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Abstract Given a eigenvalue M(Z)m of —A in the unit ball By, with Neumann boundary
conditions, we prove that there exists a class D of CY%1_domains, depending on f1g,,, such
that if u is a no trivial solution to the following problem Au + puu = 0in 2, u = 0 on 9€2,
and fag opu = 0,with Q2 € D,and u = M(z)m + o(1), then Q2 is a ball. Here  is a eigenvalue
of —A in 2, with Neumann boundary conditions.

Mathematics Subject Classification 35N05

1 Introduction

The objective of the present paper is to study a overdetermined eigenvalue problem, known
in literature as Schiffer conjecture. The latter can be formulated as follows: the only domain
€2 such that there exists a no trivial solution ¢ to the problem

Ap+pp =0 in £, (1)
onp =0 on 0%, '
with
¢ =c on 0%, (1.2)

is aball. Here u and ¢ are respectively a eigenvalue and a corresponding eigenfunction of —A
with Neumann boundary conditions (dp¢ is the external normal derivative to the boundary
02), Q2 is a sufficiently smooth bounded domain in RN, with N > 2,andcisa given constant.
By a direct calculation we have that

¢ = Ip(omr) in By,
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306 B. Canuto

solves (1.1), (1.2), when 2 = Bj,and u = ,u%m, for some m > 1. Here r = |x|, | - | denoting
the Euclidean norm in RY, By is the ball of radius 1, centered at zero, and JLom 18 the mM-zero
of the first derivative of the so-called N-dimensional zero-order Bessel function of first kind
Iy, i.e. I(’)(pco,,,) = 0, the symbol " denoting the ordinary derivative (see Sect. 2 for more
details). Berenstein [1] gives a positive answer to the conjecture by supposing that there exist
infinitely many pairs (u,, ¢,) satisfying (1.1), (1.2) in R2. This result has been extended for
N > 3 by Berenstein and Yang [2].

We begin by observing that (see Liu [6]) the following change of variable
1
u=—(@-—c) in Q, (1.3)
ue

implies that ¢ solves (1.1), (1.2) if and only if u solves

oy
with
ou =0 on 9Q. (1.5)
We have that
W0 L (M - 1) in B, (1.6)
UG \ Lo(om)

solves (1.4), (1.5), when 2 = By, and u = ,u(z)m, for some m > 1. We point out that since
problems (1.1), (1.2), and (1.4), (1.5), are invariant up to isometries and up to homotheties
of RY, we have that

@ = Io(pom|x — x0l/1 + R) in Byyg(xo),

and

Lo _ U+ R (Io(uom x — xol /1 4+ R)
W To(pom/1 + R)
solve as well respectively (1.1), (1.2) and (1.4), (1.5), when = Bj4r(xp), and u =
13, /(1 + R)?, where By g(xo) denotes the ball centered at xo, of radius 1 + R.

By following [3,4], let us define by E the vector space of C>*-functions defined on the
unit sphere d By, centered at zero, i.e.

E ={k € C*“(B))),

—1) in  Biyr(xo),

a € (0,1).Fork € E,let Qi be adomain whose boundary 92k can be written as perturbation
of the unit sphere d B, i.e.

0% = {x = (1 +k)y,y € 0B} (1.7)
(in particular for k = 0 on d By, 029 = 9 B1). We begin by proving the following

Theorem 1.1 Let ¢ be a no trivial solution to (1.1), (1.2), when Q = S, for some k € E.
Then w is a perturbation ofp%m,for somem > 1, i.e.

1= gy, +o(D),
and ¢ is a perturbation of lo(tom-), i.e.

@ = Io(jrom*) + o(1).
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The N-dimensional Schiffer conjecture 307

Being problem (1.4), (1.5) equivalent, by (1.3), to (1.1), (1.2), in what follows we will
study problem (1.4), (1.5).

Let u be a eigenvalue of —A in €. Let assume that p has the form u = //,%m + o(1), for
some m > 1. Let us denote by @ the operator

o E— R,
defined by
® (k) = / 8n”para
3

where up,; is a particular solution to (1.4), when Q = Q (upar = u© when Q = B}). Now,
since if u solves (1.4), (1.5), when 2 = 2, it follows that ® (k) = 0, we will concentrate our
attention on studying the sign of the operator ® in a neighborhood of 0 in E. By observing
that the sphere of radius 1 4 R, centered at the point xo € RY, is parameterized by

dBi11r(x0) = {x = (1 + kr.x,)y,y € B1},

where kg y, is given by

Froao() =0y — 1+ (1 + R +1x0 - ¥ = [xol2 (1.8)

(for R, xo such that (1 + R)? + |xo - y|> — |x0|> = 0 on 8B;), we have that ® vanishes
identically on the variety

M = {k; k =%R,x0}

(we observe that ER,XO — 01in E, as R, xo — 0). So the best one can expect is that ® is
different to 0 in O\ M, for some neighborhood O of 0 in E.
A function f € E can be written, in Fourier series expansion, as

dp
F=F0+>.> fra¥pqg on 9B,

p>1g=1

where fy = ﬁ fa B, f,and fp, = ﬁ fa B, fY)q are respectively the zero-order and the
p-order Fourier coefficient of f, and Y, is the spherical harmonic of degree p. We say that
f has the frequency p, if the p-order coefficient of f is different to zero, i.e. fp, # 0, for
some g € {1, ...,d),}. On the other hand we say that f doesn’t have the frequency p, if the
p-order coefficient of f is equal to zero, i.e. f,, =O0forallg € {1,...,d,}.

By studying the behavior of the operator ® at 0, we prove in a first step that if the eigenvalue
p%m is simple, i.e.

L ={p e N; I,(1tom) = 0}

is a empty set of positive integers, then & is differentiable at 0 in E, and 0 is a critical point
of @ in E (see Theorem 5.2). On the other hand if the eigenvalue M(%m is singular, i.e. L is
a no empty (finite) set [whose cardinality depends on the multiplicity of the eigenvalue //,(z)m
(see Sect. 2 for more details)], then @ is differentiable at 0 in | J pel E,, and 0 is a critical

point of ® in UpeL E,, where

E, =1k € E; kp, =0} (1.9)
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308 B. Canuto

is the vector space of functions k € E which don’t have the frequency p. By studying the
second derivative of ® at 0, we can show

Theorem 1.2 Given a oy, for some m > 1, there exists a neighborhood O of 0 in E, and
two orthogonal spaces V, V' in E, with O, V, V' depending on pwom, such that ® is positive
in O\{0} NV, and it is negative in O\{0} N V',

As corollary of Theorem 1.2, we can prove the following

Theorem 1.3 Given a juop, for somem > 1, there exists a class D of C**-domains, depend-
ing on o, such that if u is a no trivial solution to (1.4), and

/8,,14 =0,
Elo}
with Q € D, and n = M%m 4+ o0(1), then Q = By, u = ,u%m, andu = u® in B.

Since the proof of Theorem 1.3 is short, and it doesn’t require particular technical tools,
we prove it now.

Proof of Theorem 1.3 Let us denote by G the class of domains €2, defined by
G={(Q;keONVUVH},
with O, V, and V' as in Theorem 1.2. Let X be the class of operators ¢, defined by

D =ih¢p=t00},

for some homothety 7 and isometry o of R¥ . Finally let us denote by D the class of domains
2, defined by

D = {2 Q=9¢(Qp},

for Q; € G, and ¢ € X. Let assume that u solves (1.4), and fGQ onu = 0, with Q € D, and
n= [L(z)m + o(1). Since problem (1.4) is invariant up to isometries and to homotheties, we
have that fBQk Onu = 0, for some k € O N (V U V’). Now by writing « as

U =Upy +up in K,

where u;, solves the corresponding homogenous problem, and since by Fredholm theorem
—1 € ker(A + M)l in Q, by divergence theorem we obtain

1 1
0:/uh:——/Auh:——/8nuh.
m m

Q Q EIo)
Then we have
0= / OplU = / Onlpar,
EIeRs Eleft
i.e. P(k) = 0, which implies that k = 0, since, by Theorem 1.2, ® has a sign in O\{0} N
(VuVv). O

Finally by using (1.3), and Theorem 1.3, the following theorem holds true:
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The N-dimensional Schiffer conjecture 309

Theorem 1.4 Given a jiom, for some m > 1, there exists a class D of C>“-domains,
depending on Loy, such that if ¢ is a no trivial solution to (1.1), (1.2), with Q € D, and
1= 15, +o(1), then @ = By, jt = p5,,, and ¢ = Io(jomr) in By.

We observe that E through the paper is the space of functions of class C>* on 9 B; (this
means that we consider only regular perturbations of the unit sphere), but we will prove that
the same conclusions hold true in the case where E is the space of functions of class C%! on
dBj1, i.e. the boundary 02 is of Lipschitz class.

We recall that in a article appeared in 1976, S. A. Williams [8] proves that Schiffer
conjecture is related to the celebrated Pompeiu conjecture. In a series of papers appeared in
1929 the Roumanian mathematician Pompeiu proposes the following problem. We say that
a bounded domain 2 has Pompeiu property if and only if the only continuous function f on
RN, N > 2, such that

/f:O, forall o€ X,

a ()

is the function f = 0, where & denotes the set of isometries of RY. Pompeiu conjecture
says that among bounded domains of RY, only balls fail to have Pompeiu property. The
connection between Schiffer and Pompeiu conjecture asserts that the failure of the Pompeiu
property is equivalent to the existence of a no trivial solution to (1.1), (1.2).

A stability result for Pompeiu problem has been proved by F. Segala [7]. By analyzing
the asymptotic behavior of the Fourier transform of the characteristic function xgq, Segala
proves, for N = 2, that if 2 is a domain with Pompeiu property, then all sufficiently small
homotheties of €2 have Pompeiu property as well.

It is of interest to recall a application of Pompeiu conjecture. This occurs for example in
medical imaging, a technic which consists in determining mass density of a organ in a human
body, by measuring the variation of intensity of a X-ray crossing through it. More precisely
Pompeiu conjecture says that knowledge of all possible values of variation of intensity of
the X-ray (i.e. all isometries o (£2) € X) determines uniquely, up to balls, the mass density
of the organ. For further references concerning Pompeiu conjecture, see [9].

The paper is organized as follows: in the next section we give some preliminaries and
notations used through the paper. In Sect. 3 we prove Theorem 1.1. In Sects. 4 and 5 we give,
via perturbation methods, the first-order approximation, in a neighborhood of 0, respectively
of the eigenvalue u and of the operator ®. In Sects. 6 and 7 we give the second-order
approximation of p and ® respectively. In Sect. 8 we prove Theorem 1.2. Finally in Sect. 9
we consider Lipschitz case.

2 Preliminaries and notations

Let us denote by Bj the unit ball in RV, centered at zero. By B we define the Euclidean
closure of Bj. Let I; be the so-called N-dimensional £-order Bessel function of first kind,
ie.

Li(r) =r""Joye(r), 2.1
N _

where v = 5 — 1, and J, ;¢ is the well-known v + £ -order Bessel function of the first kind
(we observe that for N = 2, I; coincides with the £-order Bessel function Jy). I, solves the
following Bessel equation
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310 B. Canuto

—1 €+ N-2
Q+(L~Li7—J)Q:0mR. (2.2)
r

N
1]+

By ptem we denote the m™-zero of the first derivative of the £-order Bessel function I, i.e.
I} (pem) = 0. We recall in particular that (see Lemma 3.5 in [3])

Iy=-I; in R
This yields that
Hom = )\lma

where A1,, denotes the m™M-zero of the one-order Bessel function I;, i.e. I; (A;) = 0.

Let (i,)n>1 be the sequence, in increasing order, of eigenvalues of —A in B with Neu-
mann boundary conditions. A eigenvalue u,, for some n € N, coincides, for some integer
£ > 0,and m > 1, with u%m. The corresponding eigenfunctions can be written in polar
coordinates (up to a multiplicative constant) as

o1 = Ie(uemr)Yer (6),
©dy = Le(pemr)Yea, (0),

Ppy = Ip(MZmV)qu ),

where p € L, and L is a (eventually empty) finite set (by Fredholm theorem) of positive

integers such that / [’, (tem) = 0. We numerate p, with natural numbers dg + 1, ..., n. The
number of eigenfunctions is called multiplicity of the eigenvalue u%m .Here Y, is the spherical
harmonic of degree s, witht =1, ..., d,, and
P 1 if s=0, 23)
s =1 Qs+N-2)(s+N=3)! . .
s Qs#N=2)(sTN-3)! s!(N)SzJ;! L T

For example, since d; = N, the multiplicity of the eigenvalue ufm is at least equal to N.
Let k be a C%“-extension of k into Bj. Let us call A the Jacobian matrix of change of
variables

x=(4+k)y, yeB, 2.4

where we have denoted k by k. The matrix A is given by

14+ k+ y101k yiook - y10nk

o1k 1+k+ yrodk --- ook

Aij = : . : :
ynalk 1+k+ynank

Following [4], the external unit normal vector at the point x = (1 + k)y € €2 is given by

AT —1
n((1+by) = 2 @5)
G ly-y
where G~! is the inverse of the matrix G, and G = AT A. We write the matrix G as

G=1Iv+G"+G?,
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The N-dimensional Schiffer conjecture 311

where Iy is the N -order identity matrix, and the matrix G and G® depend respectively lin-
early and quadratically on k and Vk. The matrix GV and G® (see [4]) are given respectively
by

2x101k x102k 4+ x201k --- x10nk + xn01k

| x102k + x001k 2xp02k - - xp0nk + xN02k
G} =2kly + : L .6
xijoyk +xyortk - 2xnONk
and
2x101k x100k + x001k - - - x10nk + xn01k
5 x102k + x01k 2xp00k - -+ x20nk + xn 02k
Gy =Ky +k : . :
xioyk +xyotk e 2xyonk
(01k)% 31kdak --- 9 kdyk
okdik (92k)? --- Drkdnk
+lx| ) . ) (2.7

3 Proof of Theorem 1.1

Let 1 be a eigenvalue of —A in €2, and let ¢ be a corresponding no trivial eigenfunction.
We can assume that the eigenvalue p can be written as

1= g, +o(l),
for some £ > 0, and m > 1. By change of variable (2.4), denoting by
¢ =e¢((1+ky) in By,
and using (2.5), we have that
anp((L+K)y) = (ADHTIVG - n((1 +k)y)
=G 'y-y)267'Vg-y on 3B.
By a direct calculation we obtain that the function ¢ solves

div(y/8G~'Vg) + 1 /gg =0 in By, 3.1
G 'Vg-n=0 on 9B;. '

Similarly, let us define by
i(y) =u((1+k)y) in By,
where u solves (1.4), when Q = Q. The function u solves

[div(@G‘vm + /g =—/g in B,

u=0 on 0Bj. 3.2)

Let us denote u by u, ¢ by ¢, and y by x. We have that a solution u to (3.2) can be written as

1 (1
S (M = 1) +ul® +o(l) in B, (3.3)
o \ LoGiem)
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312 B. Canuto

where the function
2 (Io(l/«emr) _ 1)
12, \ o(tem)

is a particular solution to the (unperturbed) problem

Au—l—u%mu:—l in B,
u=20 on dBjp,

and uzo) solves the corresponding homogenous unperturbed problem. We observe that u](qo) =
0, if the kernel ker(A + u%m) = {0} in B; (with Dirichlet boundary conditions). Otherwise,
if the kernel ker(A + //L%m) # {0} in By, i.e.

Mem = Aerm' s

for some ¢, ¢’ (with £ # £'), then u}lo) has the form (in polar coordinates)

dyr d,,
0
uy = opg Lo (emr)Yeg(0) + > > ctpg Ly(iemr) Y pg (0.
g=1 pel g=1

where
I'={peN;I,(iem) =0}

is a (eventually empty) finite set of positive integers, and a1, ..., apq,, ¢p; € R. We
observe finally that in order that (3.3 ) makes sense in what follows we will suppose that

tem & {Aontn=1-
Proof of Theorem 1.1 We have
1= 1, +o(l),
for some £ > 0, and m > 1. Similarly we have
p=¢91o) in B,

where (p(o) is a eigenfunction to (1.1), when p = ,u%m, and 2 = Bj. By (1.3), we have that
u can be written as

1
u:T(go(O)—c)—l—o(l) in Bj.

tm

By (3.3), the zero-order term of u is given by
1 (M _ 1) - u®
12 \ ToGtem) "

1 I . 1
L ( o(tem) 1) +u® = (O - o),
Wi \ Lo(tbem)

Then we obtain

O = JoWem) o ©
To(iem)

In particular we have
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O 16 (teem)
H T Gam)

g +cul, onu” on 9B (3.4)

Now since Bngo(o) = 0ondBj,andc # 0, by integrating (3.4) over d By, we obtain 16 (em) =
0,1.e. gm = MHom- SO u;lo) becomes

N dp
0
uﬁ,) = Zalqll (omr)Y14(0) + ZZanlp(uomr)qu(@.
g=1 pel g=1

Now by multiplying (3.4) by Y;;(#), and integrating over dBj, we obtain o;; = 0, for
i=1,j=1,...,N,andforiel,j=1,...,d;. ]

4 The first-order approximation of the eigenvalue u
By writing the matrix ﬁG’l in (3.1) as

V3G =1y + K, @.1)
we have that (3.1) can be written as (we denote ¢ by ¢)

Ap +div(KVe) + pn/gp =0 in B, 42)
G 'Vep-n=0 on 0JBj. ’
In particular we obtain

\/glN—G:KG
=KD+ KDy +GD +GP) 4 ...,

where K1 and K denote respectively the one-order and the second-order approximation
of the matrix K (the matrix G and G® are given respectively by (2.6) and (2.7)). One can
verify that

VE=U0+0N + 1+ 1y Vi
This yields that the matrix
KD = ¢y — GO, (4.3)
where g1, the one-order approximation of /&, 1s given by
g(l) = Nk +x - Vk,

and that the matrix

K® — g(Z)IN —G? _ K(I)G(l), 4.4)
where g, the second-order approximation of /&, 1s given by

N(N —1
¢?® = ¥k2 + (N — Dkx - Vk.

By (4.1), (4.3), and (4.4) we obtain
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Iy 1
Gl'="Z+4+ —KYV+KPD)+...
NG

=Iy—GW — g2y
+g(2)IN GO M2 .. 4.5)

Let assume that the eigenvalue u is a perturbation of M(z)m, for some m > 1, i.e. u has the
form

= 1, + o(1).
We say that the eigenvalue I’L(%m is simple, if
L ={peN; I (uom) =0}
is aempty set of positive integers. In this case the eigenspace is generated by the eigenfunction
¢ = Io(ponr)- (4.6)

On the other hand we say that the eigenvalue ,u(z)m is singular, if L is a no empty (finite) set
of positive integers. In this case the eigenspace is generated by the eigenfunctions

W(O) = lo(pomr),
0% = Ip(lonr)Y g ),

with p € L. By numerating p, with natural numbers 2, 3, ..., n, we call multiplicity of u%m
the number n.
Now if u(z)m is simple, we can prove that p can be written as

= g, + 1D +o(kl) in E. (4.7)

On the other hand if ,u(z)m is singular, then u has the same expression as above in | pel Ep,
where E,, defined in (1.9), is the space of functions k which don’t have the frequency p.

Theorem 4.1 Let [L(z)m be simple, then p can be written as (4.7), where
//,(1) = —2k0,u(2)m in E.

If /,Lom is singular, the same holds by changing E with the space | peL E

Proof of Theorem 4.1 Let us assume that u can be written as
= g, + 1D +o(kl) in E.

Let ¢ be a corresponding eigenfunction, which, we suppose, can be written as
¢ =00 +¢V +o(lkl) in E,

where (p(o) = Ip(ftom 7). By writing the term div(K ¢) + 1./g¢ in (4.2) as

div(KVe) + J/Zue 438)
= div(KD + K)V (e + D)) + up + eV + ePypp +-- -,

one can verify that the one-order terms in (4.8) are
div(KDOVe®) 4 12 oM 4 [ WO 4 2 (1,0

By taking the one-order terms in (3.1), and using (4.5), we obtain that ¢! solves
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[A¢(1)+“3m¢(])=f“’ in B, 4.9)

oneM =0 on 4B

(since GPVe® . n = g, GVx -x1(ptom) = 0 on 3 By), where

FO = @ 2,0 _ iy (K Dyp©), (4.10)
One can verify that

w=x- V(p(o)k
solves
Aw + pgw = —pg,g Ve ® — div(k Ve ®).
So we look for ¢! in the form
oV =x VoV + 4,
where ¢ solves
AGy + g, p1 = —n V@, (4.11)

By writing ¢ as

d

P
§1 = ao() Io(ionr) + D D apg Lp(iomr)Y pg (0),
p=lg=1

where ag solves
ag(r) + qo(Mah(ry = =™ in (0, 1),

by a direct calculation we have that

1§ (omr)r™ 1.

Since the integral (see [4])

1

_ 1
/ 1§ (omr)r™ 1 = Eléwo,n), (4.12)
0

it follows that

Now we have that

if and only if
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o
Il

— 14 11 (ttom)k + O
dP
— 4 T (omVk0 = 1 1§ (om) D D Kpg ¥ g (0)
p=lg=1

d
(D 4
w
== To(kom) + om Z‘; Z}am I, (10m) Y pg (6).
p=lq=

If u(z)m is simple, by taking respectively the zero-order and the p-order Fourier coefficient,
we obtain

M _

uh = =2k,

and
Apg = MOmkqu{(MOm)/II/;(MOm)-

On the other hand if ,u%m is singular, it must be k,; = 0, for p € L, i.e. /,L(l) has the desired
form in the space ¢/, E -
Next we prove that

= gy — 1 = o(Ik) as &k — 0,
and similarly

0 — 0@ — oW =o(k]) as k— 0.
By defining by

ﬁ=M_M(2)m_M(])7 and $=¢—¢(0)—¢(]),

O

by following [4] one can prove that it = o(||k||), and ”‘Z”CM(EI) = o(|lk]]).

5 The first-order approximation of the operator ®

We recall that problem (1.4) cannot have solutions or, if a solution exists, it cannot be unique.
This happens all times the kernel

ker(A +p) # {0} in Q,

(with Dirichlet boundary conditions). In particular by Fredholm theorem there exists a solu-
tion u to (1.4) if and only if —1 € ker(A 4 ). In this case u can be written as

U = Upar + Up,
where up,, is a particular solution to (1.4) such that
Upar € ker(A + )t in Q, (5.1

and uy, solves the corresponding homogenous problem. We observe that u, is unique and
can be written as

p
Upar = E . E %pgVpg>

peF€ g=1
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{? w’z % is the p-order Fourier coefficient of u, A, and v/, are respectively the

where ap, =
pth-eigenvalue and a corresponding eigenfunction of —A in €2, and n, is the dimension of
the corresponding eigenspace. F is a finite set of integer (by Fredholm theorem), and F©
is the complementary of F. On the other hand if the kernel ker(A + n) = {0} in 2, then a

solution u exists and is unique. Let us denote by @ the following operator

o E+— R,
defined by
D (k) := / Onltpar- (5.2)
02

Here up,, is a particular solution to (1.4), verifying (5.1), when = €, and p has the form
n = pug,, +o(1). The operator ® is well-defined, since we suppose that a solution u exists
for k lying in some neighborhood O of 0 in E. By using (2.4), the function u defined by

i(y) =u((14k)y) inBi,

solves

div(/gG~'Vi) + n /g = — /g in By,
- (5.3)

u=>0 on 0B.
Moreover, since by (2.5) we have that

onu((1+K)y) =G~y »7?G™'Vii -y ondB,

we obtain

D (k) = /(G“y )26 Vg - 33,

0B

where Upar () = tpar (1 +k)y), and /¢ is the surface element of the new variable y. Let us
denote Upar by Upar, and y by x. Before proceeding to calculate the first-order derivative of
the operator ® at 0, we need some preliminary lemmas.

Lemma 5.1 Let u = /“L%m + o(1), then
Upar —> u®  inE  as k— 0.
Proof of Lemma 5.1 See [4]. O

Theorem 5.2 Let ,u%m be simple. Then ® is differentiable at 0 in E. Moreover 0 is a critical
pointof ® in E, i.e.

d®0)=0 in E.
If/,LO is singular, the same holds true by changing E with the space UpeL
Proof of Theorem 5.2 Let assume that :“()m is simple. Then p has the form
= g, + 1D +o(kl) in E.
Assume that up,,; can be written as
upar = u@ +ull) +o(lk]) in E. (5.4)

By following step by step (4.8), we have
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div(K Vitpar) + /2 (ttpar + 1) = gD (15, @ + ul) (5.5)
V@@ +ul)) + diviK Ove©@) + -
The one-order terms in (5.5) are

gV + 15, u ) + g uley + 1 Pu® + div(k Vv ®).

By taking the one-order terms in (5.9), we obtain that ul(,!,)r solves

ud =0 on 0B, (5.6)

[Au(l) + ,u%mu(l) =fD in By,
and £ is given by
FO = 0,0 (g4 2 O iy Dy ©),

By Lemma 3.2 in [4], we have that ul(,?r can be written as

O I (om?)

= rk + v, 5.7
par om Lo (Lom)

where v is the radial solution to

[ Av+pd v=—nPu® in B, 5.8)

v=20 on 0B.
By (4.5) and (5.4), it follows that

(k) = /(G_lx B Al CaA A A
3B

+ / (G 'x0)TPGTIVUl) 2 E +
JB
= / (1 = 2k — 200k) "2 @nully = GOVU) - x) + - (5.9)
3B
By taking the one-order terms in (5.9), we obtain that the first-order derivative of ® at O is
given by
dD) | k) = [ Oqu'l).
n*par
dB]
By writing the radial solution v to (5.8) as
v = ao(r)lo(pomr),

by a direct calculation we have that

1
2k To(1om _
i) = 7o [ () gy
10 (om) 0

Io(1eom)

Since the integral (see [4])
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1
/ TIo(pomr)r" 1 =0,
0
by (4.12) we obtain
v = ag()Io(om) = ko.

Finally we have

(@D (0) | k) = — 1tom) /k+ko/ o,

To(om)
0B
where in the last step we use that 11 EZ g’"; =1 O

In what follows we will assume that the zero-order Fourier coefficient of & is zero, i.e.

9By
0B

6 The second-order approximation of the eigenvalue p

In this section we calculate the second-order approximation of the eigenvalue p.
Theorem 6.1 Let M%m be simple, then | can be written as
1= g, + 1 +o(kIP) inE,

where

n® = / For) Io(paomr)r™ ! GVve" .n inE,

B Om) 10(M0m)|331|38/
1

where fy is the zero-order Fourier coefficient of the function
f=- 'u 8(1)90(1) diV(K(l)Vga(l))
_ ’u g(2)¢(0) diV(K(z)V(p(O)).

If //,%m is singular, the same holds true by changing E with the space UpeLUL’ Ep. In
particular, for N = 2, L' is the following (eventually empty) set of positive integers

={peN;2pel}. 6.1)
Proof of Theorem 6.1 Let us assume that p is simple and it can be written as
1= pg, + 1 +o(k|?) in E.
Let ¢ be a corresponding eigenfunction, which, we suppose, has the form
¢ =00+ +90? +o(Ik|?) in E.
By taking the second-order terms in (3.1), and using (4.5), we have that ©@ solves

‘ Ap® + M @ = r®@ in B,

g — G(I)Vgo(l) n=0 on 9B 6.2)
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(since HOVe©® .n = 0on dB;, H® being the second-order approximation of the matrix
G, where £ is given by

f(z) — _M(2)(p(0) _ I/L(Z)mg(])(/)(l) _ diV(K(l)V(p(l)) 6.3)
_M%mg(Z)QD(O) _ div(K(z)Vgp(O)).

We look for ¢® in the form

0@ =4+ GO,
where w solves

Aw + u%mw = f,
with f given by

f =3,V —div(k V) (6.4)
—M(Z)mg(z)w(o) _ diV(K(Z)Vgo(O)),

and where $® solves
AJ(Z) + M(Z) 9’5(2) — _M(Z)(p(o)
" .
By following the proof of Theorem 4.1, we obtain

d,

()
~ Iz
09 = === lo(tom) + stom 2, D @pg 1 (1tom)Ypg (©).
pzlg=1

By passing in polar coordinates, we write w as

dp
w=wo(r) + D D wpg(r)Ypy(6),

p=1g=1

where wq solves

" N -1 1 2 _ .
w (r) + fwo(r) + nonwo(r) = fo(r) in (0, 1),
and where fj is the zero-order Fourier coefficient of f. By writing wq as
wo(r) = bo(r)Io(omr),

by a direct calculation we obtain

1
By(1) = ——— / For) Io(pomr)r™N .
0 15 om)

Now we have that
me® =GPV .n=0 on 9B,

if and only if
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dp
0 = bo(DIo(om) + D D~ why (DY g (6) (6.5)
pzlg=1
n® Z 1 1
_TIO(I/LOm) + Lom Z Zapqlll;(MOm)qu(G) - G( )V(p( ). n.
p=lg=1
By taking the zero-order Fourier coefficient we obtain
n® = / Ao oo = 1 [ 690
m
I()( Om) To(pom)10 Bi|
3B
On the other hand if ,u%m is singular, (6.5) holds true if and only if
/(8nw -~ GYveM . nyy,, =0 for pelL. (6.6)
3B,
Before proceeding with the proof of the theorem, we need the following O

Lemma 6.2 Let ,u%m be singular, then for p € L we have that

ds I "
/G(l)vﬁﬂ(l) . pq = MOm ](U«Om)zz gt[ EMO ) ( + N — 2)/

s
dBy s¢l 1=l 9B

Proof of Lemma 6.2 Since for y € RV we have
Gy =2ky +x-yVk+y- Vkx,
it follows that
GVve .n=veM.Vk on 9B.

By passing in polar coordinates it follows that

N—1
Vo Vk = dapVank + > Gy, 0,00,k
i=1

Ypy in | Es.

selL

(6.7)
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where G~! is the inverse matrix of the N — 1 diagonal matrix G, G being the Euclidean
metric tensor induced on the sphere d B;. We obtain

3,0V g,k = M(Jmll(/LOm)zz s (ttom) /1, (om) (g, Ysr)®
s¢L t=1
dy

+200m 1{ (om) D D Kstksn s (tom)/ T, (1om) g, Ys: 06, Yen.
s¢L t#n=1

By orthogonality of spherical harmonics, we obtain

/ GOV . n

9B
o S S LGt L 10) [ v 6
s¢L t=1 9B,

By recalling that spherical harmonics Y; solve
L _
Edlv(\/gG VYq) = —s(s + N = 2)Yy,,
where g = | det G|, by multiplying by Y, Y, and integrating over d By, we obtain

/ —div(,/gG~ VYS,)YS,YM:—S(S-I—N 2)/ qu.

0B B

Now, by divergence theorem and orthogonality of spherical harmonics (by recalling that
p € L,and s ¢ L), it follows that the surface integral

I - . -
/ﬁdw(\/gG IV Y5) Y5t Yy =/dlv(¢§c IVY5) Yt Yy

3B K
=— / G VY VY4 Y g
3B
Then we have
/ G VY - VY Ypy = s(s + N —2) / Y2V,
BB| 83]
which, by (6.8), yields (6.7). ]
Next we conclude the proof of Theorem 6.1. Since ¢ = x - Vo @k + (| where

dp

PV = pom I (om) DD kepg Iy (tomr) /T, (1om) Y pg 0).,
pzlqg=1

and since x - Vg(Vk solves
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A V@R + gy x - VGV k = —pg,, 8V — div(k VG,
we can write w as
w=x -VgWVk+ 1w,
where w solves

A+ pd i = —pd ¢Vx Ve Ok — diviK OV (x - Vo Ok))
_M%mg(z)w(o) _ diV(K(z)V(p(O)).

Then we obtain
daw = 0@k 4 025 Vk + 003V 0nk + Oni

dy ds
= 105, T{ (ttom) D D kst Yok + 13 I (om) D D kst I (tom) /I (tom) Ysrk
s¢L t=1 s¢L t=1

+0n3Vonk + 9 on dB.

Since d,w doesn’t depend on the extension of k into By, it follows that the term 3,31 8,k
must simplify with some terms of d,w. For sake of simplicity we continue to define by opw
the new term dpw. By (2.2) it follows that

ds

dnw = —(N —2)ud I} (jom) szstystk
s¢L t=1

dg
— 43 T (ttom) D D st I (ttom) / T (ttom) Ysik
s¢L t=1
d,

+Fpom ] (mom) D, D (s + N = 20k Is (ttom)/ I, (1om) Ysek + b on 9By
s¢L t=1

By orthogonality of spherical harmonics, we obtain

d\\
/ 3nwypq = —(N 72)/}‘%”1[]/(#0141)22/%2, / Yszlqu

B sgLi=1 g3

ds
— 3 11 (ttom) D D ke s (eom) /T, (1om) / A
s¢L t=1 9B,
ds
Fpom I (om) D D" s + N = 2)kz I (om) /I, (tom) / YiYp, + / DY pg.

s¢L1=1 9B, 9B,

Comparing with (6.7), we obtain
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/(a,,w - GYvp . nyy,,
JdB)

d.\'
=~V = 2 o XK [ ¥
s¢L t=1 9B

dg
— m D rom) DD k3 s (eom)/ I (ttom) / Y2Ype + / Y py.
s¢L t=1 9B, 9B,
Since Y, szz’ for N = 2, written in Fourier series expansion, has only even terms with frequency
2s, it follows that (6.6) holds true for all integers g € {1, ...,d,}if 25 ¢ L. On the other
hand if 25 € L, then (6.6) holds true for all integers g € {1, ..., d,} such that Y, is odd,
while for ¢ such that Y, is not odd, it must be k;; = 0. O

7 The second-order approximation of the operator &
In order to calculate the second-order derivative of the operator @ at 0, we need the second-

order approximation of the particular solution up,;. Let us write up,, in polar coordinates
as

dp
Upar = uparo(r) + Z Z Upar ,, (r)qu(6)7
p=lg=1
—_ _1 _ 1
where, as usual, upar, (r) = [0BT] faBl Upar (1, 0) and Upar,, = T3] f UparY pg are respec-

9B
tively the zero-order and the p-order Fourier coefficient of upy. Let us define by

d,
Upar = Z Z Upar ,, (r)qu @)

p=lg=1

the non-radial part of ;.

Theorem 7.1 Let ,u%m be simple. Then the operator ® is two-times differentiable at 0 in E.
Moreover we have

dp
(AP DO | k) = prom D D Koy Lp(eom) /T (1om) in E. (7.1)
p=lg=1

If /,L(Z)m is singular, then
dp
(OO [ k) = pom D D kg Ip(om)/ Ty (pow) in | ) Ep.
p¢L g=1 peLUL’
Proof of Theorem 7.1 Let ,u(z)m be simple. Then p has the form

= 1, + 1 +o([k|*) in E.
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Let assume that upyr,, can be written as

tpary = u® +ugy +uigy +o(Ik|?) in E.

parg parg

By taking the second-order terms of the zero-order coefficient in (5.3), we obtain that uéﬁlo

is the radial solution to

2) .
Au® + ,u%mu(z) = fO( ) in By, (12)
u® =0 on 9B, '
where f0(2) is the zero-order Fourier coefficient of the function
£ = —u@u® — 2 ey div(k Ovull))
@ 2, ¢@uO _div(KOVu©).
Now we prove that @ is two-times differentiable at 0 in £. We have
(k) = /(G*‘x )26 (Vupar, + Vopar) - X8 + - (7.3)
0B
= /(1 + k + k) Bnttpary + nvpar — G (Vitpar, + Vopar) - x)y/Z+ -+ .
B

where in the last step we use that the surface element \/§ is given by
VZ=1+ (N =Dk +o(lkll) ondB.
By taking the second-order terms in (7.3), we obtain that the second-order derivative of ® at

0 is given by

(d>®(0)k | k) = / a.,uf,?ro+ / (k + Onk) dnuel L)
9B, 9B

+(N—1)/kanu]g;}—/c;(”w]g;}-x. (74)
dB; B

Since

GVVuS) - x = 2(k + 0nk)duuly on 0By,

substituting in (7.4), it follows that

(2D (0)k | k) = / Onutf — (N —2) / K>+ / Ok, (7.5)
a8 0B JB
(we use that 8nu§?r = —k on 0 By). By writing the function ul()?ro as
uar = ao(r) lo(tomr),

by a direct calculation we have that

@ Springer



326 B. Canuto

I _ ) N—-1
ap(l) = Io(Mom)/fO To(pomr)r

u®

1 / N—-1
- go(r) lo(pomr)r ,
2Uo(tom)id, I3 (om) / "

where g is the zero-order Fourier coefficient of
g=—N mg(l) [(,la)r diV(K(l)Vuf)!d)r)
12 g@u® @ iv(KOVu©),
By recalling that

1
2
n? == / For) o(paomr)r™ ™! Gvg" n
10 (om) 0

"~ To(om) 9B /
0B

where fj is zero-order Fourier coefficient of
f= _M g(l)w(l) diV(K(l)V(p(U)
_M g(z)(p(o) diV(K(z)Vgo(O)),

we obtain
1
/ _ 1 N—-1 1 N—-1
ay(l) = —————— [ Jfo) lo(uomr)r™ " + ——— [ go(r)lo(omr)r
1y (om) 1y, Iy (pom)
0
1
t——m— [ GDVp.n (7.6)
1§<u0mm3m|aBl|aBl
‘We have that
— [ +8=ugeVe +divkVve)
+M2 260 4 div(K@Ve©)
—13gVull) — div(KDVulD)
—,uomg(z)u(o) — g(z) — div(K(z)Vu(O)). (7.7)

By writing u©@, Vi@ oD respectively as

0
u® = L L -1
5 ,
g \ Lo(om)

vy L g0

13 To(tiom)

0V = uG lo(om)uly + @

M,
and by substituting in (7.7), we obtain

1 1 1 1
_ + g = (g (1)~(1) + le(K(l)Vgo(l)))
I3 (om)inG ™ 15 (mom) ™ 13 (tt0m) [

Then (7.6) becomes
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ap(1) = / eV + le(K(l)V(ﬂ(l)))olo(lmmr)r
10( om) Om

1

n GOve® . n
13 (om) 3,10 By |BB
1

where (gD —I— div(K(')Va(l)))o is the zero-order Fourier coefficient of gD +
Ml d1v(K<1>V<p<1>)
Om
Next we compute the integral

Om

1

W (g(”~“>+M—chv(K“)va(”))olommr)r’V L (7.8)
Om Om

Let us consider the problem

Aw + pd,w = —pd, gV —div(k DV in By, 19)
w=0 on 0B. '
By writing wy, the radial part of w, as
wo = bo(r)lo(omr),
by a direct computation we obtain
1
Hom (1) ~(1) N—1
Onwo = ————— /(g @ olo(pomr)r (7.10)
To(peom)

/ (div(K VG o Lo (uomr)r¥ "
IO(MOm)

Comparing (7.8) with (7.10), we obtain

(g“““’ e div(K OVE ol (uonrr dr
[()( Om) Mom

1
T TT ha
On the other hand, since a particular solution to (7.9) can be written as
w=x -VeVk + w,
where w solves
[Aﬁ—i—p%mE:O in By,
W = —ug, 1| (Lom)k> on 3B

(since x - V(Z(l)k = //%m Il’ ([,Lom)kz on d Bj), we obtain that wg has the form

~(1) 2 1
wo = 00k — g Iy (om) lo(peomr) 95|

dB By

|0B1]
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We have that

Onwo = 3,011, 0)k(1,6 3raV (1, 0)k(1, 6
hWwo = |aB|/r (1, 0)k( )+|aB| e (1, 0)k(1,0)
JdB B
3,61 (1,0)9,k(1, 9).
+|331|/ 70 (1, 0)3,k(1, 0)
9B
Since
361 (1,0) = uf,, I (om)k.
and
dp
0@ (1,0) = 1 1 (tom) DD kg Iy (ttom) /1) (1om) Y pg (6).
p>1g=1
we obtain

2 2
nwo = uo,,,ll(uom'a A / k +M0m11(,u0m)sz,,qlg(MOm)/ll/;(MOm)

3B, p>1g=1

2 Ill(MOm)
Hom =19 B)]
JB

Then, by (2.2), it follows that

konk.

2
Inwo = —(N = 2)ug,, I{ (hom) 7 |8B |

3B,

dP
— i d{ om) D D K L (om) /T (1om)

p>1g=1

P

+//L0m11,(l/L0m) Z Zk%qp(l? +N— 2)Ip(N0n1)/I;7(MOm)
p=lg=1

2 I{(MOm)

Hom =198y |
0B

konk.

Finally we have

d
N-2 "
2 == 2 2 ’
an“paro = 0B /k + tom E E kpqlp(lLOm)/Ip(NOm)

9B pzlg=1

B
|8 l|381 MOm p=1g=1

GOy .n

_l_i
To(teom) 143, |331|
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Since by (6.7), for Y1, = 1, we have

d
1 4

10B1| / GV n = pon I (1om) ZZkiqp(p + N — 2)117(M0m)/1,/,(uom),
dBy p>1g=1

it follows that

d
N-2 f 10 -
2 2 2
dnttir, =~ / K2 2 D0 2 kg o Gtom) /1 (iom)
| llvs 10B1] 7= =
0D -

1
— konk.
[0B] / "

JB

Finally we have

(d2®(0)k | k) = / Onttoy, — (N —2) / K+ / dnkk

9B, 3By 3B,

dp
= tom 2 > ko Ly (eom)/ T (ttom)- (7.11)

pzlg=1
Let us suppose now that ky 7~ 0. Then we have

dp

(d* OOk | k) = akg + pom D D Kkiy Ip(iom)/ T (om).
p=zlg=1

for some constant «. Now since ® (kg) = 0, it follows that (d2®(0)kg | ko) = 0, and then
oa=0. O

8 Proof of Theorem 1.2

We begin our analysis by assuming that /,L(z)m is simple. Two cases can happen: either u%m,
as eigenvalue with Dirichlet boundary conditions, has multiplicity equal to N, i.e. the set

I ={p=2;1,(nom) =0} 8.1)

is a empty set of positive integers, or ,u%m has multiplicity bigger than N, i.e. I is a no empty
(finite) set of positive integers. If /L(Z)m has multiplicity equal to N, then (7.11) is equal to
zero for k e< 1, Yy1,..., Yin > (the symbol <, f1, ..., f;y > denoting the vector space
generated by the vectors f1, ..., fn), i.e. for k having the form

N

k = ko +ZquY1q'
qg=1

We observe that the vector space < 1, Y11, ..., Y1y > coincides with the tangent space to
the variety

M = (ks k = kr.x),
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at 0, where ER,XO, defined in (1.8), parametrizes the sphere d Big(xo) of radius 1 + R,
centered at xo. So the best that one can expect is that ® has a sign in the space

H = U Ep, (8.2)
pe{0,1}

of functions k which don’t have neither the frequency zero, nor the frequency 1. We observe
that H is orthogonal to the space < 1, Yiy,..., Yy >. In what follows we prove the
following

Lemma 8.1 There exists a neighborhood O of 0 in RN such that the function kg, xo has the
frequency 1 for xo € O.

Proof of Lemma 8.1 Let x( be such that xo, # 0, for some g € {1, ..., N}. We have that
! /% Y ﬁ: ! /Y Yig + 1 /hY
= Xi —_— —_—
|8B]| R.xoL1q —~ On |8B]| Inf1q |3B]| 1q
9B n= 0B 0By

1
= hY .
o0 5] / 1y
9B

Since the function

h(xo, ¥) = /(14 R + [x0 -y — [xol?

is even on d By, it follows that fBBI hY14 = Oforall such that Y}, isodd. Letg € {1, ..., N}
be such that [;, hYi4 # 0. Since

h(xo,y) =14+ R+ o(lxg]), as xo — 0,

the thesis follows. O

Now if ,u%m has multiplicity bigger than N, as eigenvalue with Dirichlet bound-
ary conditions (i.e. / is a no empty set), then (7.11) is equal to zero for k €<

LY, ....0n, Ypr, ... Ypdp >, i.e. for k having the form
N dp
k=ko+ D kigVig+ DD kpg¥pq-
q=1 pel g=1

Finally, if u(z)m is singular, the same conclusions hold true, by changing E with the space

U perur Ep-
Before proceeding with the proof of Theorem 1.2, we need some preliminary lemmas.

We begin by studying the sign of the term 1, (MOm)/]I/; (tom) in (7.11). We can prove the
following

Lemma 8.2 There exists a positive integer po, depending on Lom, such that, for all p > po,
1 (tom) /1, (ttom) > O. (8.3)

Proof of Lemma 8.2 Since the lim,_, ;o0 1)1 = +00, we have that there exists a pg such
that i1 > pom, for all p > po. Now since the function 1, /1 ;,is positive on the interval
(0, tp1), (8.3) follows. ]
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Lemma 8.3 There exists a neighborhood O of the origin in E, such that ifk € ONEC, then
the mass center x of Qi is different to zero.

Here
Elcz{keE;qu #0 forsome ¢g=1,...,N},

the complementary of E1, is the set of functions k which have the frequency 1. We recall that
the mass center of a domain 2 is the point X of coordinates

1
f,-:—/xi, i=1,...,N.
12|
Q

This lemma implies that if the mass center of g, for k € O, is at the point zero, then k
doesn’t have the frequency 1 , i.e. k € Ej. In particular we have that a domain €2, with
k € ON Ej is either a domain with mass center at 0, or 2, = 7(23), for some translation ©
of RV, and some domain Qr, where Q7 has mass center at zero.

Proof of Lemma 8.3 See [4]. m]

Lemma 8.4 There exists a neighborhood U of the origin in E, with U contained in O, such
that given a domain Q, with k € U, one can find ak € O N H such that

T 00 () = 4,
for some translation t, and some homothety o of RN .

As consequence of this lemma, since the operator @ is invariant up to isometries and up
to homotheties, we obtain that ® has a sign in I/, if it has a signin O N H.

Proof of Lemma 8.4 Let us consider the set
F={keO;x=0}

where the point X is the mass center of the domain €. Let I/ be a neighborhood of 0 in E, U
contained in O. If k € U N H, it is right. On the other hand if k ¢ H, then either

k € Eq,
or
k ¢ E;.

Ifk € Eq, then kg # 0, then k=k— ko liesinUd N H, and 0 (2) = 2, for some homothety
o of RN. Now if k ¢ E1, let X be the mass center of € (we have that X # 0, otherwise
k € F,and then k € E). We have that k can be written as (see [4])

k(y) =k ((1+ki oy —%) +kix()U +K (1 +kipy—X),
with &’ such that Q;/ has mass center at 0. Then
K" < K" — &Il + [l
Now since
k(y) = K'((1 +ki )y =%) — 0, as ¥ — 0,
we obtain that k¥’ € F, and the result follows. O

Now we can prove Theorem 1.2.
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Proof of Theorem 1.2 Case (i): M(%m is simple. Let assume that ,u%m has multiplicity equal
to N, as eigenvalue with Dirichlet boundary conditions.
Step 1. Let V be the space

V=1{keH;ky; =0, peK},

where

K = {p € N; I,(uom)/ 1, (1tom) < 0}
is a (eventually empty) finite set of positive integers (by Lemma 8.2). Let V' be the space

V'i={kik €e<kpi,....kpa, > p € K}.
We observe that V' is orthogonal to V, and
H=VaV.

Step 2. First we study the sign of (7.11) in V’. Let us denote by

M = max Ip(MOm)/I;;(MOm)~
pek

We have that M < 0. We obtain

dp
(2D Ok | k) = pom D D ko, T (pom) /T (ttom)
pekK g=1
< M uom,

forall k € V/, with | k||y» = 1. So there exists a neighborhood O of the origin in E such that
® is negative in O\{0} N V'.
Step 3. Let us study the sign of (7.11) in V. Since

I,(r) . r

/ - I\’
Ip(r) p(l —r I}:(lr; )

for I; (r) # 0 (see [3, pp. 486]), and since

Ipt1(r) . as p — 00
Ip(r)  2p

(see [3, pp. 23]), we obtain

1 -1
(' = pom I pt1(om) /1p(trom)) —

Then the general term in series (7.11) becomes

2
HOom
K2 Ly (eom) /T, (om) = 24
pg PRI (1 = pom 1 (tbom) /1 p (1om))
2
> ﬂHOm,
p
which yields that
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dp
(d2D OV | k) = pom D Dk Ly (tom) /T (tom)

pek€ g=1
dp 12
k
2 prq
=i, 3 >
pek€ g=1
2
= Mo

for all k € H, with ||k|ly = 1 (we have normed V with the weighted L%(3By)-norm

k|12 = ;iol Z"zl klz,q/p). So there exists a neighborhood O of the origin in E such that

® is positive in O\{0O} N V.

We point out that if 1, (uom)/ll’) (teom) > 0, forall p > 2, then the set K = . In this case
@ is positive in O\{0} N H, and, by Lemma 8.4, it follows that ® is positive in U/\M, i.e.
the result is optimal. On the other hand if K # ¢, then ® must change sign in H.

Let assume that /,L(z)m has multiplicity bigger than N (as eigenvalue with Dirichlet boundary
conditions). In this case V becomes

V={keH;kp,=0,peKUI},
being the set I defined in (8.1), and V' becomes
V' ={k:k e<kpt,....kpa, >, peKUI}

Case (ii): u%m is singular. Let assume that ,u(z]m has multiplicity equal to N. Let V be the
space

V={keH;kyy=0,peKULUL'}.
Let V' be the space
V’:{k;k€<kp1,...,kpdp > p e K}.

By using the same arguments as in previous case (i), we obtain that ® is negative in O\ {0}NV’,
and it is positive in O\{0} N V. Now since @ is continuous in E, and the space UpeLuL’ E,
has zero Lebesgue measure in E, it follows that @ is positive in O\{0} NV, with V = {k €
H;kpy = 0, p € K}. Finally if ,u%m has multiplicity bigger than N the same conclusion
holds true, with V = {k € H; kp, =0, p € K UI}. ]

9 Lipschitz case

In this section we examine briefly Lipschitz case, i.e. the case where
E ={k e C*'(3B))).

By classical regularity results we know thatu € C}7.(€2¢) N CO1 () solves (1.4) in a weak
sense, when Q = y, i.e.

[vevo-ufus=[o.
o o %

for all ¢ € C2°(S2). By repeating the same arguments as in the regular case, we can prove
the following
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334 B. Canuto

Theorem 9.1 Given a pom, for some m > 1, there exists a class D of C%'-domains (depend-
ing on om ), such that if u is a weak no trivial solution to (1.4), and

/3,114 =0,

Q2

with Q2 € D, and n = /L%m +o0(1), then Q = By, u = ,u(z)m, andu = u® in B.
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