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FAMILIES AND UNFOLDINGS OF SINGULAR HOLOMORPHIC
LIE ALGEBROIDS

M. CORREA!, A. MOLINUEVO2, AND F. QUALLBRUNN3

ABSTRACT. In this paper, we investigate families of singular holomorphic Lie
algebroids on complex analytic spaces. We introduce and study a special type
of deformation called by unfoldings of Lie algebroids which generalizes the
theory due to Suwa for singular holomorphic foliations. We show that there is
a one to one correspondence between transversal unfoldings and holomorphic

flat connections on a natural Lie algebroid on the bases.

1. INTRODUCTION

Definition 1.1. Let &/ be a reflexive sheaf of Ox-modules over a complex man-
ifold X, equipped with a Ox-morphism a: &/ — Tx. We say that & is a Lie
algebroid of anchor a if there is a C-bilinear map {-,-}: & ®o, & — & such that

(a) {v,u} = —{u,v}
(b) {ua {’U, w}} + {’U, {’LU, u}} + {’LU, {ua ’U}} = 0;
(¢) {g-u,v} =g-{u,v} —a(v)(g) -uforal g e Ox and u, v € .

The singular set of o7 is defined by
Sing(«”) = Sing(Coker(a)).
The Lie algebroid a: & — Tx induces a holomorphic foliation Im(a) C Tx.

Definition 1.2. (Pullback of a Lie alebroid) Given a Lie algebroid .o/ over a variety
X and a morphism f : Y — X we define an algebroid f®< over Y. The underlying
sheaf of f®<7 is defined as the fibered product of the diagram

f'JZ{ = f*,!Zf D1y Ty ——= Ty

l lDf
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The anchor map is the top horizontal map in the above diagram. The Lie algebra
structure is induced by restriction of the direct sum bracket in f*.of @ Ty to the
subsheaf f®o/.

Let f: X — S be a smooth morphism of analytic spaces and consider T'x|s the

relative tangent sheaf, which is naturally a subsheaf of Tx.

Definition 1.3. A family of singular holomorphic Lie algebroids over X is a reflex-
ive sheaf &7 of modules over X which is flat over S, equipped with a O x-morphism
as: o — Tx|s and an f~!'Og-linear map {-,-}s: & ®-10, & — & such that

(a) {a, B} = —{u,v};

(b) {a, {8,793} + {8, {r.a}} + {7, {e. B}} = 0;

() {f-a,8=f{a,B}—aB)(f) aforall feOx and «, f € .

Remark 1.4. Given a family /g over a smooth morphism p : X — S and a
morphism f: R — S we consider the fibered product

Xp Lo x
PR\L lp
f

If we take de Lie algebdroid pull-back f®<” we obtain a family over the smooth
morphism pr : Xr — R. Observe that, using a covering of X by open sets of the

form Y x U with U C S an open set, we can give local generators 81, ey ai of
Y1 Ya
T'x|s where y1,...,yq are local coordinates of Y. Using such a covering we obtain

a covering for Xg of the form Y x V where V = f~}(U) C R which give local
generators of T'x | of the form aiyp R a%d.
In other words we have f*T'x|g >~ T'x,|r, so the underlying sheaf of the algebroid

f*<f in this case is just f*.<7.

Example 1.5. An important caveat to have in mind here is that, contrary to what
one may suppose, the algebroid pull-back is not an associative operations. In other
words, in general ¢®f®</ 2 (f o g)*</. There is however a canonical morphism
cor 1 9°f°/ — (f o g)®a/ given by the pull-back property of (f o ¢g)®<7, but is not
an isomorphism in general.

To see an example of this lets take X = A%, and a: & — T? to be the inclusion
of the sheaf generated by the vector field v = y-2 + xa%. Let f: A' — A? be the
inclusion of the axis (y = 0) and g : (0,0) — A! the inclusion of the origin in the
axis. It follows from the definition that f°< is the pull-back in the diagram

(0) E— TAI

-

o —— T

[l 2
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so f*o/ = (0), and therefore ¢°®f®</ = (0). But the pull-back of the inclusion of
the origin in the plane gives (fg)®< is

(f9)*ed ——=(0)

|

(fg) o e (fg) Th2

so (fg)®< is an algebdroid over the point consisting of a vector space of dimension 1

with trivial bracket and trivial anchor, i.e.: an abelian one dimensional Lie algebra.

2. UNFOLDING OF LIE ALGEBROIDS

Definition 2.1. (Unfolding of Lie algebroid ) Let as : (#/s,{-,-}s) — Tx|s be
a family of holomorphic Lie algebroids over a smooth morphism 7 : X — S. An
unfolding of &g is a Lie algebroid &/ on X with anchor a : &/ — T'x such that
(a) The family of Lie algebroids o7 g, is recovered as /s = a~*(Im(as)).
(b) rank(«/) = rank(%/g) + dim ().
An unfolding is defined to be isotrivial if the induced flat family of algebroids is
trivial.

Definition 2.2. (Transversal unfolding) Let </ be an unfolding of a family «/g.
Let N/ be the cokernel of the map a : &/ — Tx and Ng</ be the cokernel of
the map as : @/s — Tx|s. Notice that the maps &/s — & and Tx|s — Tx
induce a map Ngo/ — N.&/. The unfolding & is said to be transversal if the map
Ngof — N.of is an isomorphism.

Following T. Suwa [6] the third named author has showed the in [4] following
result:

Theorem 2.3. Let X be a non-singular variety and Fq a foliation on X. There

is, for each scheme S, a 1 to 1 correspondence:

{isotrivial transversal unfoldings } sections v € H'(S,Q5) © T(Fo)
—

of F parametrized by S s.t.: dv+ %[v, v] =0

There is a similar result in the real case in [5, Theorem 4.6].
We observe that a section v € HO(S,Qk) ® Y (%), satisfying dv + 3[v,v] = 0,
is such that the induced Og-morphism

v T L (Fo) = Ts

is the anchor map of the Lie algebroid associated to the foliation m.v(m. Y (Fy)) C
Ts.

In this work we generalize this result for holomorphic Lie algebroids.
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Definition 2.4. A differential operator ¢ of order < 1 on a quasi-coherent sheaf
o over X is a morphism of C-modules v : @/ — & such that for each local section
f € Ox(U) there is a local section ¢ f € Ox(U) such that, if my : &|y — |y is
multiplication by f, then

1/)|U omy —Mmyo 1/)|U = My f.
We denote by D)S(1 () the Ox-module of differential operators of order < 1 of 7.

Definition 2.5. Given a differential operator ¥ of order < 1 the map f — ¥ f
determines a derivation of Ox. This derivation is called the symbol of the operator

1.

Remark 2.6. For any torsion free sheaf .%#, the sheaf D<1( Z) has a natural
structure of Lie algebroid, as the commutator of differential operators define a

bracket whose anchor is the symbol.

Remark 2.7. The above definition of the sheaf of differential operator differs from
that of [3, 16.8]. In loc. cit. a differential operator between two sheaves .# and ¥ is
an element of the sheaf Homx (Px(F),¥), where 73)1{( F) is the sheaf of principal
parts of order 1 of F (see [3, 16.7]). in the case .# = ¢4 = Ox we have a short
exact sequence

0— Q% = Py — Ox —0,
tensoring with a sheaf .7 gives the sequence 0 — Q% ® F — PL(F) = Z — 0.
Then applying Homx (—, %) gives the exact sequence

0 — End(F) — Homx (Px(F), F) = Tx @ End(F) — Exty (F,F).
Using the natural map Ox — End(.%) we have the following diagram

0 — &nd(F) ——— DY (F) ——————— = Tx

i | |

0 ——= End(F) ——= Homx (P (F),F) —= Tx @ End(F)
in which the right square is a pull-back diagram.

Lemma 2.8. Let . be a sheaf over X, and let f : R — S be a morphism. Denote
by Y the pull-back of X by f and by f*F the corresponding pull-back of F as a

sheaf over Y. There is a canonical morphism
[*DXN(F) = DN F).

<1(

Proof. To a local section of f®*D3 (%) we can explicitly assign a differential op-

erator on f*.# by the following formula. A local section « of f'D)S(l(ﬁ ) is by

= <Z¢i®%v>,

definition
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where ; ® r; are local sections of D)S(1 (#) ® Ox,, and v is a local section of Ty
such that o (¢; ® r;) = D f(v). Now, given a local section a = ), a; ®@t; of F @Oy

we define
a(a) = Z(U)AC@) X ’I”l'tj +a; ® v(tj)si S f*gz

)

O

Lemma 2.9. Let .% be such that both F and f*.% are reflexive sheaves over X

and'Y respectively, then there is a morphism
Homy (Py (f*7), [*F) = [* (Homx (Px(F), 7)) .
Proof. By [3] there is always a morphism
Homy (Py, Oy ) — f* (’HomX(’Pk,(’)X))

In the case where .Z is locally free we have canonical isomorphisms

Homy (Py (f*F), [*F) = Homy (Py(f*F),0y) @ [*F
and

f* (Homx (Px,0x)) ® f*F = f* (Homx (Px(F),.F)) .
Then from the above morphism between the sheaves of principal parts we get

Homy (P (f*F),0y) @ f*F — f* (Homx(’P)l(,(’)X)) ® f*Z,

which gives us a morphism Homy (Py(f*F), [*F) = f* (Homx (P (F),F)) if
Z is locally free. If more generally % is reflexive then there is an open set U
such that .Z |y is locally free and such that every section of % (U) extends to a
global section, in other words, if j : U — X is the inclusion then we have an
isomorphism j.(#|y) ~ .Z. If also f*.7 is reflexive then f*.7|;-1y is locally free
and ji(f*F|p-1v) = f*7.

Local sections of Homx (P (.F),.7) over an open set V are in natural corre-
spondence with C-linear morphisms .% (V) — % (V') that are differential maps in
the sense of [3]. In particular every section of Homx (P (%), Z#)(U) extends to a
global section. And the same can be said about sections of Homy (P (f*.F), f*.F)

over (f~1U) extending to global sections. Now over f~'U we have a morphism
Homy (Py (f*F), [*F)|s-1v = [* (Homx (Px(F), 7)|v) .
Which extends to a morphism Homy (Py (f*F), f*F) — f* (Homx (Px(F), F))

as wanted. O

Lemma 2.10. Let .F be a reflexive sheaf over X and U C X be an open set
such that F|y is locally free and such that every section of Ox(U) extends to a

global section. Then there is a section End(F) — Ox to the canonical inclusion
Ox — End(F).
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Proof. Let j : U < X be the inclusion, then over U we have End(.F)|y ~ Flu ®
F"|u, so there is the evaluation map |y ® .Z |y — Ox|y, which divided by
the generic rank of % is a section of the inclusion Ox — End(%). As both F ~
J«(F|v) and Ox =~ j.(Ox|y) by hypothesis, we have End(.F) ~ j.(F|v @ F"|v)
from which we get the morphism End(.%) — Ox. O

Definition 2.11. A closed subset Z C X is of relative codimension ¢ over S iff for

every point s € S we have dim Xy —dim Z, = ¢

Theorem 2.12. Let % be a reflexive sheaf over X, flat over S, with X smooth
over S and such that there is an open set U C X with F |y locally free and such that
7 = X\ U is of relative codimension > 2. Let f : R — S be a morphism. Denote
by Xr the pull-back of X by f and by f*F the corresponding pull-back of F as a
sheaf over X flat over R. Then the canonical morphism f*D5'(F) — D)S(ll? (f*F)

is an isomorphism of Lie algebroids.

Proof. Lemma 2.8 gives the existence of a morphism f‘D)%1 (7F)— D)S(; (7). Here
we will show the existence of an inverse to this morphism.

By Lemma 2.9 there is a morphism
Hom(Px,, (f*F), [*F) = f* (Hom(Px(F), F)).

Now, as X \ U is of relative codimension 2 over S and X — S is smooth, then
every section of Ox over U extends to a global section, then we are in condition to
apply Lemma 2.10 and get a splitting End(F#) — Ox. The fact that D%l(ﬁ) is a
pull-back of Hom (P (F), F) by Tx over Tx @ End(.F) gives in turn a splitting
Hom (P (F), F) — D' (F). So we have a commutative diagram

’Hom(P)l{R(f*f),f*ﬁz) — f* (Hom(P}((ﬁ\),ﬁz))

)

DXL (f*7) f*DXN(F).

From the bottom arrow of this diagram and the pull-back property of f’D)S(1 ()

we get a morphism
DXL(f*F) = f*DFN(F).
Because f ‘D§1 (%) is defined as a pull-back, the composition
1*DEF) = DEL(f*F) > f*DE(F)

is the identity, so f*D5'(F) — D)S(ll? (f*%) is a monomorphism. The other com-
position, that is D)S(ll? (f*F) — f'D)S(l(ﬁz) — D)S(ll?(f*ﬁz) gives the central vertical
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morphism in the diagram

0 — End(f*F) — D3, (f*F) — Tx,

| |

0 —= End(f*F) —= D3\ (f*F) —= Tx,,

SO f’D)S(l(ﬁz) — D)S(Il?(f*ﬁz) is also an epimorphism. O

Remark 2.13. If a : & — Tx is a Lie algebroid and a € &/ (U) is a local section,
then the map
’t/JlU : d'U — ﬂ'U

defined by 9|y (a) := {e, —} is both a derivation of the Lie algebra structure of &7 |y
and a differential operator of order < 1. Indeed, we have that for each local section
f € Ox(U) and o € &y we obtain a section ¢f := —a({a,—})(f) € Ox(U).
Thus by the identity

{f ", _} =f {a7 _} - a({av _})(f) " Q.
we conclude that

(v omg)(a) = (my o lu)(a) = myy(a)
for all f € Ox(U) and o € o |p.

We will denote by Dery,;e(7) the sheaf of derivations of the Lie algebra structure
of «7. Tt is a sub-sheaf of the sheaf Endp, (&) of Ox-linear endomorphisms.

Definition 2.14. Given a family of algebroids (&g, {-,}s), we denote by o :
D)S(1 («7) — Tx the symbol map of differential operators, then we have the diagram

o g —— DerLie(ds) M D)S(l —_— (DerLie(,Q/S) M D)S(l (%s)) /JZfS

TX\S TX 7T*T5.

Where the intersection is taken as subsheaves of the sheaf Hom 10 (4 s, 4 5) of
endomorphisms of f~!Og-modules of &75. We define the sheaf u(.g) as

u(/s) = 0L (n 1) € (Derve(/s) N DR (Ss) ) /s
Note that u(<7s) is not a coherent sheaf over X but only a sheaf of f~1Og-modules.

Remark 2.15. The sheaf u(%7g) inherits from Dery;.(7 g) the structure of a sheaf
of Lie algebras. Indeed, as the inclusion «7g C Derpio(</s) is an ideal of Lie
algebras, the Lie bracket [¢), ¢] = 1 o ¢ — ¢ 0 1) passes to the quotient to a bracket
in u(«/g). In particular, we have that Y (< g) is a Lie algebra over I'(S, Og).
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Let us begin by considering an unfolding (<7, {-,-}) of a family of algebroids
(s,{, }s) parametrized by S. Note that, when the unfolding is transversal, we
have that the anchor a : & — Tx determines an isomorphism [a] : &7 /.o ¢ 2 Ty,
so we can consider the morphism v, : 7*Ts — &/ /s defined as the inverse of

the isomorphism determined by the anchor.

Proposition 2.16. If (<7, {-,-}) is transversal to S then v (7~ 'Ts) is a subsheaf
of w(&).

Proof. Note that the statement is making reference to 7~ 'Ts C 7*T, that is the
sheaf of vector fields that are constant along the fibers of 7, also known as basic
vector fields. Then, given a local section s € v /(7 1Ts) C & /o s we need to
show that, for any lifting § of s in &/ we have that {5, 5} C /5. In other words
we need to show that if a is a local section of %75, then a({3,a}) € T'x|s. Locally
in X we can take a(5) of the form Y + Z with Y € Tx|s and Z € n~ ' T5.

Noting W = a(a) € T'x|s we compute

a({s,a}) = [W,a(3)] = WY + Z] = W, Y] = Z(W),

since W(Z) = 0, being Z in 7~ 'Ts. Then a({3,a}) is in Tx|s, and also in a(<),
so it is in a(</g). O

Theorem 2.17. Let X be a non-singular variety, and (/' s,{-,-}s) a family of
algebroids on X parametrized by a scheme of finite type S. There is, for each

scheme S, a1 to 1 correspondence:

transversal unfoldings PR morphisms m=*(Ts) — w(/ s)
of g respecting brackets '

Proof. Morphism associated to an unfolding: given a transversal unfolding <7 of
o/ s we have o7 | o/ ¢ = 7*(Ts). Then, it follows from Proposition 2.16 that we have
a map

Vg N Ts) — u(s).

Now, in order to establish the first part of the correspondence we need to prove
that this is a map of sheaves of 7'Og-Lie algebras. Considere v /(7= (Ts)) C
u(«/g) and we take A C & its pre-image under the morphism &/ — o7 /<7 g. Since
A/ 5 is a subsheaf of u(«/g), then &7 g C A is a Lie ideal, so we have a diagram

A s II gy (771 (T5))
a(%s) a(A) Fﬁl(Ts),

as /s and a(og) are Lie ideals of A and a(A) respectively, and the anchor
a is a morphism of Lie algebras. Then the morphism induced in the quotient

vy (71 (Ts)) = m1(Ts) is also a Lie algebra morphism, so also its inverse v/ is
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a morphism of sheaves of Lie algebras.

Unfolding associated with a morphism: given a morphism of sheaves of Lie algebras

vt Y Ts) = u(s),

we get an extension of sheaves of Lie algebras over 7~ (Og)

0= as—A—1 YTs)—0.
Indeed, the Lie algebra A is defined as the pull-back of the diagram

A 7T71(T5)

| |

Derpic(/s) N D3 (o 5) — u( ).
Moreover, we have a morphism a : A — Tx defined by the composition
A— D' = Tx.

However, A is not a quasi-coherent module over X, to get a module over Ox we
need to modify this sheaf a little. For this we define the sheaf of sub-modules
B C A®,-10, Ox as the quasi-coherent subsheaf generated by the stalks of the
form a® f — fa® 1, where « is a stalk of o/ and f a stalk of Ox. Then we define

9 =gt (A ®7r’105 Ox)/B

The map & can be extended to an Ox-linear map o’ : A® Ox — Tx. As d|p =0,
we get an Ox-linear map &/ — T'x extending the map A — T'x. Also notice that
o/ ¢ is a subsheaf of &/ and that

d/%s = A/ds@@x =7T_1T5®OX =7*Tg.
We can extend the Lie bracket of A to a Lie bracket in A ® Ox by the formula

{fae f,B@gl =00 (f ala)(g) +a®(g-aB)(f)) +{a,Bt& [ g.
With this bracket the subsheaf B is a sheaf of Lie ideals. Therefore we get that .o

has a Lie algebroid structure and it is an unfolding of 7.
The construction of the morphism 771 (Ts) — u(«/ ) associated with an unfold-

ing and of the unfolding associated with the morphism are inverse to each other. [J
Proposition 2.18. m.u(«g) has the structure of a Lie algebroid over S.

Proof. Since u(«/g) is a 7~ !Og-module then mu(e/s) is an Og-module. It is
endowed with a Lie algebra bracket which is the push-forward of the bracket of
u(«/g). Its anchor map can be defined as follows: Taking the natural map D)S(1 —
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T'x one gets by considering the derivation defined by a differential operator we get

a diagram

A § — Derpie(#s) N D' —— u(s)

Tx‘s TX 7T71TS.

When the morphism 7 is proper we have a natural isomorphism m,7*Ts = Tg. The

anchor map of m,u(e/g) is then
Tty : T( el 5) — T 'Tg = Ts.
O

Recall that a flat connection on an algebroid <7 over a space X is a section of

the anchor map s : T'x — &/ respecting Lie brackets. Then we get the following.

Corollary 2.19. There is a 1 to 1 correspondence

{ transversal unfoldings

} — { flat connections on the algebroid mou(<f s) } .
Of JZ{S

In particular to have an unfolding of a family o7 s of algebroids we must have an
epimorphic anchor map on the algebroid m.u(</s). So for any family <7 ¢ we have
a foliation in the base space S induced by the algebroid m.u(</s). Any unfolding

of a restriction of the family /g must be over a leaf of said foliation (compare with
[2))-

Proposition 2.20. Given a pull-back diagram of holomorphic spaces with smooth

vertical arrows

y 2 x

1)
R N S.
And a family /s of algebdroids over m : X — S such that sing(</) has relative

codimension greater than 2 as a subscheme of X/S. We have a canonical morphism
Tret(P° ) — fomau(),
as algebdroids on R.

Proof. By remark 1.4 we have that the sheaf underlying the algebroid ¢°®.</ is ¢*.o7.

By the hypothesis on sing.eZ we can apply Proposition 2.12 which says that we
have an isomorphism ¢'D§1 (o) ~ Dél (¢p*<7). Also, as the Lie algebra structure
of &7 is Og-linear, and Oy = Ox ®o4 Or, then the Lie algebra structure of ¢*.o7
is Op-linear. If a local section ¢ € D;l(d)*ﬁ{)(U) acts on ¢*o7(U) as a derivation
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of the Lie algebra structure, then it acts as a derivation on sections of ¢*.« of the

form s ® 1, so the image of ¢ by the composition
D3 (¢" /) = " DX (o) = ¢ DX ()
is in the subsheaf ¢*(D5' (%) N Derpie(7)). The fact that the diagram

0* DX (o) —= ¢" DX ()

l |

Ty " T'x

commutes implies with the above that we have a morphism u(¢®<«) — ¢*u(«)

which in turn gives a morphism u(¢®«’) — ¢°u(<). The Proposition follows from
the fact that mr.o°u() ~ fomu() O

3. EXAMPLES

3.1. Holomorphic foliations. Let as: %5 — T'x|s a family of singular holomor-
phic foliation over X . An unfolding of #g is a foliation .# on X with anchor
a:.F — Tx such that that

(a) js = ail(ag(jg)).
(b) dim (%) = dim (Fg) + dim (.9).

Now suppose we have .# = L is a line bundle, in other words we have a foliation
by curves. Let v be a local generating section of £ and v a local C-linear endomor-
phism of £, so ¥(v) = fy - v for some local section f, of Ox. If 9 is a derivation
for the Lie algebra structure of £ (which is induced by the inclusion £ C T'x) Then
for any local section g of Ox we get

2/1([’1),9 : U]) = [w(v)vg : U] + [Uv"/}(g : ’U)]v
U(v(g) -v) = [fy -v,9-v]+ [v,0(g - v)]

If 4 is also a differential operator we have ¥ (v(g) - v) — v(g)¥(v) = a(¥)(v(g)) - v,
where o denotes the symbol of ¢). Then we have

Y(v(g) -v) = [fy-v,g-v]+[v,9(g-v)] =
v(g)fy v —0a()(v(g)) - v = fpv(g) - v+v(g)fy-v—v(a()(g)) - v.
)

In other words, [o(¥),v](g) = fyv(g), as this happens for every local section ¢
of Ox then

(1) [o(¥),v] = fy - v ="1(v).
Denoting p : T'x — ©*Ts the projection, lets call for an open set V C X

UL)(V) = {w € (DerLie(ﬁ) n DS (E)) (V), st: poo() € w‘lTs} .
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We have then u(£) = U(L)/L and an inclusion of short exact sequences

2) 0 K U(L) a(U(L)) — 0

L]

O%OX %D)S(l(ﬁ) 7 TX 0.

Notice that equation (1) implies that sections of a(U(L)) act on L as differential
operator, so the top short exact sequence in diagram (2) splits, so every section ¢
of U(L) can be written as ¢ = m,+Y where m, is multiplication by a local section
a of Ox and Y is a local vector field on X. Moreover, equation (1) implies that if
me+Y is a section of U(L) then for a section X of £ we have [V, X] = [V, X]|+a- X,
so a = 0 then the sheaf K of diagram (2) is null. In conclusion we can characterize
u(L) as

wl)= (Y eTx:p(Y)en 'Ts, [Y,L]C L) /L.
In this case the kernel of the algebroid m,u is the Og-linear Lie algebra
9(£) = (Y € Txs: Y. L] € £) /L,

which is the algebra of infinitesimal symmetries of the foliation.

3.2. Sheaf of Lie algebra. Let /g be a family of sheaf of Lie algebra. In this
case the anchor map as = 0. An unfolding of /g is a Lie algebroid &7 on X with
anchor a : &/ — Tx such that
(a) The family of Lie algebroids o/ g, is recovered as &g = a=1(0) = Ker(a).
(b) rank(%) = rank(«/s) + dim (5).
That is, o s is an isotropy sub-Lie algebroid of a Lie algebroid a : & — Tx and
the dimension of the foliation associated this Lie algebroid has dimension equal to
dim (S) by the condition b). We have

0— s — o — Im(a) = 0.

Therefore, if the unfolding is transversal, we have the isomorphism [a] : &/ /% s N
m*Ts. That is Im(a) = 7*Tg, this in turn define a splitting of the short exact
sequence 0 — T'x|s — T'x — 7*Ts — 0.

In particular we can take any sheaf .7 flat over S and take the algebroid /g
to be .# with the structure of an abelian Lie algebra and the zero anchor map. In

this case we get the extension of Lie algebras
0= F > —-n'Ts — 0.

This extension defines an action of 7*Ts on .%#, in particular we have a flat con-
nection on m,.%. The extension also defines an homology clas ¢ on the Chevalley-
Eilenberg cohomology ¢ € H?(n*Ts,.#). Reciprocally, given a splitting of 0 —
Txis = Tx — 7*Ts — 0, and a flat connection V on the quasi-coherent sheaf
m.%, we get a Lie algebra action of 7*Tg on .%. Indeed, let p € X, v be a local
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section of 7*Ts), and z € F,,. As F is a localization of 7 1 (r(p)) We can write =
as y_, fiy; with y; € F n1(n(p)) and f; € Ox p, we can also assume v = g - w with
w € Tg r(py and g € Ox . Now, denoting by ¢ : 7*Ts — Tx the splitting, we can

define the action of 7*Tg in .% as

Vy(z) = Zg (W) (fi)yi + [iVw (yi)-

Now, given an element of the Chevalley-Eilenberg cohomology ¢ € H?(n*Ts, .7 ),
where 7 is taken as a 7*Ts-module with the action just defined, we get an abelian

extension of Lie algebras
0= F = —-1n'Tg — 0.

Which is an unfolding of .% as abelian Lie algebroid with trivial anchor.

3.3. Poisson structures. Let ag : (Qﬁ(ls, {-,}s) = T'x|s be a family of holomor-
phic Poisson structure over a smooth morphism 7 : X — S. A Poisson structure
a:(Q%,{,}) = Tx on X is an unfolding of ags : (Q}XIS, {-,}s) = Txs if Qk‘s
is the pre-image by a of the associated symplectic foliation of (Q}XIS, {-,-}s), since
rank(Q) = rank(Qﬁ(‘S) + dim (9).

We have a diagram

(3) 0—>W*Q§Z—>Q}(—>Q}(‘S—>O
N
mTs Tx Txs 0,

i*

where p :=i* oaoi. This implies that the map p : 7*Qk — 7*Ts induces a Poisson
structure on S by m.p: Qf — Ts.
If the unfolding is transversal, we have that the isomorphism [a] : Q} /Q% g —

7*Ts provides a spliting for the sequence

(4) 0 — 7l ol ol

X|$ 0

which implies that p : 7*QY — 7*Ts is an isomorphism, i.e, m.p : QL — Ts is a
symplectic structure on S.
It would be interesting to study how unfoldings of holomorphic Poisson structures

behave under Morita equivalence [1].

3.4. Sheaf of logarithmic forms. Let X be a smooth projective variety and D an
effective normal crossing divisor on X. Denote ¢ : Tx(—log D) — T'x the inclusion
anchor map. A deformation of the pair (X, D) — S can be interpreted as a family of
Lie algebroids 15 : Tx|s(—log D) — Tx|g, where T'x|g(—log D) = 1(Tx(—log D)) N
Tx|s and 25 := 1]s. Since the rank of T'x|s(—log D) is dim (X) — dim (S) and
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171 (Tx|s(—log D)) = Tx(—log D), then v : Tx(—log D) — Tx is an unfolding of
Tx|s(—1log D).
If the unfolding is transversal, we have the isomorphism

[1] : Tx (—log D)/Tx|s(—log D) = 7*Ts.
Now, we have the holomorphic Bott’s partial connection on T'x (—log D) /T'x|s(— log D)
V : Tx(—log D)/Txs(—log D) — O s(log D) @ [Tx (—log D)/Tx|s(—log D)]

by setting

Vu(q) = ¢([is(u), q)),
where ¢ : Tx(—log D) — T'x(—log D)/Tx|s(—1log D) denotes the projection, ¢ €
Tx(—log D) such that ¢(¢) = ¢ and u € Tx|g(—logD). Since V is flat along
Tx|s(—1log D) and the unfolding is transversal we conclude that it induces a holo-

morphic connection on T given by V := m,(V o [2]).
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