteristic is automatically ful-
filled since vðXÞ ¼ 1; this is the case in [11], where it was assumed that X is convex. However, the general version allows X to
have holes, and thus can be also adapted to deal with singular problems, as shown in the following example.

Example 2.4. Consider the system

w0ðtÞ ¼ aðt; xðt � sÞÞ xðtÞ
jxðtÞjn

þ bðt; xðt � sÞÞ xðtÞ � v
jxðtÞ � v jm

:¼ Fðt; xðtÞ; xðt � sÞÞ ð2:5Þ

where v 2 Rn n f0g is a fixed vector, a; b : R� Rn ! R are continuous, bounded and x-periodic in the first coordinate, s > 0
and n;m > 1. Assume:

1. There exists R > jvj such that aðt; xÞ > 0 and bðt; xÞ > 0 for all t and all x such that jxj ¼ R.
2. aðt;0Þ < 0 and bðt;vÞ < 0 for all t.

Then (2.5) admits at least one x-periodic solution, provided that s is small enough.
Indeed, we may consider X :¼ BRð0Þ n ðclðBrð0ÞÞ [ clðBrðvÞÞÞ for some r < jv j

2 such that

aðt; xÞ
rn�2 þ bðt; xÞ ðx� vÞ � x

jx� v jm
< 0 for all t and jxj ¼ r;

aðt; xÞ ðx� vÞ � x
jxjn

þ bðt; xÞ
rm�2 < 0 for all t and jx� v j ¼ r:

Observe that

Fðt; x; yÞj j 6 kak1r1�n þ kbk1r1�m :¼ MðrÞ
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and Fðt; x; xÞ � x > 0 for jxj ¼ R and all t, so taking s small enough we deduce:

Fðt; x; yÞ � x > 0 for all t; jxj ¼ R and R� sMðrÞ 6 jyj 6 R:

Moreover, letting s to be smaller if necessary, it is verified that

aðt; yÞ
rn�2 þ bðt; yÞ ðx� vÞ � x

jx� v jm
< 0 for all t; jxj ¼ r and jy� xj < sMðrÞ;

aðt; yÞ ðx� vÞ � x
jxjn

þ bðt; yÞ
rm�2 < 0 for all t; jx� v j ¼ r and jy� xj < sMðrÞ:

Finally, note that vðXÞ ¼ 1� 2ð�1Þn – 0. Thus, all the conditions of Theorem 2.2 are satisfied. It is worth noticing that,
when n is odd, the same approach can be also applied to a system with an odd number of singularities.

Concerning the nonlinearity F, a special case of remarkable interest is

Fðt; x; y1; . . . ; ymÞ ¼ Aðt; xÞx� kHðt; x; y1; . . . ; ymÞ ð2:6Þ

with A : R� Rn ! Rn�n continuous and x-periodic and H : R� Rnðmþ1Þ ! Rn continuous and x-periodic in its first coordinate
and k > 0. Consequently, existence results for (1.4), (1.5) and (1.6) are obtained.

In [31] a planar system was firstly introduced and studied

x01ðtÞ ¼ �a1ðtÞx1ðtÞ þ b1ðtÞf1ðx1ðt � s11ðtÞÞ; x2ðt � s12ðtÞÞÞ
x02ðtÞ ¼ �a2ðtÞx2ðtÞ þ b2ðtÞf2ðx1ðt � s21ðtÞÞ; x2ðt � s22ðtÞÞÞ:

ð2:7Þ

The following result was obtained in [14], as a corollary of a more general existence theorem: if ai; bi; sij > 0 are continuous
and x-periodic and fi 2 CðR2;RÞ is bounded, then system (2.7) has at least one periodic solution [14, Corollary 2.1]. This fact
follows trivially from Theorem 2.2. Indeed, we may set

AðtÞ :¼
�a1ðtÞ 0

0 �a2ðtÞ

� �
; Hðt; y11; y12; y21; y22Þ :¼

�b1ðtÞf1ðy11; y12Þ
�b2ðtÞf2ðy21; y22Þ

� �
:

If we take X ¼ BRð0Þ � Rn, then mx ¼ x
jxj for all x 2 @X and hence

mx � Fðt; x; y11; . . . ; y22Þ ¼ �
1
jxj a1ðtÞx2

1 þ a2ðtÞx2
2 � b1ðtÞx1f1ðy11; y12Þ � b2ðtÞx2f2ðy21; y22Þ

� �
:

As a1ðtÞ; a2ðtÞ > 0 for all t and f1; f2 are bounded, it is seen that (2.3) is fulfilled when R is large enough. We remark that, in this
particular case, a simpler proof can be given using Schauder Theorem which, compared with the degree method, is usually
more restrictive, since it is required to find a convex bounded and closed subset C that is invariant for the fixed point
operator, i.e., TðCÞ � C. Whereas using degree, the homotopy invariance is a very strong tool, since in many situations the
problem is reduced to a degree computation of a finite-dimensional mapping. More generally, using the fact that
x � AðtÞx ¼ x � Aðt;xÞþAðt;xÞT

2 x for all t and all x, we obtain:

Corollary 2.5. Let F be defined by (2.6), X ¼ BRð0Þ � Rn, and denote by l1ðt; xÞ 6 . . . 6 lnðt; xÞ the eigenvalues of the symmetric
matrix Aðt;xÞþAðt;xÞT

2 . If

kx � Hðt; x; y1; . . . ; ymÞ < l1ðt; xÞR
2

or

kx � Hðt; x; y1; . . . ; ymÞ > lnðt; xÞR
2

for all t 2 R; x 2 @BRð0Þ and y1; . . . ; ym as in Theorem 2.2, then Eq. (2.2) admits at least one x-periodic solution in XX.

Corollary 2.6. Let F be defined by (2.6) and assume there exists a constant c > 0 such that l1ðt; xÞP c or lnðt; xÞ 6 �c for all t
and x. Then there exists k� > 0 such that the problem

x0ðtÞ ¼ Aðt; xðtÞÞxðtÞ � kHðt; xðtÞ; xðt � s1Þ; . . . ; xðt � smÞÞ

has at least one x-periodic solution for jkj < k�.
Note that if F is C1 with respect to x; y1; . . . ; ym, then the previous corollary may be deduced from the implicit function

theorem.
The same function F provides very elementary non-existence results, for example:

Proposition 2.1. Let F be defined by (2.6) and assume that

kx � Hðt; x; y1; . . . ; ymÞ < l1ðt; xÞjxj
2

P. Amster, L. Idels / Commun Nonlinear Sci Numer Simulat 19 (2014) 2974–2982 2977
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or

kx � Hðt; x; y1; . . . ; ymÞ > lnðt; xÞjxj
2

for all x – 0 and yj such that jyjj 6 jxj for j ¼ 1 . . . ;m, then the problem has no nontrivial x-periodic solutions.

Proof. Suppose that x is a nontrivial x-periodic solution and the first condition holds, then

xðtÞ � x0ðtÞ ¼ �xðtÞ � Aðt; xðtÞÞxðtÞ þ kxðtÞ � Hðt; xðtÞ; xðt � s1Þ; . . . ; xðt � smÞÞ:

Now consider hðtÞ ¼ jxðtÞj
2

2 , and let tmax be the point where the absolute maximum of h is achieved. Then jxðtmax � sjÞj 6 jxðtmaxÞj
for all j and

0 ¼ h0ðtmaxÞ ¼ xðtmaxÞ � x0ðtmaxÞ

< �l1ðtmax; xðtmaxÞÞjxðtmaxÞj2 þ l1ðtmax; xðtmaxÞÞjxðtmaxÞj2 ¼ 0;

a contradiction. h

Corollary 2.7. Let F be defined by (2.6) and assume that

lim inf
jxj!1;jyj jPjxj

x � Hðt; x; y1; . . . ; ymÞ
jxj2

P c

uniformly on t for some positive constant c. Then there exists k� > 0 such that the problem

x0ðtÞ ¼ Aðt; xðtÞÞxðtÞ � kHðt; xðtÞ; xðt � s1Þ; . . . ; xðt � smÞÞ

has no nontrivial x-periodic solutions for k > k�.

Example 2.8. In [29], the following system was studied:

x0iðtÞ ¼ aiðtÞgiðxðtÞÞ � kbiðtÞfiðxðt � sðtÞÞÞ: ð2:8Þ

Here, we shall assume that ai; bi; s : R! R are continuous, positive and x-periodic and k > 0. Further, assume that

1. fiðxÞ > 0 for all x – 0 and all i.
2. g is bounded, gðxÞ– 0 for x – 0 and degBðg; B1ð0Þ;0Þ– 0.
3.

lim
x!0

fiðxÞ
jxj ¼ 0 < lim inf

x!0;giðxÞ>0

giðxÞ
jxj

and

lim
jxj!1

fiðxÞ ¼ 0 < lim inf
jxj!1;giðxÞ>0

giðxÞ

for all i.

Then there exists k� > 0 such that the problem has at least two nontrivial solutions for k > k�.

In this case the proof does not follow from Theorem 2.2, but we may apply a direct argument using Theorem 2.1. In first
place, fix an arbitrary s such that s > ðaiÞmaxðgiÞmax þ 1 for all i. If x 2 X is such that x0iðtÞ ¼ r aiðtÞgiðxðtÞÞ � kbiðtÞfiðxðt � sðtÞÞÞ½ �
for some r 2 ð0;1Þ, then x0iðtÞ < s� 1 and hence ðxiÞmax < ðxiÞmin þ s� 1. In particular, if xiðnÞ ¼ kxik1 ¼ s, then
1 6 jxiðn� sðnÞÞj 6 s and thus, if k is large enough, then it is seen that x0iðnÞ – 0, a contradiction. Moreover, in this case

/iðxÞ ¼ aigiðxÞ � kbifiðxÞ so it is clear that degBð/;Bsð0Þ;0Þ ¼ 0. On the other hand, if kxik1 ¼ r < s, then

aiðnÞ
giðxðnÞÞ
jxðnÞj ¼ kbiðnÞ

fiðxðn� sðnÞÞÞ
jxðn� sðnÞÞj

jxðn� sðnÞj
jxðnÞj ! 0

as r ! 0, a contradiction. By the same token, if kxik1 ¼ R > s, then

aiðnÞgiðxðnÞÞ ¼ kbiðnÞfiðxðn� sðnÞÞÞ ! 0

as R!1, a contradiction. Furthermore, observe that

degBð/;Brð0Þ;0Þ ¼ degBð/;BRð0Þ;0Þ ¼ degðg; B1ð0Þ;0Þ – 0;
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and we conclude that the problem has at least one solution in each of the following sets:

Us
r :¼ fx 2 X : r < kxk1 < sg

UR
s :¼ fx 2 X : s < kxk1 < Rg:

Next, consider the following system:

x0ðtÞ ¼ �BðtÞ þ Hðt; xðtÞ; xðt � s1Þ; . . . ; xðt � smÞÞ; ð2:9Þ

with B : R! Rn continuous and x-periodic, BiðtÞ > 0 for all t and H : R� Rnðmþ1Þ ! ð0;þ1Þn continuous and x-periodic in t.

Theorem 2.9. Let q;r 2 Rn satisfy qi < ri for i ¼ 1; . . . ;n and X :¼ Pn
i¼1ðqi;riÞ. Assume that

Hiðt; r; r1; . . . ; rmÞ � BiðtÞ
� �

: Hiðt; s; s1; . . . ; smÞ � BiðtÞ
� �

< 0 ð2:10Þ

for all t 2 R; i ¼ 1; . . . ;n and for any r; rj; s; sj 2 X with ri ¼ qi; si ¼ ri, rj
i 6 qi þxBi; sj

i P ri �xBi for j ¼ 1; . . . ;m. Then (2.9)
admits at least one x-periodic solution in XX.

Proof. It suffices to apply the continuation theorem, with

UðxÞðtÞ :¼ �BðtÞ þ Hðt; xðtÞ; xðt � s1Þ; . . . ; xðt � smÞÞ:

If x0ðtÞ ¼ kUðxÞðtÞ for some k 2 ð0;1Þ, then x0iðtÞ > BiðtÞ for all t and all i. Thus, for 0 6 t1 6 t2 6 x we deduce that
xiðt2Þ � xiðt1Þ > �xBi and, by periodicity, that ðxiÞmax < ðxiÞmin þxBi. If xðtÞ 2 X for all t and, for example,
xiðgÞ ¼ ðxiÞmax ¼ ri, then x0iðgÞ ¼ 0 and thus

Hiðg; xðgÞ; xðg� s1Þ; . . . ; xðg� smÞÞ � BiðgÞ ¼ 0:

This contradicts inequality (2.10) with s ¼ xðgÞ; sj ¼ xðg� sjÞ. A similar conclusion holds if we suppose that ðxiÞmin ¼ qi for
some i. Furthermore, as

/iðxÞ ¼
1
x

Z x

0
Hiðt; x; . . . ; xÞdt � Bi

it follows that

/iðxÞ/iðyÞ < 0

for all x; y 2 X such that xi ¼ ri and yi ¼ si. This implies that degð/;X;0Þ– 0 and the proof is complete. h

It is worthy to observe that, in particular, condition (2.10) implies that, for each t, over two opposite faces of the domain
X, the field �BðtÞ þ Hðt; x; . . . ; xÞ is both inwardly or outwardly pointing.

Remark 2.10.

1. The same result holds for the ‘‘mirror’’ equation

x0ðtÞ ¼ BðtÞ � Hðt; xðtÞ; xðt � s1Þ; . . . ; xðt � smÞÞ:

In particular, the theorem can be applied to models (1.1), (1.2) and (1.3). For example, take (1.1) and substitute
yiðtÞ ¼ lnðxiðtÞÞ to obtain the system

y0iðtÞ ¼ ciðtÞ �
Xn

j¼1

aijðtÞeyjðt�siÞ:

Fix ri such that

ciðtÞ < aiiðtÞeri�½ci �x

for all t, then (1.1) has at least one x-periodic positive solution, provided that

ciðtÞ >
X
j–i

aijðtÞerj

for all t. However, in this case a direct analysis allows to obtain a more precise sufficient condition. Indeed, it was proven in
[34] that the system has a positive x-periodic solution, provided that the linear system

Xn

j¼1

aij xj ¼ ci i ¼ 1; . . . ;n

has a positive solution.

P. Amster, L. Idels / Commun Nonlinear Sci Numer Simulat 19 (2014) 2974–2982 2979
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Also, we may consider system (1.7) where g : Rn ! R is a continuously differentiable function and f : R� Rn ! Rn is con-
tinuous and x-periodic in its first coordinate. Here, we shall assume that s is a constant. For convenience, we define the func-
tions w : R� Rn ! Rn and W : Rn ! Rn by

wðt; xÞ :¼ rgðxÞ þ f ðt; xÞ

and

WðxÞ :¼ wð�; xÞ ¼ rgðxÞ þ 1
x

Z x

0
f ðt; xÞdt:

Theorem 2.11. Assume that jf ðt; xÞj 6 cjxj þ d for some constants c; d with 0 < c < 2p
xð1þpÞ. Furthermore, assume there exists an

open X � BRð0Þ � Rn for some R > 0 large enough such that

1. 0 R coðwð½0;x� � BqðxÞÞÞ for all x 2 @X, where coðAÞ denotes the convex hull of a set A � Rn and q :¼ pxR
2p�cx.

2. degðW;X;0Þ – 0.

Then system (1.7) has at least one x-periodic solution.

Proof. We shall apply the continuation theorem over the set

U :¼ fx 2 X : kx� xk1 < q; x 2 Xg:

Thus, it suffices to prove that the x-periodic solutions of the equation

x0ðtÞ ¼ kðrgðxðtÞÞ þ f ðt; xðt � sÞÞ

with k 2 ð0;1Þ and x 2 clðXÞ satisfy:

1. kx� xk1 < q.
2. x R @X.

Multiply by x0ðtÞ the previous equation and integrate to obtain

Z x

0
jx0ðtÞj2 dt <

Z x

0
ðcjxðt � sÞj þ dÞjx0ðtÞjdt 6 c

Z x

0
jxðt � sÞ � xj:jx0ðtÞjdt þ ðdþ cjxjÞx1=2kx0kL2

6
cx
2p
kx0k2

L2 þ ðdþ cjxjÞx1=2kx0kL2 :

Hence,

kx0kL2 <
2p

2p� cx
ðdþ cjxjÞx1=2:

Moreover, as

kx� xk1 6
x1=2

2
kx0kL2 ;

we deduce that

kx� xk1 <
xp

2p� cx
ðdþ cjxjÞ:

In other words, if jxj 6 R with R large enough, then it follows that kx� xk1 < q. Next, suppose that x 2 @X and integrate the
equation to obtain:Z x

0
rgðxðtÞÞ þ f ðt; xðt � sÞÞ½ �dt ¼ 0:

By periodicity,Z x

0
rgðxðt � sÞÞ þ f ðt; xðt � sÞÞ½ �dt ¼ 0;

that is:
Rx

0 wðt; xðt � sÞÞdt ¼ 0. As xðt � sÞ 2 BqðxÞ for all t, from the first condition we conclude that 0 R coðImCÞ, where
CðtÞ ¼ wðt; xðt � sÞÞ. This contradicts the mean value theorem for vector-valued integrals. h
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Example 2.12. In [15, 1999], the following result was proven. Suppose there are constants a; b; c; d such that
a > c > 0; cx < 1 and, for all ðt; xÞ 2 ½0;x� � Rn,

1. x � rgðxÞP ajxj2 � b.
2. jf ðt; xÞj 6 cjxj þ d.

Then (1.7) has at least one x-periodic solution. This result can be easily obtained as a corollary of our methods. Indeed, in
this case

x � wðt; xÞ > ða� cÞjxj2 � djxj � b >
a� c

2
jxj2 > 0

for jxj � 0. This implies that W has degree equal to 1 over large balls centered at 0.
Note that our results yields in fact a generalization of the result in [15], since the smallness condition on c can be relaxed.

Furthermore Theorem 2.11 also covers some cases not contained in [15]. For example, assume that rg is sublinear and that
f ðt; xÞ ¼ cðtÞxþ hðt; xÞwhere cðtÞ is continuous and x-periodic such that 0 < jcðtÞj < 2p

xð1þpÞ for all t and h is continuous and x-

periodic in t with hðt;xÞ
jxj ! 0 uniformly on t as jxj ! 1. Then the problem has at least one x-periodic solution.

Moreover, Theorem 2.11 provides examples of multiple solutions. For simplicity, assume that jf ðt; xÞj 6 d for all t and all x,
then the previous theorem is valid for arbitrary R > 0 and q ¼ dx1=2. Then, we may consider the radial case rgðxÞ ¼ gðjxjÞx,
where g : ½0;þ1Þ ! R is continuous, which corresponds to gðxÞ ¼ hðjxjÞ, with hðuÞ :¼

R u
0 sgðsÞds. From the theorem, existence

of x-periodic solutions is guaranteed if there exist intervals I ¼ ða1 � q; a1 þ qÞ and J ¼ ða2 � q; a2 þ qÞ with
a2 � q > a1 þ q > 2q such that gðrÞgðsÞ < 0 for all r 2 I and s 2 J, provided that gðajÞaj � d and that n is odd. Indeed, in this
case we may take X ¼ Ba2 ð0Þ n clðBa1 ð0ÞÞ: the first condition is fulfilled since the angle betweenrgðzÞ andrgðxÞ is less than p
for all z 2 BqðxÞ and jxj ¼ aj; the second condition follows from the fact that degðrg;Baj

ð0Þ;0Þ ¼ ½sgnðgðajÞÞ�n ¼ sgnðgðajÞÞ
(since n is odd), and hence degðrg;X;0Þ ¼ sgnðgða2ÞÞ � sgnðgða1ÞÞ– 0. In particular, if g oscillates, and oscillations are ‘large
enough’, then the problem has infinitely many solutions. This is the case, for example, of the system

x0ðtÞ ¼ cosðjxjÞxþ f ðt; xðt � sÞÞ

with f continuous and x-periodic in t such that jf ðt; xÞj 6 1 for all t 2 R; x 2 Rn. If x < p2

4 and n is odd, then the system has
infinitely many x-periodic solutions. Indeed, in the previous situation it suffices to take a1 ¼ kp; a2 ¼ ðkþ 1Þp: if k 2 N is
sufficiently large, then there exists at least one x-periodic solution x such that kp < jxj < ðkþ 1Þp.
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