FAMILIES AND UNFOLDINGS OF SINGULAR HOLOMORPHIC LIE ALGEBROIDS

M. CORRÊA ${ }^{1}$, A. MOLINUEVO ${ }^{2}$, AND F. QUALLBRUNN ${ }^{3}$

Abstract

In this paper, we investigate families of singular holomorphic Lie algebroids on complex analytic spaces. We introduce and study a special type of deformation called by unfoldings of Lie algebroids which generalizes the theory due to Suwa for singular holomorphic foliations. We show that there is a one to one correspondence between transversal unfoldings and holomorphic flat connections on a natural Lie algebroid on the bases.

1. Introduction

Definition 1.1. Let \mathscr{A} be a reflexive sheaf of \mathcal{O}_{X}-modules over a complex manifold X, equipped with a \mathcal{O}_{X}-morphism $a: \mathscr{A} \rightarrow T_{X}$. We say that \mathscr{A} is a Lie algebroid of anchor a if there is a \mathbb{C}-bilinear map $\{\cdot, \cdot\}: \mathscr{A} \otimes_{\mathcal{O}_{X}} \mathscr{A} \rightarrow \mathscr{A}$ such that
(a) $\{v, u\}=-\{u, v\}$;
(b) $\{u,\{v, w\}\}+\{v,\{w, u\}\}+\{w,\{u, v\}\}=0$;
(c) $\{g \cdot u, v\}=g \cdot\{u, v\}-a(v)(g) \cdot u$ for all $g \in \mathcal{O}_{X}$ and $u, v \in \mathscr{A}$.

The singular set of \mathscr{A} is defined by

$$
\operatorname{Sing}(\mathscr{A})=\operatorname{Sing}(\operatorname{Coker}(a))
$$

The Lie algebroid $a: \mathscr{A} \rightarrow T_{X}$ induces a holomorphic foliation $\operatorname{Im}(a) \subset T_{X}$.
Definition 1.2. (Pullback of a Lie alebroid) Given a Lie algebroid \mathscr{A} over a variety X and a morphism $f: Y \rightarrow X$ we define an algebroid $f^{\bullet} \mathscr{A}$ over Y. The underlying sheaf of $f^{\bullet} \mathscr{A}$ is defined as the fibered product of the diagram

[^0]The anchor map is the top horizontal map in the above diagram. The Lie algebra structure is induced by restriction of the direct sum bracket in $f^{*} \mathscr{A} \oplus T_{Y}$ to the subsheaf $f^{\bullet} \mathscr{A}$.

Let $f: X \rightarrow S$ be a smooth morphism of analytic spaces and consider $T_{X \mid S}$ the relative tangent sheaf, which is naturally a subsheaf of T_{X}.

Definition 1.3. A family of singular holomorphic Lie algebroids over X is a reflexive sheaf \mathscr{A} of modules over X which is flat over S, equipped with a \mathcal{O}_{X}-morphism $a_{S}: \mathscr{A} \rightarrow T_{X \mid S}$ and an $f^{-1} \mathcal{O}_{S}$-linear map $\{\cdot, \cdot\}_{S}: \mathscr{A} \otimes_{f^{-1} \mathcal{O}_{S}} \mathscr{A} \rightarrow \mathscr{A}$ such that
(a) $\{\alpha, \beta\}=-\{u, v\}$;
(b) $\{\alpha,\{\beta, \gamma\}\}+\{\beta,\{\gamma, \alpha\}\}+\{\gamma,\{\alpha, \beta\}\}=0$;
(c) $\{f \cdot \alpha, \beta\}=f\{\alpha, \beta\}-a(\beta)(f) \cdot \alpha$ for all $f \in \mathcal{O}_{X}$ and $\alpha, \beta \in \mathscr{A}$.

Remark 1.4. Given a family \mathscr{A}_{S} over a smooth morphism $p: X \rightarrow S$ and a morphism $f: R \rightarrow S$ we consider the fibered product

If we take de Lie algebdroid pull-back $f^{\bullet} \mathscr{A}$ we obtain a family over the smooth morphism $p_{R}: X_{R} \rightarrow R$. Observe that, using a covering of X by open sets of the form $Y \times U$ with $U \subseteq S$ an open set, we can give local generators $\frac{\partial}{\partial y_{1}}, \ldots, \frac{\partial}{\partial y_{d}}$ of $T_{X \mid S}$ where y_{1}, \ldots, y_{d} are local coordinates of Y. Using such a covering we obtain a covering for X_{R} of the form $Y \times V$ where $V=f^{-1}(U) \subseteq R$ which give local generators of $T_{X_{R} \mid R}$ of the form $\frac{\partial}{\partial y_{1}}, \ldots, \frac{\partial}{\partial y_{d}}$.

In other words we have $f^{*} T_{X \mid S} \simeq T_{X_{R} \mid R}$, so the underlying sheaf of the algebroid $f^{\bullet} \mathscr{A}$ in this case is just $f^{*} \mathscr{A}$.

Example 1.5. An important caveat to have in mind here is that, contrary to what one may suppose, the algebroid pull-back is not an associative operations. In other words, in general $g^{\bullet} f^{\bullet} \mathscr{A} \not \nexists(f \circ g)^{\bullet} \mathscr{A}$. There is however a canonical morphism $c_{g f}: g^{\bullet} f^{\bullet} \mathscr{A} \rightarrow(f \circ g)^{\bullet} \mathscr{A}$ given by the pull-back property of $(f \circ g)^{\bullet} \mathscr{A}$, but is not an isomorphism in general.

To see an example of this lets take $X=\mathbb{A}^{2}$, and $a: \mathscr{A} \rightarrow T_{\mathbb{A}}^{2}$ to be the inclusion of the sheaf generated by the vector field $v=y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}$. Let $f: \mathbb{A}^{1} \rightarrow \mathbb{A}^{2}$ be the inclusion of the axis $(y=0)$ and $g:(0,0) \rightarrow \mathbb{A}^{1}$ the inclusion of the origin in the axis. It follows from the definition that $f^{\bullet} \mathscr{A}$ is the pull-back in the diagram

so $f^{\bullet} \mathscr{A}=(0)$, and therefore $g^{\bullet} f^{\bullet} \mathscr{A}=(0)$. But the pull-back of the inclusion of the origin in the plane gives $(f g)^{\bullet} \mathscr{A}$ is

so $(f g)^{\bullet} \mathscr{A}$ is an algebdroid over the point consisting of a vector space of dimension 1 with trivial bracket and trivial anchor, i.e.: an abelian one dimensional Lie algebra.

2. Unfolding of Lie algebroids

Definition 2.1. (Unfolding of Lie algebroid) Let $a_{S}:\left(\mathscr{A}_{S},\{\cdot, \cdot\}_{S}\right) \rightarrow T_{X \mid S}$ be a family of holomorphic Lie algebroids over a smooth morphism $\pi: X \rightarrow S$. An unfolding of \mathscr{A}_{S} is a Lie algebroid \mathscr{A} on X with anchor $a: \mathscr{A} \rightarrow T_{X}$ such that
(a) The family of Lie algebroids \mathscr{A}_{S}, is recovered as $\mathscr{A}_{S}=a^{-1}\left(\operatorname{Im}\left(a_{S}\right)\right)$.
(b) $\operatorname{rank}(\mathscr{A})=\operatorname{rank}\left(\mathscr{A}_{S}\right)+\operatorname{dim}(S)$.

An unfolding is defined to be isotrivial if the induced flat family of algebroids is trivial.

Definition 2.2. (Transversal unfolding) Let \mathscr{A} be an unfolding of a family \mathscr{A}_{S}. Let $N \mathscr{A}$ be the cokernel of the map $a: \mathscr{A} \rightarrow T_{X}$ and $N_{S} \mathscr{A}$ be the cokernel of the map $a_{S}: \mathscr{A}_{S} \rightarrow T_{X \mid S}$. Notice that the maps $\mathscr{A}_{S} \rightarrow \mathscr{A}$ and $T_{X \mid S} \rightarrow T_{X}$ induce a $\operatorname{map} N_{S} \mathscr{A} \rightarrow N \mathscr{A}$. The unfolding \mathscr{A} is said to be transversal if the map $N_{S \mathscr{A}} \rightarrow N \mathscr{A}$ is an isomorphism.

Following T. Suwa [6] the third named author has showed the in [4] following result:

Theorem 2.3. Let X be a non-singular variety and \mathscr{F}_{0} a foliation on X. There is, for each scheme S, a 1 to 1 correspondence:

$$
\left\{\begin{array}{r}
\text { isotrivial transversal unfoldings } \\
\text { of } \mathscr{F} \text { parametrized by } S
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{r}
\text { sections } v \in H^{0}\left(S, \Omega_{S}^{1}\right) \otimes \Upsilon\left(\mathscr{F}_{0}\right) \\
\text { s.t.: dv }+\frac{1}{2}[v, v]=0
\end{array}\right\}
$$

There is a similar result in the real case in [5, Theorem 4.6].
We observe that a section $v \in H^{0}\left(S, \Omega_{S}^{1}\right) \otimes \Upsilon\left(\mathscr{F}_{0}\right)$, satisfying $d v+\frac{1}{2}[v, v]=0$, is such that the induced \mathcal{O}_{S}-morphism

$$
\pi_{*} v: \pi_{*} \Upsilon\left(\mathscr{F}_{0}\right) \rightarrow T_{S}
$$

is the anchor map of the Lie algebroid associated to the foliation $\pi_{*} v\left(\pi_{*} \Upsilon\left(\mathscr{F}_{0}\right)\right) \subset$ T_{S}.

In this work we generalize this result for holomorphic Lie algebroids.

Definition 2.4. A differential operator ψ of order ≤ 1 on a quasi-coherent sheaf \mathscr{A} over X is a morphism of \mathbb{C}-modules $\psi: \mathscr{A} \rightarrow \mathscr{A}$ such that for each local section $f \in \mathcal{O}_{X}(U)$ there is a local section $\psi f \in \mathcal{O}_{X}(U)$ such that, if $m_{f}:\left.\left.\mathscr{A}\right|_{U} \rightarrow \mathscr{A}\right|_{U}$ is multiplication by f, then

$$
\left.\psi\right|_{U} \circ m_{f}-\left.m_{f} \circ \psi\right|_{U}=m_{\psi f}
$$

We denote by $D_{X}^{\leq 1}(\mathscr{A})$ the \mathcal{O}_{X}-module of differential operators of order ≤ 1 of \mathscr{A}.
Definition 2.5. Given a differential operator ψ of order ≤ 1 the map $f \mapsto \psi f$ determines a derivation of \mathcal{O}_{X}. This derivation is called the symbol of the operator ψ.

Remark 2.6. For any torsion free sheaf \mathscr{F}, the sheaf $D_{X}^{\leq 1}(\mathscr{F})$ has a natural structure of Lie algebroid, as the commutator of differential operators define a bracket whose anchor is the symbol.

Remark 2.7. The above definition of the sheaf of differential operator differs from that of [3, 16.8]. In loc. cit. a differential operator between two sheaves \mathscr{F} and \mathscr{G} is an element of the sheaf $\mathcal{H o m}_{X}\left(\mathcal{P}_{X}^{1}(\mathscr{F}), \mathscr{G}\right)$, where $\mathcal{P}_{X}^{1}(\mathscr{F})$ is the sheaf of principal parts of order 1 of \mathscr{F} (see $[3,16.7]$). in the case $\mathscr{F}=\mathscr{G}=\mathcal{O}_{X}$ we have a short exact sequence

$$
0 \rightarrow \Omega_{X}^{1} \rightarrow \mathcal{P}_{X}^{1} \rightarrow \mathcal{O}_{X} \rightarrow 0
$$

tensoring with a sheaf \mathscr{F} gives the sequence $0 \rightarrow \Omega_{X}^{1} \otimes \mathscr{F} \rightarrow \mathcal{P}_{X}^{1}(\mathscr{F}) \rightarrow \mathscr{F} \rightarrow 0$. Then applying $\mathcal{H o m}_{X}(-, \mathscr{F})$ gives the exact sequence

$$
0 \rightarrow \mathcal{E} n d(\mathscr{F}) \rightarrow \mathcal{H o m}_{X}\left(\mathcal{P}_{X}^{1}(\mathscr{F}), \mathscr{F}\right) \rightarrow T_{X} \otimes \mathcal{E} n d(\mathscr{F}) \rightarrow \mathcal{E} x t_{X}^{1}(\mathscr{F}, \mathscr{F})
$$

Using the natural map $\mathcal{O}_{X} \rightarrow \mathcal{E} n d(\mathscr{F})$ we have the following diagram

in which the right square is a pull-back diagram.
Lemma 2.8. Let \mathscr{F} be a sheaf over X, and let $f: R \rightarrow S$ be a morphism. Denote by Y the pull-back of X by f and by $f^{*} \mathscr{F}$ the corresponding pull-back of \mathscr{F} as a sheaf over Y. There is a canonical morphism

$$
f^{\bullet} D_{X}^{\leq 1}(\mathscr{F}) \rightarrow D_{Y}^{\leq 1}\left(f^{*} \mathscr{F}\right) .
$$

Proof. To a local section of $f^{\bullet} D_{X}^{\leq 1}(\mathscr{F})$ we can explicitly assign a differential operator on $f^{*} \mathscr{F}$ by the following formula. A local section α of $f^{\bullet} D_{\bar{X}}^{\leq 1}(\mathscr{F})$ is by definition

$$
\alpha=\left(\sum_{i} \psi_{i} \otimes r_{i}, v\right)
$$

where $\psi_{i} \otimes r_{i}$ are local sections of $D_{\bar{X}}^{\leq 1}(\mathscr{F}) \otimes \mathcal{O}_{X_{R}}$ and v is a local section of T_{Y} such that $\sigma\left(\psi_{i} \otimes r_{i}\right)=D f(v)$. Now, given a local section $a=\sum_{i} a_{i} \otimes t_{i}$ of $\mathscr{F} \otimes \mathcal{O}_{Y}$ we define

$$
\alpha(a):=\sum_{i j}\left(\psi_{i}\left(a_{j}\right) \otimes r_{i} t_{j}+a_{j} \otimes v\left(t_{j}\right) s_{i} \in f^{*} \mathscr{F} .\right.
$$

Lemma 2.9. Let \mathscr{F} be such that both \mathscr{F} and $f^{*} \mathscr{F}$ are reflexive sheaves over X and Y respectively, then there is a morphism

$$
\mathcal{H o m}_{Y}\left(\mathcal{P}_{Y}^{1}\left(f^{*} \mathscr{F}\right), f^{*} \mathscr{F}\right) \rightarrow f^{*}\left(\mathcal{H o m}_{X}\left(\mathcal{P}_{X}^{1}(\mathscr{F}), \mathscr{F}\right)\right) .
$$

Proof. By [3] there is always a morphism

$$
\mathcal{H o m}_{Y}\left(\mathcal{P}_{Y}^{1}, \mathcal{O}_{Y}\right) \rightarrow f^{*}\left(\mathcal{H o m}_{X}\left(\mathcal{P}_{X}^{1}, \mathcal{O}_{X}\right)\right)
$$

In the case where \mathscr{F} is locally free we have canonical isomorphisms

$$
\mathcal{H o m}_{Y}\left(\mathcal{P}_{Y}^{1}\left(f^{*} \mathscr{F}\right), f^{*} \mathscr{F}\right) \cong \mathcal{H o m}_{Y}\left(\mathcal{P}_{Y}^{1}\left(f^{*} \mathscr{F}\right), \mathcal{O}_{Y}\right) \otimes f^{*} \mathscr{F}
$$

and

$$
f^{*}\left(\mathcal{H o m}_{X}\left(\mathcal{P}_{X}^{1}, \mathcal{O}_{X}\right)\right) \otimes f^{*} \mathscr{F} \cong f^{*}\left(\mathcal{H o m}_{X}\left(\mathcal{P}_{X}^{1}(\mathscr{F}), \mathscr{F}\right)\right)
$$

Then from the above morphism between the sheaves of principal parts we get

$$
\mathcal{H o m}_{Y}\left(\mathcal{P}_{Y}^{1}\left(f^{*} \mathscr{F}\right), \mathcal{O}_{Y}\right) \otimes f^{*} \mathscr{F} \rightarrow f^{*}\left(\mathcal{H o m}_{X}\left(\mathcal{P}_{X}^{1}, \mathcal{O}_{X}\right)\right) \otimes f^{*} \mathscr{F}
$$

which gives us a morphism $\mathcal{H o m}_{Y}\left(\mathcal{P}_{Y}^{1}\left(f^{*} \mathscr{F}\right), f^{*} \mathscr{F}\right) \rightarrow f^{*}\left(\mathcal{H o m}_{X}\left(\mathcal{P}_{X}^{1}(\mathscr{F}), \mathscr{F}\right)\right)$ if \mathscr{F} is locally free. If more generally \mathscr{F} is reflexive then there is an open set U such that $\left.\mathscr{F}\right|_{U}$ is locally free and such that every section of $\mathscr{F}(U)$ extends to a global section, in other words, if $j: U \rightarrow X$ is the inclusion then we have an isomorphism $j_{*}\left(\left.\mathscr{F}\right|_{U}\right) \simeq \mathscr{F}$. If also $f^{*} \mathscr{F}$ is reflexive then $\left.f^{*} \mathscr{F}\right|_{f^{-1} U}$ is locally free and $j_{*}\left(\left.f^{*} \mathscr{F}\right|_{f^{-1} U}\right) \simeq f^{*} \mathscr{F}$.

Local sections of $\mathcal{H o m}_{X}\left(\mathcal{P}_{X}^{1}(\mathscr{F}), \mathscr{F}\right)$ over an open set V are in natural correspondence with \mathbb{C}-linear morphisms $\mathscr{F}(V) \rightarrow \mathscr{F}(V)$ that are differential maps in the sense of [3]. In particular every section of $\mathcal{H o m}_{X}\left(\mathcal{P}_{X}^{1}(\mathscr{F}), \mathscr{F}\right)(U)$ extends to a global section. And the same can be said about sections of $\mathcal{H o m}_{Y}\left(\mathcal{P}_{Y}^{1}\left(f^{*} \mathscr{F}\right), f^{*} \mathscr{F}\right)$ over $\left(f^{-1} U\right)$ extending to global sections. Now over $f^{-1} U$ we have a morphism

$$
\left.\mathcal{H o m}_{Y}\left(\mathcal{P}_{Y}^{1}\left(f^{*} \mathscr{F}\right), f^{*} \mathscr{F}\right)\right|_{f^{-1} U} \rightarrow f^{*}\left(\left.\mathcal{H o m}_{X}\left(\mathcal{P}_{X}^{1}(\mathscr{F}), \mathscr{F}\right)\right|_{U}\right) .
$$

Which extends to a morphism $\operatorname{Hom}_{Y}\left(\mathcal{P}_{Y}^{1}\left(f^{*} \mathscr{F}\right), f^{*} \mathscr{F}\right) \rightarrow f^{*}\left(\mathcal{H o m}_{X}\left(\mathcal{P}_{X}^{1}(\mathscr{F}), \mathscr{F}\right)\right)$ as wanted.

Lemma 2.10. Let \mathscr{F} be a reflexive sheaf over X and $U \subseteq X$ be an open set such that $\left.\mathscr{F}\right|_{U}$ is locally free and such that every section of $\mathcal{O}_{X}(U)$ extends to a global section. Then there is a section $\mathcal{E} n d(\mathscr{F}) \rightarrow \mathcal{O}_{X}$ to the canonical inclusion $\mathcal{O}_{X} \rightarrow \mathcal{E} n d(\mathscr{F})$.

Proof. Let $j: U \hookrightarrow X$ be the inclusion, then over U we have $\left.\left.\mathcal{E} n d(\mathscr{F})\right|_{U} \simeq \mathscr{F}\right|_{U} \otimes$ $\left.\mathscr{F}^{\vee}\right|_{U}$, so there is the evaluation map $\left.\left.\left.\mathscr{F}\right|_{U} \otimes \mathscr{F}^{\vee}\right|_{U} \rightarrow \mathcal{O}_{X}\right|_{U}$, which divided by the generic rank of \mathscr{F} is a section of the inclusion $\mathcal{O}_{X} \rightarrow \mathcal{E} n d(\mathscr{F})$. As both $\mathscr{F} \simeq$ $j_{*}\left(\left.\mathscr{F}\right|_{U}\right)$ and $\mathcal{O}_{X} \simeq j_{*}\left(\left.\mathcal{O}_{X}\right|_{U}\right)$ by hypothesis, we have $\mathcal{E} n d(\mathscr{F}) \simeq j_{*}\left(\left.\left.\mathscr{F}\right|_{U} \otimes \mathscr{F}^{\vee}\right|_{U}\right)$ from which we get the morphism $\mathcal{E} n d(\mathscr{F}) \rightarrow \mathcal{O}_{X}$.

Definition 2.11. A closed subset $Z \subseteq X$ is of relative codimension cover S iff for every point $s \in S$ we have $\operatorname{dim} X_{s}-\operatorname{dim} Z_{s}=c$

Theorem 2.12. Let \mathscr{F} be a reflexive sheaf over X, flat over S, with X smooth over S and such that there is an open set $U \subseteq X$ with $\left.\mathscr{F}\right|_{U}$ locally free and such that $Z:=X \backslash U$ is of relative codimension ≥ 2. Let $f: R \rightarrow S$ be a morphism. Denote by X_{R} the pull-back of X by f and by $f^{*} \mathscr{F}$ the corresponding pull-back of \mathscr{F} as a sheaf over X_{R} flat over R. Then the canonical morphism $f^{\bullet} D_{\bar{X}}^{\leq 1}(\mathscr{F}) \rightarrow D_{X_{R}}^{\leq 1}\left(f^{*} \mathscr{F}\right)$ is an isomorphism of Lie algebroids.

Proof. Lemma 2.8 gives the existence of a morphism $f^{\bullet} D_{X}^{\leq 1}(\mathscr{F}) \rightarrow D_{X_{R}}^{\leq 1}(\mathscr{F})$. Here we will show the existence of an inverse to this morphism.

By Lemma 2.9 there is a morphism

$$
\mathcal{H o m}\left(\mathcal{P}_{X_{R}}^{1}\left(f^{*} \mathscr{F}\right), f^{*} \mathscr{F}\right) \rightarrow f^{*}\left(\mathcal{H o m}\left(\mathcal{P}_{X}^{1}(\mathscr{F}), \mathscr{F}\right)\right) .
$$

Now, as $X \backslash U$ is of relative codimension 2 over S and $X \rightarrow S$ is smooth, then every section of \mathcal{O}_{X} over U extends to a global section, then we are in condition to apply Lemma 2.10 and get a splitting $\mathcal{E} n d(\mathscr{F}) \rightarrow \mathcal{O}_{X}$. The fact that $D_{\bar{X}}^{\leq 1}(\mathscr{F})$ is a pull-back of $\mathcal{H o m}\left(\mathcal{P}_{X}^{1}(\mathscr{F}), \mathscr{F}\right)$ by T_{X} over $T_{X} \otimes \mathcal{E} n d(\mathscr{F})$ gives in turn a splitting $\mathcal{H o m}\left(\mathcal{P}_{X}^{1}(\mathscr{F}), \mathscr{F}\right) \rightarrow D_{X}^{\leq 1}(\mathscr{F})$. So we have a commutative diagram

From the bottom arrow of this diagram and the pull-back property of $f^{\bullet} D_{\bar{X}}^{\leq 1}(\mathscr{F})$ we get a morphism

$$
D_{X_{R}}^{\leq 1}\left(f^{*} \mathscr{F}\right) \rightarrow f^{\bullet} D_{\bar{X}}^{\leq 1}(\mathscr{F}) .
$$

Because $f^{\bullet} D_{\bar{X}}^{\leq 1}(\mathscr{F})$ is defined as a pull-back, the composition

$$
f^{\bullet} D_{X}^{\leq 1}(\mathscr{F}) \rightarrow D_{X_{R}}^{\leq 1}\left(f^{*} \mathscr{F}\right) \rightarrow f^{\bullet} D_{X}^{\leq 1}(\mathscr{F})
$$

is the identity, so $f^{\bullet} D_{X}^{\leq 1}(\mathscr{F}) \rightarrow D_{X_{R}}^{\leq 1}\left(f^{*} \mathscr{F}\right)$ is a monomorphism. The other composition, that is $D_{X_{R}}^{\leq 1}\left(f^{*} \mathscr{F}\right) \rightarrow f^{\bullet} D_{X}^{\leq 1}(\mathscr{F}) \rightarrow D_{X_{R}}^{\leq 1}\left(f^{*} \mathscr{F}\right)$ gives the central vertical
morphism in the diagram

so $f^{\bullet} D_{\bar{X}}^{\leq 1}(\mathscr{F}) \rightarrow D_{X_{R}}^{\leq 1}\left(f^{*} \mathscr{F}\right)$ is also an epimorphism.
Remark 2.13. If $a: \mathscr{A} \rightarrow T_{X}$ is a Lie algebroid and $\alpha \in \mathscr{A}(U)$ is a local section, then the map

$$
\left.\psi\right|_{U}:\left.\left.\mathscr{A}\right|_{U} \rightarrow \mathscr{A}\right|_{U}
$$

defined by $\left.\psi\right|_{U}(\alpha):=\{\alpha,-\}$ is both a derivation of the Lie algebra structure of $\left.\mathscr{A}\right|_{U}$ and a differential operator of order ≤ 1. Indeed, we have that for each local section $f \in \mathcal{O}_{X}(U)$ and $\left.\alpha \in \mathscr{A}\right|_{U}$ we obtain a section $\psi f:=-a(\{\alpha,-\})(f) \in \mathcal{O}_{X}(U)$. Thus by the identity

$$
\{f \cdot \alpha,-\}=f \cdot\{\alpha,-\}-a(\{\alpha,-\})(f) \cdot \alpha
$$

we conclude that

$$
\left(\left.\psi\right|_{U} \circ m_{f}\right)(\alpha)-\left(\left.m_{f} \circ \psi\right|_{U}\right)(\alpha)=m_{\psi f}(\alpha)
$$

for all $f \in \mathcal{O}_{X}(U)$ and $\left.\alpha \in \mathscr{A}\right|_{U}$.
We will denote by $\operatorname{Der}_{\text {Lie }}(\mathscr{A})$ the sheaf of derivations of the Lie algebra structure of \mathscr{A}. It is a sub-sheaf of the sheaf $\operatorname{End}_{\mathcal{O}_{X}}(\mathscr{A})$ of \mathcal{O}_{X}-linear endomorphisms.

Definition 2.14. Given a family of algebroids $\left(\mathscr{A}_{S},\{\cdot, \cdot\}_{S}\right)$, we denote by σ : $D_{\bar{X}}^{\leq 1}(\mathscr{A}) \rightarrow T_{X}$ the symbol map of differential operators, then we have the diagram

Where the intersection is taken as subsheaves of the sheaf $\operatorname{Hom}_{f^{-1}} \mathcal{O}_{S}\left(\mathscr{A}_{S}, \mathscr{A}_{S}\right)$ of endomorphisms of $f^{-1} \mathcal{O}_{S}$-modules of \mathscr{A}_{S}. We define the sheaf $\mathfrak{u}\left(\mathscr{A}_{S}\right)$ as

$$
\mathfrak{u}\left(\mathscr{A}_{S}\right):=\sigma^{-1}\left(\pi^{-1} T_{S}\right) \subseteq\left(\operatorname{Der}_{\operatorname{Lie}}\left(\mathscr{A}_{S}\right) \cap D_{X}^{\leq 1}\left(\mathscr{A}_{S}\right)\right) / \mathscr{A}_{S} .
$$

Note that $\mathfrak{u}\left(\mathscr{A}_{S}\right)$ is not a coherent sheaf over X but only a sheaf of $f^{-1} \mathcal{O}_{S}$-modules.
Remark 2.15. The sheaf $\mathfrak{u}\left(\mathscr{A}_{S}\right)$ inherits from $\operatorname{Der}_{\text {Lie }}\left(\mathscr{A}_{S}\right)$ the structure of a sheaf of Lie algebras. Indeed, as the inclusion $\mathscr{A}_{S} \subseteq \operatorname{Der}_{\text {Lie }}\left(\mathscr{A}_{S}\right)$ is an ideal of Lie algebras, the Lie bracket $[\psi, \phi]=\psi \circ \phi-\phi \circ \psi$ passes to the quotient to a bracket in $\mathfrak{u}\left(\mathscr{A}_{S}\right)$. In particular, we have that $\Upsilon\left(\mathscr{A}_{S}\right)$ is a Lie algebra over $\Gamma\left(S, \mathcal{O}_{S}\right)$.

Let us begin by considering an unfolding $(\mathscr{A},\{\cdot, \cdot\})$ of a family of algebroids $\left(\mathscr{A}_{S},\{\cdot, \cdot\}_{S}\right)$ parametrized by S. Note that, when the unfolding is transversal, we have that the anchor $a: \mathscr{A} \rightarrow T_{X}$ determines an isomorphism $[a]: \mathscr{A} / \mathscr{A}_{S} \xlongequal{\cong} \pi^{*} T_{S}$, so we can consider the morphism $v_{\mathscr{A}}: \pi^{*} T_{S} \rightarrow \mathscr{A} / \mathscr{A}_{S}$ defined as the inverse of the isomorphism determined by the anchor.

Proposition 2.16. If $(\mathscr{A},\{\cdot, \cdot\})$ is transversal to S then $v_{\mathscr{A}}\left(\pi^{-1} T_{S}\right)$ is a subsheaf of $\mathfrak{u}(\mathscr{A})$.

Proof. Note that the statement is making reference to $\pi^{-1} T_{S} \subset \pi^{*} T_{S}$, that is the sheaf of vector fields that are constant along the fibers of π, also known as basic vector fields. Then, given a local section $s \in v_{\mathscr{A}}\left(\pi^{-1} T_{S}\right) \subseteq \mathscr{A} / \mathscr{A}_{S}$ we need to show that, for any lifting \tilde{s} of s in \mathscr{A} we have that $\left\{\mathscr{A}_{S}, \tilde{s}\right\} \subseteq \mathscr{A}_{S}$. In other words we need to show that if α is a local section of \mathscr{A}_{S}, then $a(\{\tilde{s}, \alpha\}) \in T_{X \mid S}$. Locally in X we can take $a(\tilde{s})$ of the form $Y+Z$ with $Y \in T_{X \mid S}$ and $Z \in \pi^{-1} T_{S}$.

Noting $W=a(\alpha) \in T_{X \mid S}$ we compute

$$
a(\{\tilde{s}, \alpha\})=[W, a(\tilde{s})]=[W, Y+Z]=[W, Y]-Z(W)
$$

since $W(Z)=0$, being Z in $\pi^{-1} T_{S}$. Then $a(\{\tilde{s}, \alpha\})$ is in $T_{X \mid S}$, and also in $a(\mathscr{A})$, so it is in $a\left(\mathscr{A}_{S}\right)$.

Theorem 2.17. Let X be a non-singular variety, and $\left(\mathscr{A}_{S},\{\cdot, \cdot\}_{S}\right)$ a family of algebroids on X parametrized by a scheme of finite type S. There is, for each scheme S, a 1 to 1 correspondence:

$$
\left\{\begin{array}{c}
\text { transversal unfoldings } \\
\text { of } \mathscr{A}_{S}
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { morphisms } \pi^{-1}\left(T_{S}\right) \rightarrow \mathfrak{u}\left(\mathscr{A}_{S}\right) \\
\text { respecting brackets }
\end{array}\right\} .
$$

Proof. Morphism associated to an unfolding: given a transversal unfolding \mathscr{A} of \mathscr{A}_{S} we have $\mathscr{A} / \mathscr{A}_{S} \cong \pi^{*}\left(T_{S}\right)$. Then, it follows from Proposition 2.16 that we have a map

$$
v_{\mathscr{A}}: \pi^{-1}\left(T_{S}\right) \rightarrow \mathfrak{u}\left(\mathscr{A}_{S}\right)
$$

Now, in order to establish the first part of the correspondence we need to prove that this is a map of sheaves of $\pi^{-1} \mathcal{O}_{S}$-Lie algebras. Considere $v_{\mathscr{A}}\left(\pi^{-1}\left(T_{S}\right)\right) \subseteq$ $\mathfrak{u}\left(\mathscr{A}_{S}\right)$ and we take $A \subseteq \mathscr{A}$ its pre-image under the morphism $\mathscr{A} \rightarrow \mathscr{A} / \mathscr{A}_{S}$. Since A / \mathscr{A}_{S} is a subsheaf of $\mathfrak{u}\left(\mathscr{A}_{S}\right)$, then $\mathscr{A}_{S} \subseteq A$ is a Lie ideal, so we have a diagram

as \mathscr{A}_{S} and $a\left(\mathscr{A}_{S}\right)$ are Lie ideals of A and $a(A)$ respectively, and the anchor a is a morphism of Lie algebras. Then the morphism induced in the quotient $v_{\mathscr{A}}\left(\pi^{-1}\left(T_{S}\right)\right) \rightarrow \pi^{-1}\left(T_{S}\right)$ is also a Lie algebra morphism, so also its inverse $v_{\mathscr{A}}$ is
a morphism of sheaves of Lie algebras.

Unfolding associated with a morphism: given a morphism of sheaves of Lie algebras

$$
v: \pi^{-1}\left(T_{S}\right) \rightarrow \mathfrak{u}\left(\mathscr{A}_{S}\right)
$$

we get an extension of sheaves of Lie algebras over $\pi^{-1}\left(\mathcal{O}_{S}\right)$

$$
0 \rightarrow \mathscr{A}_{S} \rightarrow A \rightarrow \pi^{-1}\left(T_{S}\right) \rightarrow 0
$$

Indeed, the Lie algebra A is defined as the pull-back of the diagram

Moreover, we have a morphism $\tilde{a}: A \rightarrow T_{X}$ defined by the composition

$$
A \rightarrow D_{\bar{X}}^{\leq 1} \rightarrow T_{X} .
$$

However, A is not a quasi-coherent module over X, to get a module over \mathcal{O}_{X} we need to modify this sheaf a little. For this we define the sheaf of sub-modules $B \subseteq A \otimes_{\pi^{-1}} \mathcal{O}_{S} \mathcal{O}_{X}$ as the quasi-coherent subsheaf generated by the stalks of the form $\alpha \otimes f-f \alpha \otimes 1$, where α is a stalk of \mathscr{A}_{S} and f a stalk of \mathcal{O}_{X}. Then we define

$$
\mathscr{A}:={ }_{\operatorname{def}}\left(A \otimes_{\pi^{-1} \mathcal{O}_{S}} \mathcal{O}_{X}\right) / B
$$

The map \tilde{a} can be extended to an \mathcal{O}_{X}-linear map $a^{\prime}: A \otimes \mathcal{O}_{X} \rightarrow T_{X}$. As $\left.a^{\prime}\right|_{B}=0$, we get an \mathcal{O}_{X}-linear map $\mathscr{A} \rightarrow T_{X}$ extending the map $A \rightarrow T_{X}$. Also notice that \mathscr{A}_{S} is a subsheaf of \mathscr{A} and that

$$
\mathscr{A} / \mathscr{A}_{S}=A / \mathscr{A}_{S} \otimes \mathcal{O}_{X}=\pi^{-1} T_{S} \otimes \mathcal{O}_{X}=\pi^{*} T_{S}
$$

We can extend the Lie bracket of A to a Lie bracket in $A \otimes \mathcal{O}_{X}$ by the formula

$$
\{\alpha \otimes f, \beta \otimes g\}=\beta \otimes(f \cdot \tilde{a}(\alpha)(g))+\alpha \otimes(g \cdot \tilde{a}(\beta)(f))+\{\alpha, \beta\} \otimes f \cdot g
$$

With this bracket the subsheaf B is a sheaf of Lie ideals. Therefore we get that \mathscr{A} has a Lie algebroid structure and it is an unfolding of \mathscr{A}_{S}.

The construction of the morphism $\pi^{-1}\left(T_{S}\right) \rightarrow \mathfrak{u}\left(\mathscr{A}_{S}\right)$ associated with an unfolding and of the unfolding associated with the morphism are inverse to each other.

Proposition 2.18. $\pi_{*} \mathfrak{u}\left(\mathscr{A}_{S}\right)$ has the structure of a Lie algebroid over S.
Proof. Since $\mathfrak{u}\left(\mathscr{A}_{S}\right)$ is a $\pi^{-1} \mathcal{O}_{S}$-module then $\pi_{*} \mathfrak{u}\left(\mathscr{A}_{S}\right)$ is an \mathcal{O}_{S}-module. It is endowed with a Lie algebra bracket which is the push-forward of the bracket of $\mathfrak{u}\left(\mathscr{A}_{S}\right)$. Its anchor map can be defined as follows: Taking the natural map $D_{X}^{\leq 1} \rightarrow$
T_{X} one gets by considering the derivation defined by a differential operator we get a diagram

When the morphism π is proper we have a natural isomorphism $\pi_{*} \pi^{*} T_{S} \cong T_{S}$. The anchor map of $\pi_{*} \mathfrak{u}\left(\mathscr{A}_{S}\right)$ is then

$$
\pi_{*} a_{\mathfrak{u}}: \pi_{*} \mathfrak{u}\left(\mathscr{A}_{S}\right) \rightarrow \pi_{*} \pi^{-1} T_{S} \cong T_{S}
$$

Recall that a flat connection on an algebroid \mathscr{A} over a space X is a section of the anchor map $s: T_{X} \rightarrow \mathscr{A}$ respecting Lie brackets. Then we get the following.

Corollary 2.19. There is a 1 to 1 correspondence
$\left\{\begin{array}{c}\text { transversal unfoldings } \\ \text { of } \mathscr{A}_{S}\end{array}\right\} \longleftrightarrow\left\{\right.$ flat connections on the algebroid $\left.\pi_{*} u\left(\mathscr{A}_{S}\right)\right\}$.
In particular to have an unfolding of a family \mathscr{A}_{S} of algebroids we must have an epimorphic anchor map on the algebroid $\pi_{*} \mathfrak{u}\left(\mathscr{A}_{S}\right)$. So for any family \mathscr{A}_{S} we have a foliation in the base space S induced by the algebroid $\pi_{*} \mathfrak{u}\left(\mathscr{A}_{S}\right)$. Any unfolding of a restriction of the family \mathscr{A}_{S} must be over a leaf of said foliation (compare with [2]).

Proposition 2.20. Given a pull-back diagram of holomorphic spaces with smooth vertical arrows

And a family \mathscr{A}_{S} of algebdroids over $\pi: X \rightarrow S$ such that $\operatorname{sing}(\mathscr{A})$ has relative codimension greater than 2 as a subscheme of X / S. We have a canonical morphism

$$
\pi_{R *} \mathfrak{u}\left(\phi^{\bullet} \mathscr{A}\right) \rightarrow f^{\bullet} \pi_{*} \mathfrak{u}(\mathscr{A})
$$

as algebdroids on R.
Proof. By remark 1.4 we have that the sheaf underlying the algebroid $\phi^{\bullet} \mathscr{A}$ is $\phi^{*} \mathscr{A}$.
By the hypothesis on $\operatorname{sing} \mathscr{A}$ we can apply Proposition 2.12 which says that we have an isomorphism $\phi^{\bullet} D_{\bar{X}}^{\leq 1}(\mathscr{A}) \simeq D_{\bar{Y}}^{\leq 1}\left(\phi^{*} \mathscr{A}\right)$. Also, as the Lie algebra structure of \mathscr{A} is \mathcal{O}_{S}-linear, and $\mathcal{O}_{Y}=\mathcal{O}_{X} \otimes_{\mathcal{O}_{S}} \mathcal{O}_{R}$, then the Lie algebra structure of $\phi^{*} \mathscr{A}$ is \mathcal{O}_{R}-linear. If a local section $\varphi \in D_{\bar{Y}}^{\leq 1}\left(\phi^{*} \mathscr{A}\right)(U)$ acts on $\phi^{*} \mathscr{A}(U)$ as a derivation
of the Lie algebra structure, then it acts as a derivation on sections of $\phi^{*} \mathscr{A}$ of the form $s \otimes 1$, so the image of φ by the composition

$$
D_{Y}^{\leq 1}\left(\phi^{*} \mathscr{A}\right) \simeq \phi^{\bullet} D_{X}^{\leq 1}(\mathscr{A}) \rightarrow \phi^{*} D_{X}^{\leq 1}(\mathscr{A})
$$

is in the subsheaf $\phi^{*}\left(D_{\bar{X}}^{\leq 1}(\mathscr{A}) \cap \operatorname{Der}_{\text {Lie }}(\mathscr{A})\right)$. The fact that the diagram

commutes implies with the above that we have a morphism $\mathfrak{u}\left(\phi^{\bullet} \mathscr{A}\right) \rightarrow \phi^{*} \mathfrak{u}(\mathscr{A})$ which in turn gives a morphism $\mathfrak{u}\left(\phi^{\bullet} \mathscr{A}\right) \rightarrow \phi^{\bullet} \mathfrak{u}(\mathscr{A})$. The Proposition follows from the fact that $\pi_{R *} \phi^{\bullet} \mathfrak{u}(\mathscr{A}) \simeq f^{\bullet} \pi_{*} \mathfrak{u}(\mathscr{A})$

3. Examples

3.1. Holomorphic foliations. Let $a_{S}: \mathscr{F}_{S} \rightarrow T_{X \mid S}$ a family of singular holomorphic foliation over X. An unfolding of \mathscr{F}_{S} is a foliation \mathscr{F} on X with anchor $a: \mathscr{F} \rightarrow T_{X}$ such that that
(a) $\mathscr{F}_{S}=a^{-1}\left(a_{S}\left(\mathscr{F}_{S}\right)\right)$.
(b) $\operatorname{dim}(\mathscr{F})=\operatorname{dim}\left(\mathscr{F}_{S}\right)+\operatorname{dim}(S)$.

Now suppose we have $\mathscr{F}=\mathcal{L}$ is a line bundle, in other words we have a foliation by curves. Let v be a local generating section of \mathcal{L} and ψ a local \mathbb{C}-linear endomorphism of \mathcal{L}, so $\psi(v)=f_{\psi} \cdot v$ for some local section f_{ψ} of \mathcal{O}_{X}. If ψ is a derivation for the Lie algebra structure of \mathcal{L} (which is induced by the inclusion $\mathcal{L} \subseteq T_{X}$) Then for any local section g of \mathcal{O}_{X} we get

$$
\begin{aligned}
\psi([v, g \cdot v]) & =[\psi(v), g \cdot v]+[v, \psi(g \cdot v)] \\
\psi(v(g) \cdot v) & =\left[f_{\psi} \cdot v, g \cdot v\right]+[v, \psi(g \cdot v)]
\end{aligned}
$$

If ψ is also a differential operator we have $\psi(v(g) \cdot v)-v(g) \psi(v)=\sigma(\psi)(v(g)) \cdot v$, where σ denotes the symbol of ψ. Then we have

$$
\begin{aligned}
\psi(v(g) \cdot v) & =\left[f_{\psi} \cdot v, g \cdot v\right]+[v, \psi(g \cdot v)]= \\
v(g) f_{\psi} \cdot v-\sigma(\psi)(v(g)) \cdot v & =f_{\psi} v(g) \cdot v+v(g) f_{\psi} \cdot v-v(\sigma(\psi)(g)) \cdot v
\end{aligned}
$$

In other words, $[\sigma(\psi), v](g)=f_{\psi} v(g)$, as this happens for every local section g of \mathcal{O}_{X} then

$$
\begin{equation*}
[\sigma(\psi), v]=f_{\psi} \cdot v=\psi(v) \tag{1}
\end{equation*}
$$

Denoting $p: T_{X} \rightarrow \pi^{*} T_{S}$ the projection, lets call for an open set $V \subseteq X$

$$
U(\mathcal{L})(V):=\left\{\psi \in\left(\operatorname{Der}_{\text {Lie }}(\mathcal{L}) \cap D_{X}^{\leq 1}(\mathcal{L})\right)(V), \quad \text { s.t: } p \circ \sigma(\psi) \in \pi^{-1} T_{S}\right\}
$$

We have then $\mathfrak{u}(\mathcal{L})=U(\mathcal{L}) / \mathcal{L}$ and an inclusion of short exact sequences

Notice that equation (1) implies that sections of $a(U(\mathcal{L}))$ act on \mathcal{L} as differential operator, so the top short exact sequence in diagram (2) splits, so every section ψ of $U(\mathcal{L})$ can be written as $\psi=m_{a}+Y$ where m_{a} is multiplication by a local section a of \mathcal{O}_{X} and Y is a local vector field on X. Moreover, equation (1) implies that if $m_{a}+Y$ is a section of $U(\mathcal{L})$ then for a section X of \mathcal{L} we have $[Y, X]=[Y, X]+a \cdot X$, so $a=0$ then the sheaf K of diagram (2) is null. In conclusion we can characterize $\mathfrak{u}(\mathcal{L})$ as

$$
\mathfrak{u}(\mathcal{L})=\left(Y \in T_{X}: p(Y) \in \pi^{-1} T_{S},[Y, \mathcal{L}] \subseteq \mathcal{L}\right) / \mathcal{L}
$$

In this case the kernel of the algebroid $\pi_{*} \mathfrak{u}$ is the \mathcal{O}_{S}-linear Lie algebra

$$
\mathfrak{g}(\mathcal{L})=\left(Y \in T_{X \mid S}:[Y, \mathcal{L}] \subseteq \mathcal{L}\right) / \mathcal{L}
$$

which is the algebra of infinitesimal symmetries of the foliation.
3.2. Sheaf of Lie algebra. Let \mathscr{A}_{S} be a family of sheaf of Lie algebra. In this case the anchor map $a_{S}=0$. An unfolding of \mathscr{A}_{S} is a Lie algebroid \mathscr{A} on X with anchor $a: \mathscr{A} \rightarrow T_{X}$ such that
(a) The family of Lie algebroids \mathscr{A}_{S}, is recovered as $\mathscr{A}_{S}=a^{-1}(0)=\operatorname{Ker}(a)$.
(b) $\operatorname{rank}(\mathscr{A})=\operatorname{rank}\left(\mathscr{A}_{S}\right)+\operatorname{dim}(S)$.

That is, \mathscr{A}_{S} is an isotropy sub-Lie algebroid of a Lie algebroid $a: \mathscr{A} \rightarrow T_{X}$ and the dimension of the foliation associated this Lie algebroid has dimension equal to $\operatorname{dim}(S)$ by the condition b). We have

$$
0 \rightarrow \mathscr{A}_{S} \rightarrow \mathscr{A} \rightarrow \operatorname{Im}(a) \rightarrow 0
$$

Therefore, if the unfolding is transversal, we have the isomorphism $[a]: \mathscr{A} / \mathscr{A}_{S} \cong$ $\pi^{*} T_{S}$. That is $\operatorname{Im}(a) \cong \pi^{*} T_{S}$, this in turn define a splitting of the short exact sequence $0 \rightarrow T_{X \mid S} \rightarrow T_{X} \rightarrow \pi^{*} T_{S} \rightarrow 0$.

In particular we can take any sheaf \mathscr{F} flat over S and take the algebroid \mathscr{A}_{S} to be \mathscr{F} with the structure of an abelian Lie algebra and the zero anchor map. In this case we get the extension of Lie algebras

$$
0 \rightarrow \mathscr{F} \rightarrow \mathscr{A} \rightarrow \pi^{*} T_{S} \rightarrow 0
$$

This extension defines an action of $\pi^{*} T_{S}$ on \mathscr{F}, in particular we have a flat connection on $\pi_{*} \mathscr{F}$. The extension also defines an homology clas c on the ChevalleyEilenberg cohomology $c \in H^{2}\left(\pi^{*} T_{S}, \mathscr{F}\right)$. Reciprocally, given a splitting of $0 \rightarrow$ $T_{X \mid S} \rightarrow T_{X} \rightarrow \pi^{*} T_{S} \rightarrow 0$, and a flat connection ∇ on the quasi-coherent sheaf $\pi_{*} \mathscr{F}$, we get a Lie algebra action of $\pi^{*} T_{S}$ on \mathscr{F}. Indeed, let $p \in X, v$ be a local
section of $\pi^{*} T_{S p}$ and $x \in \mathscr{F}_{p}$. As \mathscr{F}_{p} is a localization of $\mathscr{F}_{\pi^{-1}(\pi(p))}$ we can write x as $\sum_{i} f_{i} y_{i}$ with $y_{i} \in \mathscr{F}_{\pi^{-1}(\pi(p))}$ and $f_{i} \in \mathcal{O}_{X, p}$, we can also assume $v=g \cdot w$ with $w \in T_{S, \pi(p)}$ and $g \in \mathcal{O}_{X, p}$. Now, denoting by $\iota: \pi^{*} T_{S} \rightarrow T_{X}$ the splitting, we can define the action of $\pi^{*} T_{S}$ in \mathscr{F} as

$$
\nabla_{v}(x)=\sum_{i} g \cdot \iota(w)\left(f_{i}\right) y_{i}+f_{i} \nabla_{w}\left(y_{i}\right)
$$

Now, given an element of the Chevalley-Eilenberg cohomology $c \in H^{2}\left(\pi^{*} T_{S}, \mathscr{F}\right)$, where \mathscr{F} is taken as a $\pi^{*} T_{S}$-module with the action just defined, we get an abelian extension of Lie algebras

$$
0 \rightarrow \mathscr{F} \rightarrow \mathscr{A} \rightarrow \pi^{*} T_{S} \rightarrow 0
$$

Which is an unfolding of \mathscr{F} as abelian Lie algebroid with trivial anchor.
3.3. Poisson structures. Let $a_{S}:\left(\Omega_{X \mid S}^{1},\{\cdot, \cdot\}_{S}\right) \rightarrow T_{X \mid S}$ be a family of holomorphic Poisson structure over a smooth morphism $\pi: X \rightarrow S$. A Poisson structure $a:\left(\Omega_{X}^{1},\{\cdot, \cdot\}\right) \rightarrow T_{X}$ on X is an unfolding of $a_{S}:\left(\Omega_{X \mid S}^{1},\{\cdot, \cdot\}_{S}\right) \rightarrow T_{X \mid S}$ if $\Omega_{X \mid S}^{1}$ is the pre-image by a of the associated symplectic foliation of $\left(\Omega_{X \mid S}^{1},\{\cdot, \cdot\}_{S}\right)$, since $\operatorname{rank}\left(\Omega_{X}^{1}\right)=\operatorname{rank}\left(\Omega_{X \mid S}^{1}\right)+\operatorname{dim}(S)$.

We have a diagram

where $\rho:=i^{*} \circ a \circ i$. This implies that the map $\rho: \pi^{*} \Omega_{S}^{1} \rightarrow \pi^{*} T_{S}$ induces a Poisson structure on S by $\pi_{*} \rho: \Omega_{S}^{1} \rightarrow T_{S}$.

If the unfolding is transversal, we have that the isomorphism $[a]: \Omega_{X}^{1} / \Omega_{X \mid S}^{1} \rightarrow$ $\pi^{*} T_{S}$ provides a spliting for the sequence

$$
\begin{equation*}
0 \longrightarrow \pi^{*} \Omega_{S}^{1} \longrightarrow \Omega_{X}^{1} \longrightarrow \Omega_{X \mid S}^{1} \longrightarrow 0 \tag{4}
\end{equation*}
$$

which implies that $\rho: \pi^{*} \Omega_{S}^{1} \rightarrow \pi^{*} T_{S}$ is an isomorphism, i.e, $\pi_{*} \rho: \Omega_{S}^{1} \rightarrow T_{S}$ is a symplectic structure on S.

It would be interesting to study how unfoldings of holomorphic Poisson structures behave under Morita equivalence [1].
3.4. Sheaf of logarithmic forms. Let X be a smooth projective variety and D an effective normal crossing divisor on X. Denote $\imath: T_{X}(-\log D) \rightarrow T_{X}$ the inclusion anchor map. A deformation of the pair $(X, D) \rightarrow S$ can be interpreted as a family of Lie algebroids $\imath_{S}: T_{X \mid S}(-\log D) \rightarrow T_{X \mid S}$, where $T_{X \mid S}(-\log D)=\imath\left(T_{X}(-\log D)\right) \cap$ $T_{X \mid S}$ and $\imath_{S}:=\left.\imath\right|_{S}$. Since the rank of $T_{X \mid S}(-\log D)$ is $\operatorname{dim}(X)-\operatorname{dim}(S)$ and
$\imath^{-1}\left(T_{X \mid S}(-\log D)\right)=T_{X}(-\log D)$, then $\imath: T_{X}(-\log D) \rightarrow T_{X}$ is an unfolding of $T_{X \mid S}(-\log D)$.

If the unfolding is transversal, we have the isomorphism

$$
[\imath]: T_{X}(-\log D) / T_{X \mid S}(-\log D) \stackrel{\cong}{\rightrightarrows} \pi^{*} T_{S}
$$

Now, we have the holomorphic Bott's partial connection on $T_{X}(-\log D) / T_{X \mid S}(-\log D)$

$$
\nabla: T_{X}(-\log D) / T_{X \mid S}(-\log D) \rightarrow \Omega_{X \mid S}^{1}(\log D) \otimes\left[T_{X}(-\log D) / T_{X \mid S}(-\log D)\right]
$$

by setting

$$
\nabla_{u}(q)=\phi\left(\left[i_{S}(u), \tilde{q}\right]\right)
$$

where $\phi: T_{X}(-\log D) \rightarrow T_{X}(-\log D) / T_{X \mid S}(-\log D)$ denotes the projection, $\tilde{q} \in$ $T_{X}(-\log D)$ such that $\phi(\tilde{q})=q$ and $u \in T_{X \mid S}(-\log D)$. Since ∇ is flat along $T_{X \mid S}(-\log D)$ and the unfolding is transversal we conclude that it induces a holomorphic connection on T_{S} given by $\tilde{\nabla}:=\pi_{*}(\nabla \circ[\imath])$.

References

[1] M. Corrêa, Rational Morita equivalence for holomorphic Poisson modules, Advances in Mathematics. Volume 372, 7, 2020. 3.3
[2] Y. Genzmer, Schlesinger foliation for deformations of foliations. International Mathematics Research Notices (2017) 2
[3] A. Grothendieck, Éléments de géométrie algébrique : IV. Étude locale des schémas et des morphismes de schémas, Quatriéme partie. Publications Mathématiques de l'IHES, Volume 32 (1967) , pp. 5-361. 2.7, 2
[4] F. Quallbrunn, Isotrivial Unfoldings and Structural Theorems for Foliations on Projective Spaces Bull Braz Math Soc, New Series (2017) 48: 335-345. 2
[5] Y. Sheng, On Deformations of Lie Algebroids, Results. Math. (2012) 62: 103. 2
[6] T. Suwa, A theorem of versality for unfoldings of complex analytic foliation singularities, Inventiones mathematicae 65 (1981), no. 1, 29-48. 2
Mauricio Corrêa*
Ariel Molinuevo

Federico Quallbrunn
*ICEx - UFMG
Deptartamento de Matemática
Av. Antonio Carlos 6627
CEP 30123-970
Belo Horizonte, MG
Brasil
mauriciojr@ufmg.br
amoli@im.ufrj.br
fquallb@dm.uba.ar

${ }^{\dagger}$ Instituto de Matemática	\ddagger Departamento de Matemática
Av. Athos da Silveira Ramos 149	Universidad CAECE
Bloco C, Centro de Tecnologia, UFRJ	Av. de Mayo 866
Cidade Universitária, Ilha do Fundão	CP C1084AAQ
CEP 21941-909	Ciudad de Buenos Aires
Rio de Janeiro, RJ	Argentina
Brasil	

[^0]: Date:
 2020 Mathematics Subject Classification. Primary 53D17, 14B12, 32G08, 32S65, 37F75; secondary 14 F 05 .

 Key words and phrases. Deformations, Lie algebroids, Unfoldings.
 ${ }^{1}$ The author was fully supported by the CNPQ grants number 202374/2018-1, 302075/2015-1, and 400821/2016-8.

 2 The author was fully supported by Universidade Federal do Rio de Janeiro, Brazil.
 ${ }^{3}$ The author was fully supported by CONICET, Argentina.

