Stability results for the *N***-dimensional Schiffer conjecture via a perturbation method**

B. Canuto

Received: 23 March 2011 / Accepted: 25 April 2013 / Published online: 14 June 2013 © Springer-Verlag Berlin Heidelberg 2013

Abstract Given a eigenvalue μ_{0m}^2 of $-\Delta$ in the unit ball B_1 , with Neumann boundary conditions, we prove that there exists a class *D* of $C^{0,1}$ -domains, depending on μ_{0m} , such that if *u* is a no trivial solution to the following problem $\Delta u + \mu u = 0$ in Ω , $u = 0$ on $\partial \Omega$, and $\int_{\partial\Omega} \partial_{\mathbf{n}} u = 0$, with $\Omega \in \mathcal{D}$, and $\mu = \mu_{0m}^2 + o(1)$, then Ω is a ball. Here μ is a eigenvalue of $-\Delta$ in Ω , with Neumann boundary conditions.

Mathematics Subject Classification 35N05

1 Introduction

The objective of the present paper is to study a overdetermined eigenvalue problem, known in literature as Schiffer conjecture. The latter can be formulated as follows: the only domain $Ω$ such that there exists a no trivial solution $φ$ to the problem

$$
\begin{cases} \Delta \varphi + \mu \varphi = 0 & \text{in } \Omega, \\ \partial_{\mathbf{n}} \varphi = 0 & \text{on } \partial \Omega, \end{cases}
$$
 (1.1)

with

$$
\varphi = c \quad \text{on} \quad \partial \Omega,\tag{1.2}
$$

is a ball. Here μ and φ are respectively a eigenvalue and a corresponding eigenfunction of $-\Delta$ with Neumann boundary conditions ($\partial_{\bf n}\varphi$ is the external normal derivative to the boundary $\partial\Omega$), Ω is a sufficiently smooth bounded domain in \mathbb{R}^N , with $N > 2$, and *c* is a given constant. By a direct calculation we have that

$$
\varphi = I_0(\mu_{0m}r) \quad \text{in} \quad B_1,
$$

Communicated by J. Ball.

B. Canuto (\boxtimes)

Conicet, Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Esmeralda 2043, Florida 1602, P.cia de Buenos Aires, Argentina e-mail: bcanuto@hotmail.it

solves [\(1.1\)](#page-0-0), [\(1.2\)](#page-0-1), when $\Omega = B_1$, and $\mu = \mu_{0m}^2$, for some $m \ge 1$. Here $r = |x|, |\cdot|$ denoting the Euclidean norm in \mathbb{R}^N , B_1 is the ball of radius 1, centered at zero, and μ_{0m} is the m^{th} -zero of the first derivative of the so-called *N*-dimensional zero-order Bessel function of first kind I_0 , i.e. $I'_0(\mu_{0m}) = 0$, the symbol ' denoting the ordinary derivative (see Sect. [2](#page-4-0) for more details). Berenstein [\[1\]](#page-29-0) gives a positive answer to the conjecture by supposing that there exist infinitely many pairs (μ_n , φ_n) satisfying [\(1.1](#page-0-0)), [\(1.2\)](#page-0-1) in \mathbb{R}^2 . This result has been extended for $N \geq 3$ by Berenstein and Yang [\[2](#page-29-1)].

We begin by observing that (see Liu $[6]$) the following change of variable

$$
u = \frac{1}{\mu c} (\varphi - c) \quad \text{in} \quad \Omega,
$$
\n(1.3)

implies that φ solves [\(1.1\)](#page-0-0), [\(1.2\)](#page-0-1) if and only if *u* solves

$$
\begin{cases} \Delta u + \mu u = -1 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}
$$
 (1.4)

with

$$
\partial_{\mathbf{n}}u = 0 \quad \text{on} \quad \partial\Omega. \tag{1.5}
$$

We have that

$$
u^{(0)} = \frac{1}{\mu_{0m}^2} \left(\frac{I_0(\mu_{0m}r)}{I_0(\mu_{0m})} - 1 \right) \quad \text{in} \quad B_1,\tag{1.6}
$$

solves [\(1.4\)](#page-1-0), [\(1.5\)](#page-1-1), when $\Omega = B_1$, and $\mu = \mu_{0m}^2$, for some $m \ge 1$. We point out that since problems (1.1) , (1.2) , and (1.4) , (1.5) , are invariant up to isometries and up to homotheties of \mathbb{R}^N , we have that

$$
\varphi = I_0(\mu_{0m}|x - x_0|/1 + R) \text{ in } B_{1+R}(x_0),
$$

and

$$
u^{(0)} = \frac{(1+R)^2}{\mu_{0m}^2} \left(\frac{I_0(\mu_{0m} |x-x_0|/1+R)}{I_0(\mu_{0m}/1+R)} - 1 \right) \text{ in } B_{1+R}(x_0),
$$

solve as well respectively [\(1.1\)](#page-0-0), [\(1.2\)](#page-0-1) and [\(1.4\)](#page-1-0), [\(1.5\)](#page-1-1), when $\Omega = B_{1+R}(x_0)$, and $\mu =$ $\mu_{0m}^2/(1+R)^2$, where $B_{1+R}(x_0)$ denotes the ball centered at x_0 , of radius $1+R$.

By following [\[3](#page-29-3)[,4](#page-29-4)], let us define by *E* the vector space of $C^{2,\alpha}$ -functions defined on the unit sphere ∂ *B*1, centered at zero, i.e.

$$
E = \{k \in C^{2,\alpha}(\partial B_1)\},\
$$

 $\alpha \in (0, 1)$. For $k \in E$, let Ω_k be a domain whose boundary $\partial \Omega_k$ can be written as perturbation of the unit sphere ∂ *B*1, i.e.

$$
\partial \Omega_k = \{ x = (1+k)y, y \in \partial B_1 \}
$$
\n(1.7)

(in particular for $k \equiv 0$ on ∂B_1 , $\partial \Omega_0 = \partial B_1$). We begin by proving the following

Theorem 1.1 *Let* φ *be a no trivial solution to* [\(1.1\)](#page-0-0)*,* [\(1.2\)](#page-0-1)*, when* $\Omega = \Omega_k$ *, for some* $k \in E$ *. Then* μ *is a perturbation of* μ_{0m}^2 , *for some* $m \geq 1$ *, i.e.*

$$
\mu = \mu_{0m}^2 + o(1),
$$

and φ *is a perturbation of* $I_0(\mu_{0m} \cdot)$ *, i.e.*

$$
\varphi = I_0(\mu_{0m} \cdot) + o(1).
$$

 \mathcal{L} Springer

Being problem (1.4) , (1.5) equivalent, by (1.3) , to (1.1) , (1.2) , in what follows we will study problem [\(1.4\)](#page-1-0), [\(1.5\)](#page-1-1).

Let μ be a eigenvalue of $-\Delta$ in Ω_k . Let assume that μ has the form $\mu = \mu_{0m}^2 + o(1)$, for some $m \geq 1$. Let us denote by Φ the operator

$$
\Phi: E \to \mathbb{R},
$$

defined by

$$
\Phi(k) = \int\limits_{\partial \Omega_k} \partial_{\mathbf{n}} u_{\text{par}},
$$

where u_{par} is a particular solution to [\(1.4\)](#page-1-0), when $\Omega = \Omega_k$ ($u_{\text{par}} = u^{(0)}$, when $\Omega = B_1$). Now, since if *u* solves [\(1.4\)](#page-1-0), [\(1.5\)](#page-1-1), when $\Omega = \Omega_k$, it follows that $\Phi(k) = 0$, we will concentrate our attention on studying the *sign* of the operator Φ in a neighborhood of 0 in *E*. By observing that the sphere of radius $1 + R$, centered at the point $x_0 \in \mathbb{R}^N$, is parameterized by

$$
\partial B_{1+R}(x_0) = \{x = (1 + k_{R,x_0})y, y \in \partial B_1\},\
$$

where \overline{k}_{R,x_0} is given by

$$
\overline{k}_{R,x_0}(y) = x_0 \cdot y - 1 + \sqrt{(1+R)^2 + |x_0 \cdot y|^2 - |x_0|^2}
$$
\n(1.8)

(for *R*, *x*₀ such that $(1 + R)^2 + |x_0 \cdot y|^2 - |x_0|^2 \ge 0$ on ∂B_1), we have that Φ vanishes identically on the variety

$$
\mathcal{M} = \{k; k = \overline{k}_{R,x_0}\}
$$

(we observe that $\bar{k}_{R,x_0} \to 0$ in *E*, as *R*, $x_0 \to 0$). So the best one can expect is that Φ is different to 0 in $\mathcal{O}\setminus\mathcal{M}$, for some neighborhood $\mathcal O$ of 0 in *E*.

A function $f \in E$ can be written, in Fourier series expansion, as

$$
f = f_0 + \sum_{p \ge 1} \sum_{q=1}^{d_p} f_{pq} Y_{pq} \quad \text{on} \quad \partial B_1,
$$

where $f_0 = \frac{1}{|\partial B_1|} \int_{\partial B_1} f$, and $f_{pq} = \frac{1}{|\partial B_1|} \int_{\partial B_1} f Y_{pq}$ are respectively the zero-order and the *p*-order Fourier coefficient of *f* , and *Ypq* is the spherical harmonic of degree *p*. We say that *f* has the frequency *p*, if the *p*-order coefficient of *f* is different to zero, i.e. $f_{pq} \neq 0$, for some $q \in \{1, \ldots, d_p\}$. On the other hand we say that f doesn't have the frequency p, if the *p*-order coefficient of *f* is equal to zero, i.e. $f_{pq} = 0$ for all $q \in \{1, ..., d_p\}$.

By studying the behavior of the operator Φ at 0, we prove in a first step that if the eigenvalue μ_{0m}^2 is simple, i.e.

$$
L = \{ p \in \mathbb{N}; I'_p(\mu_{0m}) = 0 \}
$$

is a empty set of positive integers, then Φ is differentiable at 0 in E , and 0 is a critical point of Φ in *E* (see Theorem [5.2\)](#page-12-0). On the other hand if the eigenvalue μ_{0m}^2 is singular, i.e. *L* is a no empty (finite) set [whose cardinality depends on the multiplicity of the eigenvalue μ_{0m}^2 (see Sect. [2](#page-4-0) for more details)], then Φ is differentiable at 0 in $\bigcup_{p\in L} E_p$, and 0 is a critical point of Φ in $\bigcup_{p\in L} E_p$, where

$$
E_p = \{k \in E; k_{pq} = 0\}
$$
\n(1.9)

is the vector space of functions $k \in E$ which don't have the frequency p. By studying the second derivative of Φ at 0, we can show

Theorem 1.2 *Given a* μ_{0m} *, for some m* \geq 1*, there exists a neighborhood* \mathcal{O} *of* 0 *in E, and two orthogonal spaces V, V' in E, with* \mathcal{O}, V, V' depending on μ_{0m} , such that Φ is positive *in* $\mathcal{O}\setminus\{0\}$ ∩ *V*, and it is negative in $\mathcal{O}\setminus\{0\}$ ∩ *V*'.

As corollary of Theorem [1.2,](#page-3-0) we can prove the following

Theorem 1.3 *Given a* μ_{0m} *, for some m* ≥ 1 *, there exists a class D of C*^{2, α}*-domains, depending on* μ_{0m} *, such that if u is a no trivial solution to* [\(1.4\)](#page-1-0)*, and*

$$
\int\limits_{\partial\Omega}\partial_{\bf n}u=0,
$$

 $with \Omega \in \mathcal{D}$, and $\mu = \mu_{0m}^2 + o(1)$, then $\Omega = B_1$, $\mu = \mu_{0m}^2$, and $u = u^{(0)}$ in B_1 .

Since the proof of Theorem [1.3](#page-3-1) is short, and it doesn't require particular technical tools, we prove it now.

Proof of Theorem [1.3](#page-3-1) Let us denote by G the class of domains Ω_k , defined by

$$
\mathcal{G} = \{ \Omega_k; k \in \mathcal{O} \cap (V \cup V') \},\
$$

with \mathcal{O}, V , and V' as in Theorem [1.2.](#page-3-0) Let Σ be the class of operators ϕ , defined by

$$
\sum = \{\phi; \phi = \tau \circ \sigma\},\
$$

for some homothety τ and isometry σ of \mathbb{R}^N . Finally let us denote by $\mathcal D$ the class of domains Ω , defined by

$$
\mathcal{D} = \{\Omega; \Omega = \phi(\Omega_k)\},\
$$

for $\Omega_k \in \mathcal{G}$, and $\phi \in \Sigma$. Let assume that *u* solves [\(1.4\)](#page-1-0), and $\int_{\partial \Omega} \partial_n u = 0$, with $\Omega \in \mathcal{D}$, and $\mu = \mu_{0m}^2 + o(1)$. Since problem [\(1.4\)](#page-1-0) is invariant up to isometries and to homotheties, we have that $\int_{\partial \Omega_k} \partial_n u = 0$, for some $k \in \mathcal{O} \cap (V \cup V')$. Now by writing *u* as

$$
u = u_{\text{par}} + u_h \quad \text{in} \quad \Omega_k,
$$

where u_h solves the corresponding homogenous problem, and since by Fredholm theorem $-1 \in \text{ker}(\Delta + \mu)^{\perp}$ in Ω_k , by divergence theorem we obtain

$$
0 = \int\limits_{\Omega_k} u_h = -\frac{1}{\mu} \int\limits_{\Omega_k} \Delta u_h = -\frac{1}{\mu} \int\limits_{\partial \Omega_k} \partial_{\mathbf{n}} u_h.
$$

Then we have

$$
0 = \int\limits_{\partial \Omega_k} \partial_{\mathbf{n}} u = \int\limits_{\partial \Omega_k} \partial_{\mathbf{n}} u_{\text{par}},
$$

i.e. $\Phi(k) = 0$, which implies that $k = 0$, since, by Theorem [1.2,](#page-3-0) Φ has a sign in $\mathcal{O}\setminus\{0\} \cap (V \cup V')$. $(V \cup V')$.). \Box

Finally by using (1.3) , and Theorem [1.3,](#page-3-1) the following theorem holds true:

Theorem 1.4 *Given a* μ_{0m} *, for some m* \geq 1*, there exists a class D of C*^{2, α}*-domains, depending on* μ_{0m} *, such that if* φ *is a no trivial solution to* [\(1.1\)](#page-0-0)*,* [\(1.2\)](#page-0-1)*, with* $\Omega \in \mathcal{D}$ *, and* $\mu = \mu_{0m}^2 + o(1)$ *, then* $\Omega = B_1$ *,* $\mu = \mu_{0m}^2$ *, and* $\varphi = I_0(\mu_{0m}r)$ *in* B_1 *.*

We observe that *E* through the paper is the space of functions of class $C^{2,\alpha}$ on ∂B_1 (this means that we consider only regular perturbations of the unit sphere), but we will prove that the same conclusions hold true in the case where E is the space of functions of class $C^{0,1}$ on ∂B_1 , i.e. the boundary $\partial \Omega_k$ is of Lipschitz class.

We recall that in a article appeared in 1976, S. A. Williams [\[8](#page-29-5)] proves that Schiffer conjecture is related to the celebrated Pompeiu conjecture. In a series of papers appeared in 1929 the Roumanian mathematician Pompeiu proposes the following problem. We say that a bounded domain Ω has Pompeiu property if and only if the only continuous function f on \mathbb{R}^N , $N \geq 2$, such that

$$
\int_{\sigma(\Omega)} f = 0, \text{ for all } \sigma \in \Sigma,
$$

is the function $f \equiv 0$, where Σ denotes the set of isometries of \mathbb{R}^N . Pompeiu conjecture says that among bounded domains of \mathbb{R}^N , only balls fail to have Pompeiu property. The connection between Schiffer and Pompeiu conjecture asserts that the failure of the Pompeiu property is equivalent to the existence of a no trivial solution to (1.1) , (1.2) .

A stability result for Pompeiu problem has been proved by F. Segala [\[7\]](#page-29-6). By analyzing the asymptotic behavior of the Fourier transform of the characteristic function χ_{Ω} , Segala proves, for $N = 2$, that if Ω is a domain with Pompeiu property, then all sufficiently small homotheties of Ω have Pompeiu property as well.

It is of interest to recall a application of Pompeiu conjecture. This occurs for example in medical imaging, a technic which consists in determining mass density of a organ in a human body, by measuring the variation of intensity of a *X*-ray crossing through it. More precisely Pompeiu conjecture says that knowledge of all possible values of variation of intensity of the *X*-ray (i.e. all isometries $\sigma(\Omega) \in \Sigma$) determines uniquely, up to balls, the mass density of the organ. For further references concerning Pompeiu conjecture, see [\[9](#page-29-7)].

The paper is organized as follows: in the next section we give some preliminaries and notations used through the paper. In Sect. [3](#page-6-0) we prove Theorem [1.1.](#page-1-3) In Sects. [4](#page-8-0) and [5](#page-11-0) we give, via perturbation methods, the first-order approximation, in a neighborhood of 0, respectively of the eigenvalue μ and of the operator Φ . In Sects. [6](#page-14-0) and [7](#page-19-0) we give the second-order approximation of μ and Φ respectively. In Sect. [8](#page-24-0) we prove Theorem [1.2.](#page-3-0) Finally in Sect. [9](#page-28-0) we consider Lipschitz case.

2 Preliminaries and notations

Let us denote by B_1 the unit ball in \mathbb{R}^N , centered at zero. By \overline{B}_1 we define the Euclidean closure of B_1 . Let I_ℓ be the so-called *N*-dimensional ℓ -order Bessel function of first kind, i.e.

$$
I_{\ell}(r) = r^{-\nu} J_{\nu+\ell}(r),
$$
\n(2.1)

where $v = \frac{N}{2} - 1$, and $J_{v+\ell}$ is the well-known $v + \ell$ -order Bessel function of the first kind (we observe that for $N = 2$, I_{ℓ} coincides with the ℓ -order Bessel function J_{ℓ}). I_{ℓ} solves the following Bessel equation

$$
I_{\ell}'' + \frac{N-1}{r}I_{\ell}' + \left(1 - \frac{\ell(\ell+N-2)}{r^2}\right)I_{\ell} = 0 \text{ in } \mathbb{R}.
$$
 (2.2)

By $\mu_{\ell m}$ we denote the m^{th} -zero of the first derivative of the ℓ -order Bessel function I_{ℓ} , i.e. $I'_{\ell}(\mu_{\ell m}) = 0$. We recall in particular that (see Lemma 3.5 in [\[3\]](#page-29-3))

$$
I_0'=-I_1\quad\text{in}\quad\mathbb{R}.
$$

This yields that

$$
\mu_{0m}=\lambda_{1m},
$$

where λ_{1m} denotes the *m*th-zero of the one-order Bessel function I_1 , i.e. $I_1(\lambda_{1m}) = 0$.

Let $(\mu_n)_{n \geq 1}$ be the sequence, in increasing order, of eigenvalues of $-\Delta$ in B_1 with Neumann boundary conditions. A eigenvalue μ_n , for some $n \in \mathbb{N}$, coincides, for some integer $\ell \geq 0$, and $m \geq 1$, with $\mu_{\ell m}^2$. The corresponding eigenfunctions can be written in polar coordinates (up to a multiplicative constant) as

$$
\varphi_1 = I_{\ell}(\mu_{\ell m} r) Y_{\ell 1}(\theta),
$$

\n
$$
\vdots \qquad \vdots
$$

\n
$$
\varphi_{d_{\ell}} = I_{\ell}(\mu_{\ell m} r) Y_{\ell d_{\ell}}(\theta),
$$

\n
$$
\varphi_{p_q} = I_p(\mu_{\ell m} r) Y_{pq}(\theta),
$$

where $p \in L$, and L is a (eventually empty) finite set (by Fredholm theorem) of positive integers such that $I'_p(\mu_{\ell m}) = 0$. We numerate p_q with natural numbers $d_\ell + 1, \ldots, n$. The number of eigenfunctions is called multiplicity of the eigenvalue $\mu_{\ell m}^2$. Here Y_{st} is the spherical harmonic of degree *s*, with $t = 1, \ldots, d_s$, and

$$
d_s = \begin{cases} 1 & \text{if } s = 0, \\ \frac{(2s + N - 2)(s + N - 3)!}{s!(N - 2)!} & \text{if } s \ge 1. \end{cases}
$$
 (2.3)

For example, since $d_1 = N$, the multiplicity of the eigenvalue μ_{1m}^2 is at least equal to *N*.

Let \tilde{k} be a $C^{2,\alpha}$ -extension of *k* into \overline{B}_1 . Let us call *A* the Jacobian matrix of change of variables

$$
x = (1 + k)y, \quad y \in \overline{B}_1,\tag{2.4}
$$

where we have denoted \widetilde{k} by k. The matrix A is given by

$$
A_{ij} = \begin{bmatrix} 1 + k + y_1 \partial_1 k & y_1 \partial_2 k & \cdots & y_1 \partial_n k \\ y_2 \partial_1 k & 1 + k + y_2 \partial_2 k & \cdots & y_2 \partial_n k \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ y_n \partial_1 k & \cdots & \cdots & 1 + k + y_n \partial_n k \end{bmatrix}.
$$

Following [\[4\]](#page-29-4), the external unit normal vector at the point $x = (1 + k)y \in \partial \Omega_k$ is given by

$$
\mathbf{n}((1+k)y) = \frac{(A^T)^{-1}y}{\sqrt{G^{-1}y} \cdot y},
$$
\n(2.5)

where G^{-1} is the inverse of the matrix *G*, and $G = A^T A$. We write the matrix *G* as

$$
G = I_N + G^{(1)} + G^{(2)},
$$

 \circledcirc Springer

where I_N is the *N*-order identity matrix, and the matrix $G^{(1)}$ and $G^{(2)}$ depend respectively linearly and quadratically on *k* and ∇k . The matrix $G^{(1)}$ and $G^{(2)}$ (see [\[4](#page-29-4)]) are given respectively by

$$
G_{ij}^{(1)} = 2kI_N + \begin{bmatrix} 2x_1\partial_1k \ x_1\partial_2k + x_2\partial_1k \ \cdots \ x_1\partial_Nk + x_N\partial_1k \\ x_1\partial_2k + x_2\partial_1k \ \vdots \ \cdots \ \vdots \\ x_1\partial_Nk + x_N\partial_1k \end{bmatrix}, \quad (2.6)
$$

and

$$
G_{ij}^{(2)} = k^2 I_N + k \begin{bmatrix} 2x_1 \partial_1 k \ x_1 \partial_2 k + x_2 \partial_1 k \ \cdots x_1 \partial_N k + x_N \partial_1 k \\ x_1 \partial_2 k + x_2 \partial_1 k \ \vdots \ \vdots \\ x_1 \partial_N k + x_N \partial_1 k \ \vdots \ \vdots \\ x_1 \partial_N k + x_N \partial_1 k \ \cdots \ \cdot \ \cdot \ \cdot \ \cdot \ \cdot \\ 2x_N \partial_N k \end{bmatrix}
$$

+|x|^2
$$
\begin{bmatrix} (\partial_1 k)^2 \ \partial_1 k \partial_2 k \ \cdots \ \partial_1 k \partial_N k \\ \partial_2 k \partial_1 k \ (\partial_2 k)^2 \ \cdots \ \partial_2 k \partial_N k \\ \vdots \ \vdots \ \cdot \cdot \ \cdot \ \cdot \\ \partial_N k \partial_1 k \ \cdots \ \cdot \ (\partial_N k)^2 \end{bmatrix}
$$
. (2.7)

3 Proof of Theorem [1.1](#page-1-3)

Let μ be a eigenvalue of $-\Delta$ in Ω_k , and let φ be a corresponding no trivial eigenfunction. We can assume that the eigenvalue μ can be written as

$$
\mu = \mu_{\ell m}^2 + o(1),
$$

for some $\ell \geq 0$, and $m \geq 1$. By change of variable [\(2.4\)](#page-5-0), denoting by

$$
\widetilde{\varphi}(y) = \varphi((1+k)y) \quad \text{in} \quad \overline{B}_1,
$$

and using (2.5) , we have that

$$
\partial_{\mathbf{n}}\varphi((1+k)y) = (A^T)^{-1}\nabla\widetilde{\varphi}\cdot\mathbf{n}((1+k)y)
$$

= $(G^{-1}y \cdot y)^{-1/2}G^{-1}\nabla\widetilde{\varphi}\cdot y$ on ∂B_1 .

By a direct calculation we obtain that the function $\tilde{\varphi}$ solves

$$
\begin{cases} \operatorname{div}(\sqrt{g}G^{-1}\nabla\widetilde{\varphi}) + \mu\sqrt{g}\widetilde{\varphi} = 0 & \text{in} \quad B_1, \\ G^{-1}\nabla\widetilde{\varphi} \cdot \mathbf{n} = 0 & \text{on} \quad \partial B_1. \end{cases}
$$
(3.1)

Similarly, let us define by

$$
\widetilde{u}(y) = u((1+k)y) \quad \text{in } \overline{B}_1,
$$

where *u* solves [\(1.4\)](#page-1-0), when $\Omega = \Omega_k$. The function \tilde{u} solves

$$
\begin{cases} \operatorname{div}(\sqrt{g}G^{-1}\nabla\widetilde{u}) + \mu\sqrt{g}\widetilde{u} = -\sqrt{g} & \text{in} \quad B_1, \\ \widetilde{u} = 0 & \text{on} \quad \partial B_1. \end{cases}
$$
 (3.2)

Let us denote \tilde{u} by u , $\tilde{\varphi}$ by φ , and y by x . We have that a solution u to [\(3.2\)](#page-6-1) can be written as

$$
u = \frac{1}{\mu_{\ell m}^2} \left(\frac{I_0(\mu_{\ell m}r)}{I_0(\mu_{\ell m})} - 1 \right) + u_h^{(0)} + o(1) \quad \text{in} \quad B_1,\tag{3.3}
$$

 $\hat{\mathfrak{D}}$ Springer

where the function

$$
\frac{1}{\mu_{\ell m}^2} \left(\frac{I_0(\mu_{\ell m}r)}{I_0(\mu_{\ell m})} - 1 \right)
$$

is a particular solution to the (unperturbed) problem

$$
\begin{cases} \Delta u + \mu_{\ell m}^2 u = -1 & \text{in} \quad B_1, \\ u = 0 & \text{on} \quad \partial B_1, \end{cases}
$$

and $u_h^{(0)}$ solves the corresponding homogenous unperturbed problem. We observe that $u_h^{(0)} =$ 0, if the kernel ker($\Delta + \mu_{\ell m}^2$) = {0} in *B*₁ (with Dirichlet boundary conditions). Otherwise, if the kernel ker($\Delta + \mu_{\ell m}^2$) \neq {0} in *B*₁, i.e.

$$
\mu_{\ell m}=\lambda_{\ell' m'},
$$

for some ℓ , ℓ' (with $\ell \neq \ell'$), then $u_h^{(0)}$ has the form (in polar coordinates)

$$
u_h^{(0)} = \sum_{q=1}^{d_{\ell'}} \alpha_{\ell'q} I_{\ell'}(\mu_{\ell m} r) Y_{\ell'q}(\theta) + \sum_{p \in I} \sum_{q=1}^{d_p} \alpha_{pq} I_p(\mu_{\ell m} r) Y_{pq}(\theta),
$$

where

$$
I = \{p \in \mathbb{N}; I_p(\mu_{\ell m}) = 0\}
$$

is a (eventually empty) finite set of positive integers, and $\alpha_{\ell'1}, \ldots, \alpha_{\ell' d_{\ell'}}, \alpha_{pq} \in \mathbb{R}$. We observe finally that in order that (3.3) (3.3) makes sense in what follows we will suppose that

$$
\mu_{\ell m} \notin \{\lambda_{0n}\}_{n \geq 1}.
$$

Proof of Theorem [1.1](#page-1-3) We have

$$
\mu = \mu_{\ell m}^2 + o(1),
$$

for some $\ell \geq 0$, and $m \geq 1$. Similarly we have

$$
\varphi = \varphi^{(0)} + o(1) \quad \text{in} \quad B_1,
$$

where $\varphi^{(0)}$ is a eigenfunction to [\(1.1\)](#page-0-0), when $\mu = \mu_{\ell m}^2$, and $\Omega = B_1$. By [\(1.3\)](#page-1-2), we have that *u* can be written as

$$
u = \frac{1}{\mu_{\ell m}^2 c} (\varphi^{(0)} - c) + o(1) \quad \text{in} \quad B_1.
$$

By (3.3) , the zero-order term of u is given by

$$
\frac{1}{\mu_{\ell m}^2} \left(\frac{I_0(\mu_{\ell m})}{I_0(\mu_{\ell m})} - 1 \right) + u_h^{(0)}.
$$

Then we obtain

$$
\frac{1}{\mu_{\ell m}^2} \left(\frac{I_0(\mu_{\ell m})}{I_0(\mu_{\ell m})} - 1 \right) + u_h^{(0)} = \frac{1}{\mu_{\ell m}^2 c} (\varphi^{(0)} - c),
$$

i.e.

$$
\varphi^{(0)} = c \frac{I_0(\mu_{\ell m})}{I_0(\mu_{\ell m})} + c \mu_{\ell m}^2 u_h^{(0)}.
$$

In particular we have

 \circledcirc Springer

$$
\partial_{\mathbf{n}} \varphi^{(0)} = c \mu_{\ell m} \frac{I_0'(\mu_{\ell m})}{I_0(\mu_{\ell m})} + c \mu_{\ell m}^2 \partial_{\mathbf{n}} u_h^{(0)} \quad \text{on} \quad \partial B_1. \tag{3.4}
$$

Now since $\partial_{\bf n}\varphi^{(0)}=0$ on ∂B_1 , and $c\neq 0$, by integrating [\(3.4\)](#page-8-1) over ∂B_1 , we obtain $I'_0(\mu_{\ell m})=$ 0, i.e. $\mu_{\ell m} = \mu_{0m}$. So $u_h^{(0)}$ becomes

$$
u_h^{(0)} = \sum_{q=1}^N \alpha_{1q} I_1(\mu_{0m} r) Y_{1q}(\theta) + \sum_{p \in I} \sum_{q=1}^{d_p} \alpha_{pq} I_p(\mu_{0m} r) Y_{pq}(\theta).
$$

Now by multiplying [\(3.4\)](#page-8-1) by $Y_{ij}(\theta)$, and integrating over ∂B_1 , we obtain $\alpha_{ij} = 0$, for $i = 1, j = 1, \ldots, N$, and for $i \in I, j = 1, \ldots, d_i$.

4 The first-order approximation of the eigenvalue *μ*

By writing the matrix $\sqrt{g}G^{-1}$ in [\(3.1\)](#page-6-3) as

$$
\sqrt{g}G^{-1} = I_N + K,\tag{4.1}
$$

we have that [\(3.1\)](#page-6-3) can be written as (we denote $\tilde{\varphi}$ by φ)

$$
\begin{cases} \Delta \varphi + \operatorname{div}(K \nabla \varphi) + \mu \sqrt{g} \varphi = 0 & \text{in} \quad B_1, \\ G^{-1} \nabla \varphi \cdot \mathbf{n} = 0 & \text{on} \quad \partial B_1. \end{cases}
$$
 (4.2)

In particular we obtain

$$
\sqrt{g}I_N - G = KG
$$

= $(K^{(1)} + K^{(2)})(I_N + G^{(1)} + G^{(2)}) + \cdots$,

where $K^{(1)}$ and $K^{(2)}$ denote respectively the one-order and the second-order approximation of the matrix *K* (the matrix $G^{(1)}$ and $G^{(2)}$ are given respectively by [\(2.6\)](#page-6-4) and [\(2.7\)](#page-6-5)). One can verify that

$$
\sqrt{g} = (1 + k)^N + (1 + k)^{N-1} x \cdot \nabla k.
$$

This yields that the matrix

$$
K^{(1)} = g^{(1)}I_N - G^{(1)},
$$
\n(4.3)

where $g^{(1)}$, the one-order approximation of \sqrt{g} , is given by

$$
g^{(1)} = Nk + x \cdot \nabla k,
$$

and that the matrix

$$
K^{(2)} = g^{(2)}I_N - G^{(2)} - K^{(1)}G^{(1)},
$$
\n(4.4)

where $g^{(2)}$, the second-order approximation of \sqrt{g} , is given by

$$
g^{(2)} = \frac{N(N-1)}{2}k^2 + (N-1)kx \cdot \nabla k.
$$

By (4.1) , (4.3) , and (4.4) we obtain

 $\hat{\mathfrak{D}}$ Springer

$$
G^{-1} = \frac{I_N}{\sqrt{g}} + \frac{1}{\sqrt{g}} (K^{(1)} + K^{(2)}) + \cdots
$$

= $I_N - G^{(1)} - g^{(1)2} I_N$
+ $g^{(2)} I_N - G^{(2)} + G^{(1)2} + \cdots$ (4.5)

Let assume that the eigenvalue μ is a perturbation of μ_{0m}^2 , for some $m \ge 1$, i.e. μ has the form

$$
\mu = \mu_{0m}^2 + o(1).
$$

We say that the eigenvalue μ_{0m}^2 is simple, if

$$
L = \{ p \in \mathbb{N}; I'_p(\mu_{0m}) = 0 \}
$$

is a empty set of positive integers. In this case the eigenspace is generated by the eigenfunction

$$
\varphi^{(0)} = I_0(\mu_{0m}r). \tag{4.6}
$$

On the other hand we say that the eigenvalue μ_{0m}^2 is singular, if *L* is a no empty (finite) set of positive integers. In this case the eigenspace is generated by the eigenfunctions

$$
\varphi^{(0)} = I_0(\mu_{0m}r), \n\varphi^{(0)}_{pq} = I_p(\mu_{0m}r)Y_{pq}(\theta),
$$

with $p \in L$. By numerating p_q with natural numbers 2, 3, ..., *n*, we call multiplicity of μ_{0m}^2 the number *n*.

Now if μ_{0m}^2 is simple, we can prove that μ can be written as

$$
\mu = \mu_{0m}^2 + \mu^{(1)} + o(\|k\|) \quad \text{in} \quad E. \tag{4.7}
$$

On the other hand if μ_{0m}^2 is singular, then μ has the same expression as above in $\bigcup_{p \in L} E_p$, where E_p , defined in [\(1.9\)](#page-2-0), is the space of functions *k* which don't have the frequency *p*.

Theorem 4.1 *Let* μ_{0m}^2 *be simple, then* μ *can be written as* [\(4.7\)](#page-9-0)*, where*

$$
\mu^{(1)} = -2k_0 \mu_{0m}^2 \quad \text{in} \quad E.
$$

If μ_{0m}^2 is singular, the same holds by changing E with the space $\bigcup_{p\in L}E_p$.

Proof of Theorem [4.1](#page-9-1) Let us assume that μ can be written as

$$
\mu = \mu_{0m}^2 + \mu^{(1)} + o(\|k\|) \quad \text{in} \quad E.
$$

Let φ be a corresponding eigenfunction, which, we suppose, can be written as

$$
\varphi = \varphi^{(0)} + \varphi^{(1)} + o(||k||)
$$
 in E ,

where $\varphi^{(0)} = I_0(\mu_{0m}r)$. By writing the term div($K\varphi$) + $\mu\sqrt{g}\varphi$ in [\(4.2\)](#page-8-5) as

$$
\begin{aligned} \operatorname{div}(K\nabla\varphi) + \sqrt{g}\mu\varphi & (4.8) \\ = \operatorname{div}((K^{(1)} + K^{(2)})\nabla(\varphi^{(0)} + \varphi^{(1)})) + \mu\varphi + (g^{(1)} + g^{(2)})\mu\varphi + \cdots, \end{aligned}
$$

one can verify that the one-order terms in [\(4.8\)](#page-9-2) are

$$
\operatorname{div}(K^{(1)}\nabla\varphi^{(0)}) + \mu_{0m}^2\varphi^{(1)} + \mu^{(1)}\varphi^{(0)} + \mu_{0m}^2g^{(1)}\varphi^{(0)}.
$$

By taking the one-order terms in [\(3.1\)](#page-6-3), and using [\(4.5\)](#page-9-3), we obtain that $\varphi^{(1)}$ solves

$$
\begin{cases} \Delta \varphi^{(1)} + \mu_{0m}^2 \varphi^{(1)} = f^{(1)} & \text{in} \quad B_1, \\ \partial_{\mathbf{n}} \varphi^{(1)} = 0 & \text{on} \quad \partial B_1 \end{cases}
$$
 (4.9)

 $(\text{since } G^{(1)} \nabla \varphi^{(0)} \cdot \mathbf{n} = \mu_{0m} G^{(1)} x \cdot x I_0'(\mu_{0m}) = 0 \text{ on } \partial B_1), \text{ where}$

$$
f^{(1)} = -\mu^{(1)}\varphi^{(0)} - \mu_{0m}^2 g^{(1)}\varphi^{(0)} - \operatorname{div}(K^{(1)}\nabla\varphi^{(0)}).
$$
 (4.10)

One can verify that

$$
w = x \cdot \nabla \varphi^{(0)} k
$$

solves

$$
\Delta w + \mu_{0m}^2 w = -\mu_{0m}^2 g^{(1)} \varphi^{(0)} - \text{div}(K^{(1)} \nabla \varphi^{(0)}).
$$

So we look for $\varphi^{(1)}$ in the form

$$
\varphi^{(1)} = x \cdot \nabla \varphi^{(0)} k + \widetilde{\varphi}_1,
$$

where $\tilde{\varphi}_1$ solves

$$
\Delta \widetilde{\varphi}_1 + \mu_{0m}^2 \widetilde{\varphi}_1 = -\mu^{(1)} \varphi^{(0)}.
$$
\n(4.11)

By writing $\tilde{\varphi}_1$ as

$$
\widetilde{\varphi}_1 = a_0(r)I_0(\mu_{0m}r) + \sum_{p \ge 1} \sum_{q=1}^{d_p} a_{pq}I_p(\mu_{0m}r)Y_{pq}(\theta),
$$

where a_0 solves

$$
a_0''(r) + q_0(r)a_0'(r) = -\mu^{(1)} \text{ in } (0, 1),
$$

by a direct calculation we have that

$$
a'_0(1) = -\frac{\mu^{(1)}}{I_0^2(\mu_{0m})} \int_0^1 I_0^2(\mu_{0m}r) r^{N-1}.
$$

Since the integral (see [\[4](#page-29-4)])

$$
\int_{0}^{1} I_0^2(\mu_{0m}r)r^{N-1} = \frac{1}{2}I_0^2(\mu_{0m}),
$$
\n(4.12)

it follows that

$$
a'_0(1) = -\frac{\mu^{(1)}}{2}.
$$

Now we have that

$$
\partial_{\mathbf{n}}\varphi^{(1)}=0 \quad \text{on} \quad \partial B_1,
$$

if and only if

$$
0 = -\mu_{0m}^2 I'_1(\mu_{0m})k + \partial_{\mathbf{n}} \widetilde{\varphi}_1
$$

= $-\mu_{0m}^2 I'_1(\mu_{0m})k_0 - \mu_{0m}^2 I'_1(\mu_{0m}) \sum_{p \ge 1} \sum_{q=1}^{d_p} k_{pq} Y_{pq}(\theta)$
 $-\frac{\mu^{(1)}}{2} I_0(\mu_{0m}) + \mu_{0m} \sum_{p \ge 1} \sum_{q=1}^{d_p} a_{pq} I'_p(\mu_{0m}) Y_{pq}(\theta).$

If μ_{0m}^2 is simple, by taking respectively the zero-order and the *p*-order Fourier coefficient, we obtain

$$
\mu^{(1)} = -2k_0 \mu_{0m}^2,
$$

and

$$
a_{pq} = \mu_{0m} k_{pq} I'_1(\mu_{0m}) / I'_p(\mu_{0m}).
$$

On the other hand if μ_{0m}^2 is singular, it must be $k_{pq} = 0$, for $p \in L$, i.e. $\mu^{(1)}$ has the desired form in the space $\bigcup_{p \in L} E_p$.

Next we prove that

$$
\mu - \mu_{0m}^2 - \mu^{(1)} = o(||k||)
$$
 as $k \to 0$,

and similarly

$$
\varphi - \varphi^{(0)} - \varphi^{(1)} = o(||k||)
$$
 as $k \to 0$.

By defining by

$$
\tilde{\mu} = \mu - \mu_{0m}^2 - \mu^{(1)}, \quad \text{and} \quad \tilde{\varphi} = \varphi - \varphi^{(0)} - \varphi^{(1)},
$$

by following [\[4\]](#page-29-4) one can prove that $\widetilde{\mu} = o(\Vert k \Vert)$, and $\Vert \widetilde{\varphi} \Vert_{C^{2,\alpha}(\overline{B}_1)} = o(\Vert k \Vert)$.

5 The first-order approximation of the operator Φ

We recall that problem (1.4) cannot have solutions or, if a solution exists, it cannot be unique. This happens all times the kernel

$$
\ker(\Delta + \mu) \neq \{0\} \quad \text{in} \quad \Omega,
$$

(with Dirichlet boundary conditions). In particular by Fredholm theorem there exists a solution *u* to [\(1.4\)](#page-1-0) if and only if $-1 \in \text{ker}(\Delta + \mu)^{\perp}$. In this case *u* can be written as

$$
u = u_{\text{par}} + u_h,
$$

where u_{par} is a particular solution to (1.4) such that

$$
u_{\text{par}} \in \ker(\Delta + \mu)^{\perp} \quad \text{in} \quad \Omega,\tag{5.1}
$$

and u_h solves the corresponding homogenous problem. We observe that u_p is unique and can be written as

$$
u_{\text{par}} = \sum_{p \in F^C} \sum_{q=1}^{n_p} \alpha_{pq} \psi_{pq},
$$

 \circledcirc Springer

where $\alpha_{pq} = \frac{\int_{\Omega} \psi_{pq}}{\mu - \lambda_p}$ is the *p*-order Fourier coefficient of *u*, λ_p and ψ_{pq} are respectively the *p*th-eigenvalue and a corresponding eigenfunction of $-\Delta$ in Ω , and n_p is the dimension of the corresponding eigenspace. F is a finite set of integer (by Fredholm theorem), and F^C is the complementary of *F*. On the other hand if the kernel ker($\Delta + \mu$) = {0} in Ω , then a solution u exists and is unique. Let us denote by Φ the following operator

$$
\Phi: E \mapsto \mathbb{R},
$$

defined by

$$
\Phi(k) := \int_{\partial \Omega_k} \partial_{\mathbf{n}} u_{\text{par}}.
$$
\n(5.2)

Here u_{par} is a particular solution to [\(1.4\)](#page-1-0), verifying [\(5.1\)](#page-11-1), when $\Omega = \Omega_k$, and μ has the form $\mu = \mu_{0m}^2 + o(1)$. The operator Φ is well-defined, since we suppose that a solution *u* exists for *k* lying in some neighborhood $\mathcal O$ of 0 in *E*. By using [\(2.4\)](#page-5-0), the function $\tilde u$ defined by

$$
\widetilde{u}(y) = u((1+k)y) \quad \text{in } B_1,
$$

solves

$$
\begin{cases} \operatorname{div}(\sqrt{g}G^{-1}\nabla\widetilde{u}) + \mu\sqrt{g}\widetilde{u} = -\sqrt{g} & \text{in} \quad B_1, \\ \widetilde{u} = 0 & \text{on} \quad \partial B_1. \end{cases}
$$
 (5.3)

Moreover, since by (2.5) we have that

$$
\partial_{\mathbf{n}}u((1+k)y) = (G^{-1}y \cdot y)^{-1/2}G^{-1}\nabla \widetilde{u} \cdot y \quad \text{on } \partial B_1,
$$

we obtain

$$
\Phi(k) = \int_{\partial B_1} (G^{-1}y \cdot y)^{-1/2} G^{-1} \nabla \widetilde{u}_{\text{par}} \cdot y \sqrt{\widetilde{g}},
$$

where $\tilde{u}_{\text{par}}(y) = u_{\text{par}}((1+k)y)$, and \sqrt{g} is the surface element of the new variable *y*. Let us denote \tilde{u}_{par} by u_{par} , and y by x. Before proceeding to calculate the first-order derivative of the operator Φ at 0, we need some preliminary lemmas.

Lemma 5.1 *Let* $\mu = \mu_{0m}^2 + o(1)$ *, then*

$$
u_{\text{par}} \to u^{(0)} \quad \text{in } E \quad \text{as } k \to 0.
$$

Proof of Lemma [5.1](#page-12-1) See [\[4\]](#page-29-4). 

Theorem 5.2 Let μ_{0m}^2 be simple. Then Φ is differentiable at 0 in E. Moreover 0 is a critical *point of* Φ *in E, i.e.*

$$
d\Phi(0) = 0 \quad \text{in} \quad E.
$$

If μ_{0m}^2 is singular, the same holds true by changing E with the space $\bigcup_{p\in L} E_p$.

Proof of Theorem [5.2](#page-12-0) Let assume that μ_{0m}^2 is simple. Then μ has the form

$$
\mu = \mu_{0m}^2 + \mu^{(1)} + o(\|k\|) \quad \text{in} \quad E.
$$

Assume that u_{par} can be written as

$$
u_{\text{par}} = u^{(0)} + u_{\text{par}}^{(1)} + o(\|k\|) \quad \text{in} \quad E. \tag{5.4}
$$

By following step by step (4.8) , we have

 $\circled{2}$ Springer

$$
\operatorname{div}(K\nabla u_{\text{par}}) + \sqrt{g}(\mu u_{\text{par}} + 1) = g^{(1)}(\mu_{0m}^2(u^{(0)} + u_{\text{par}}^{(1)}) + \mu^{(1)}(u^{(0)} + u_{\text{par}}^{(1)})) + \operatorname{div}(K^{(1)}\nabla u^{(0)}) + \cdots.
$$
 (5.5)

The one-order terms in [\(5.5\)](#page-13-0) are

$$
g^{(1)}(1+\mu_{0m}^2u^{(0)})+\mu_{0m}^2u_{\text{par}}^{(1)}+\mu^{(1)}u^{(0)}+\text{div}(K^{(1)}\nabla u^{(0)}).
$$

By taking the one-order terms in (5.9) , we obtain that $u_{\text{par}}^{(1)}$ solves

$$
\begin{cases} \Delta u^{(1)} + \mu_{0m}^2 u^{(1)} = f^{(1)} & \text{in} \quad B_1, \\ u^{(1)} = 0 & \text{on} \quad \partial B_1, \end{cases}
$$
 (5.6)

and $f^{(1)}$ is given by

$$
f^{(1)} = -\mu^{(1)}u^{(0)} - g^{(1)}(1 + \mu_{0m}^2 u^{(0)}) - \text{div}(K^{(1)} \nabla u^{(0)}).
$$

By Lemma 3.2 in [\[4\]](#page-29-4), we have that $u_{\text{par}}^{(1)}$ can be written as

$$
u_{\text{par}}^{(1)} = -\frac{I_1(\mu_{0m}r)}{\mu_{0m}I_0(\mu_{0m})}rk + v,\tag{5.7}
$$

where v is the radial solution to

$$
\begin{cases} \Delta v + \mu_{0m}^2 v = -\mu^{(1)} u^{(0)} & \text{in} \quad B_1, \\ v = 0 & \text{on} \quad \partial B_1. \end{cases}
$$
 (5.8)

By (4.5) and (5.4) , it follows that

$$
\Phi(k) = \int_{\partial B_1} (G^{-1}x \cdot x)^{-1/2} G^{-1} \nabla u^{(0)} \cdot x \sqrt{\tilde{g}} \n+ \int_{\partial B_1} (G^{-1}x \cdot x)^{-1/2} G^{-1} \nabla u_{\text{par}}^{(1)} \cdot x \sqrt{\tilde{g}} + \cdots \n= \int_{\partial B_1} (1 - 2k - 2\partial_{\mathbf{n}} k)^{-1/2} (\partial_{\mathbf{n}} u_{\text{par}}^{(1)} - G^{(1)} \nabla u_{\text{par}}^{(1)} \cdot x) + \cdots
$$
\n(5.9)

By taking the one-order terms in (5.9) , we obtain that the first-order derivative of Φ at 0 is given by

$$
\langle \mathrm{d}\Phi(0) \mid k \rangle = \int\limits_{\partial B_1} \partial_{\mathbf{n}} u_{\mathrm{par}}^{(1)}.
$$

By writing the radial solution v to (5.8) as

$$
v = a_0(r)I_0(\mu_{0m}r),
$$

by a direct calculation we have that

$$
a'_0(1) = \frac{2k_0}{I_0^2(\mu_{0m})} \int_0^1 \left(\frac{I_0(\mu_{0m}r)}{I_0(\mu_{0m})} - 1 \right) I_0(\mu_{0m}r) r^{N-1}.
$$

Since the integral (see [\[4](#page-29-4)])

 \bigcirc Springer

$$
\int_{0}^{1} I_0(\mu_{0m}r)r^{N-1} = 0,
$$

by [\(4.12\)](#page-10-0) we obtain

$$
\partial_{\mathbf{n}}v = a'_0(1)I_0(\mu_{0m}) = k_0.
$$

Finally we have

$$
\langle \mathrm{d}\Phi(0) \mid k \rangle = -\frac{I_1'(\mu_{0m})}{I_0(\mu_{0m})} \int\limits_{\partial B_1} k + k_0 \int\limits_{\partial B_1} = 0,
$$

where in the last step we use that $\frac{I'_1(\mu_{0m})}{I_0(\mu_{0m})} = 1$.

In what follows we will assume that the zero-order Fourier coefficient of *k* is zero, i.e.

$$
k_0 = \frac{1}{|\partial B_1|} \int\limits_{\partial B_1} k = 0.
$$

6 The second-order approximation of the eigenvalue *μ*

In this section we calculate the second-order approximation of the eigenvalue μ .

Theorem 6.1 Let μ_{0m}^2 be simple, then μ can be written as

$$
\mu = \mu_{0m}^2 + \mu^{(2)} + o(\|k\|^2) \text{ in } E,
$$

where

$$
\mu^{(2)} = \frac{2}{I_0^2(\mu_{0m})} \int_0^1 f_0(r) I_0(\mu_{0m}r) r^{N-1} - \frac{2}{I_0(\mu_{0m}) |\partial B_1|} \int_{\partial B_1} G^{(1)} \nabla \varphi^{(1)} \cdot \mathbf{n} \quad \text{in } E,
$$

*where f*⁰ *is the zero-order Fourier coefficient of the function*

$$
f = -\mu_{0m}^2 g^{(1)} \varphi^{(1)} - \text{div}(K^{(1)} \nabla \varphi^{(1)}) - \mu_{0m}^2 g^{(2)} \varphi^{(0)} - \text{div}(K^{(2)} \nabla \varphi^{(0)}).
$$

If μ_{0m}^2 is singular, the same holds true by changing E with the space $\bigcup_{p \in L \cup L'} E_p$. In *particular, for* $N = 2$, L' *is the following (eventually empty) set of positive integers*

$$
L' = \{ p \in \mathbb{N}; 2p \in L \}. \tag{6.1}
$$

Proof of Theorem [6.1](#page-14-1) Let us assume that μ is simple and it can be written as

$$
\mu = \mu_{0m}^2 + \mu^{(2)} + o(\|k\|^2) \quad \text{in} \quad E.
$$

Let φ be a corresponding eigenfunction, which, we suppose, has the form

$$
\varphi = \varphi^{(0)} + \varphi^{(1)} + \varphi^{(2)} + o(||k||^2) \quad \text{in} \quad E.
$$

By taking the second-order terms in [\(3.1\)](#page-6-3), and using [\(4.5\)](#page-9-3), we have that $\varphi^{(2)}$ solves

$$
\begin{cases} \Delta \varphi^{(2)} + \mu_{0m}^2 \varphi^{(2)} = f^{(2)} & \text{in} \quad B_1, \\ \partial_{\mathbf{n}} \varphi^{(2)} - G^{(1)} \nabla \varphi^{(1)} \cdot \mathbf{n} = 0 & \text{on} \quad \partial B_1 \end{cases}
$$
(6.2)

 $\hat{\mathfrak{D}}$ Springer

(since $H^{(2)}\nabla\varphi^{(0)}\cdot\mathbf{n}=0$ on ∂B_1 , $H^{(2)}$ being the second-order approximation of the matrix G^{-1}), where $f^{(2)}$ is given by

$$
f^{(2)} = -\mu^{(2)} \varphi^{(0)} - \mu_{0m}^2 g^{(1)} \varphi^{(1)} - \text{div}(K^{(1)} \nabla \varphi^{(1)}) - \mu_{0m}^2 g^{(2)} \varphi^{(0)} - \text{div}(K^{(2)} \nabla \varphi^{(0)}).
$$
 (6.3)

We look for $\varphi^{(2)}$ in the form

$$
\varphi^{(2)} = w + \widetilde{\varphi}^{(2)},
$$

where w solves

$$
\Delta w + \mu_{0m}^2 w = f,
$$

with *f* given by

$$
f = -\mu_{0m}^2 g^{(1)} \varphi^{(1)} - \text{div}(K^{(1)} \nabla \varphi^{(1)}) - \mu_{0m}^2 g^{(2)} \varphi^{(0)} - \text{div}(K^{(2)} \nabla \varphi^{(0)}),
$$
 (6.4)

and where $\tilde{\varphi}^{(2)}$ solves

$$
\Delta \widetilde{\varphi}^{(2)} + \mu_{0m}^2 \widetilde{\varphi}^{(2)} = -\mu^{(2)} \varphi^{(0)}.
$$

By following the proof of Theorem [4.1,](#page-9-1) we obtain

$$
\partial_{\mathbf{n}} \widetilde{\varphi}^{(2)} = -\frac{\mu^{(2)}}{2} I_0(\mu_{0m}) + \mu_{0m} \sum_{p \ge 1} \sum_{q=1}^{d_p} a_{pq} I'_p(\mu_{0m}) Y_{pq}(\theta).
$$

By passing in polar coordinates, we write w as

$$
w = w_0(r) + \sum_{p \ge 1} \sum_{q=1}^{d_p} w_{pq}(r) Y_{pq}(\theta),
$$

where w_0 solves

$$
w''_0(r) + \frac{N-1}{r}w'_0(r) + \mu_{0m}^2 w_0(r) = f_0(r) \text{ in } (0, 1),
$$

and where f_0 is the zero-order Fourier coefficient of f . By writing w_0 as

$$
w_0(r) = b_0(r)I_0(\mu_{0m}r),
$$

by a direct calculation we obtain

$$
b'_0(1) = \frac{1}{I_0^2(\mu_{0m})} \int\limits_0^1 f_0(r) I_0(\mu_{0m}r) r^{N-1}.
$$

Now we have that

$$
\partial_{\mathbf{n}}\varphi^{(2)} - G^{(1)}\nabla\varphi^{(1)} \cdot \mathbf{n} = 0 \quad \text{on} \quad \partial B_1,
$$

if and only if

 \bigcirc Springer

$$
0 = b'_0(1)I_0(\mu_{0m}) + \sum_{p \ge 1} \sum_{q=1}^{d_p} w'_{pq}(1)Y_{pq}(\theta)
$$
\n(6.5)

$$
-\frac{\mu^{(2)}}{2}I_0(\mu_{0m})+\mu_{0m}\sum_{p\geq 1}\sum_{q=1}^{d_p}a_{pq}I'_p(\mu_{0m})Y_{pq}(\theta)-G^{(1)}\nabla\varphi^{(1)}\cdot\mathbf{n}.
$$

By taking the zero-order Fourier coefficient we obtain

$$
\mu^{(2)} = \frac{2}{I_0^2(\mu_{0m})} \int_0^1 f_0(r) I_0(\mu_{0m}r) r^{N-1} - \frac{2}{I_0(\mu_{0m}) |\partial B_1|} \int_{\partial B_1} G^{(1)} \nabla \varphi^{(1)} \cdot \mathbf{n}.
$$

On the other hand if μ_{0m}^2 is singular, [\(6.5\)](#page-16-0) holds true if and only if

$$
\int_{\partial B_1} (\partial_{\mathbf{n}} w - G^{(1)} \nabla \varphi^{(1)} \cdot \mathbf{n}) Y_{pq} = 0 \text{ for } p \in L.
$$
 (6.6)

Before proceeding with the proof of the theorem, we need the following \square

Lemma 6.2 *Let* μ_{0m}^2 *be singular, then for* $p \in L$ *we have that*

$$
\int_{\partial B_1} G^{(1)} \nabla \varphi^{(1)} \cdot \mathbf{n} Y_{pq} = \mu_{0m} I'_1(\mu_{0m}) \sum_{s \notin L} \sum_{t=1}^{d_s} k_{st}^2 \frac{I_s(\mu_{0m})}{I'_s(\mu_{0m})} s(s+N-2) \int_{\partial B_1} Y_{st}^2 Y_{pq} \quad \text{in } \bigcup_{s \in L} E_s.
$$
\n(6.7)

Proof of Lemma [6.2](#page-16-1) Since for $y \in \mathbb{R}^N$ we have

$$
G^{(1)}y = 2ky + x \cdot y \nabla k + y \cdot \nabla kx,
$$

it follows that

$$
G^{(1)}\nabla\varphi^{(1)}\cdot\mathbf{n}=\nabla\varphi^{(1)}\cdot\nabla k\quad\text{on}\quad\partial B_1.
$$

By passing in polar coordinates it follows that

$$
\nabla \varphi^{(1)} \cdot \nabla k = \partial_{\mathbf{n}} \varphi^{(1)} \partial_{\mathbf{n}} k + \sum_{i=1}^{N-1} G_{ii}^{-1} \partial_{\theta_i} \varphi^{(1)} \partial_{\theta_i} k,
$$

where G^{-1} is the inverse matrix of the $N-1$ diagonal matrix *G*, *G* being the Euclidean metric tensor induced on the sphere ∂ *B*1. We obtain

$$
\partial_{\theta_i} \varphi^{(1)} \partial_{\theta_i} k = \mu_{0m} I'_1(\mu_{0m}) \sum_{s \notin L} \sum_{t=1}^{d_s} k_{st}^2 I_s(\mu_{0m}) / I'_s(\mu_{0m}) (\partial_{\theta_i} Y_{st})^2 + 2 \mu_{0m} I'_1(\mu_{0m}) \sum_{s \notin L} \sum_{t \neq n=1}^{d_s} k_{st} k_{sn} I_s(\mu_{0m}) / I'_s(\mu_{0m}) \partial_{\theta_i} Y_{st} \partial_{\theta_i} Y_{sn}.
$$

By orthogonality of spherical harmonics, we obtain

$$
\int_{\partial B_1} G^{(1)} \nabla \varphi^{(1)} \cdot \mathbf{n}
$$
\n
$$
= \mu_{0m} I'_1(\mu_{0m}) \sum_{s \notin L} \sum_{t=1}^{d_s} k_{st}^2 I_s(\mu_{0m}) / I'_s(\mu_{0m}) \int_{\partial B_1} G^{-1} \nabla Y_{st} \cdot \nabla Y_{st}.
$$
\n(6.8)

By recalling that spherical harmonics *Yst* solve

$$
\frac{1}{\sqrt{g}}\operatorname{div}(\sqrt{g}G^{-1}\nabla Y_{st}) = -s(s+N-2)Y_{st},
$$

where $g = | \det G |$, by multiplying by $Y_{st}Y_{pq}$, and integrating over ∂B_1 , we obtain

$$
\int_{\partial B_1} \frac{1}{\sqrt{g}} \operatorname{div}(\sqrt{g} G^{-1} \nabla Y_{st}) Y_{st} Y_{pq} = -s(s+N-2) \int_{\partial B_1} Y_{st}^2 Y_{pq}.
$$

Now, by divergence theorem and orthogonality of spherical harmonics (by recalling that $p \in L$, and $s \notin L$), it follows that the surface integral

$$
\int_{\partial B_1} \frac{1}{\sqrt{g}} \operatorname{div}(\sqrt{g} G^{-1} \nabla Y_{st}) Y_{st} Y_{pq} = \int_K \operatorname{div}(\sqrt{g} G^{-1} \nabla Y_{st}) Y_{st} Y_{pq}
$$

$$
= - \int_{\partial B_1} G^{-1} \nabla Y_{st} \cdot \nabla Y_{st} Y_{pq}.
$$

Then we have

$$
\int_{\partial B_1} G^{-1} \nabla Y_{st} \cdot \nabla Y_{st} Y_{pq} = s(s + N - 2) \int_{\partial B_1} Y_{st}^2 Y_{pq},
$$

which, by (6.8) , yields (6.7) .

Next we conclude the proof of Theorem [6.1.](#page-14-1) Since $\varphi^{(1)} = x \cdot \nabla \varphi^{(0)} k + \widetilde{\varphi}^{(1)}$, where

$$
\widetilde{\varphi}^{(1)} = \mu_{0m} I'_1(\mu_{0m}) \sum_{p \ge 1} \sum_{q=1}^{d_p} k_{pq} I_p(\mu_{0m} r) / I'_p(\mu_{0m}) Y_{pq}(\theta),
$$

and since $x \cdot \nabla \widetilde{\varphi}^{(1)} k$ solves

 \bigcirc Springer

$$
\Delta(x \cdot \nabla \widetilde{\varphi}^{(1)} k) + \mu_{0m}^2 x \cdot \nabla \widetilde{\varphi}^{(1)} k = -\mu_{0m}^2 g^{(1)} \widetilde{\varphi}^{(1)} - \text{div}(K^{(1)} \nabla \widetilde{\varphi}^{(1)}),
$$

we can write w as

$$
w = x \cdot \nabla \widetilde{\varphi}^{(1)} k + \widetilde{w},
$$

where \tilde{w} solves

$$
\Delta \widetilde{w} + \mu_{0m}^2 \widetilde{w} = -\mu_{0m}^2 g^{(1)} x \cdot \nabla \varphi^{(0)} k - \text{div}(K^{(1)} \nabla (x \cdot \nabla \varphi^{(0)} k)) -\mu_{0m}^2 g^{(2)} \varphi^{(0)} - \text{div}(K^{(2)} \nabla \varphi^{(0)}).
$$

Then we obtain

$$
\partial_{\mathbf{n}} w = \partial_{\mathbf{n}} \widetilde{\varphi}^{(1)} k + \partial_r^2 \widetilde{\varphi}^{(1)} k + \partial_{\mathbf{n}} \widetilde{\varphi}^{(1)} \partial_{\mathbf{n}} k + \partial_{\mathbf{n}} \widetilde{w}
$$
\n
$$
= \mu_{0m}^2 I'_1(\mu_{0m}) \sum_{s \notin L} \sum_{t=1}^{d_s} k_{st} Y_{st} k + \mu_{0m}^3 I'_1(\mu_{0m}) \sum_{s \notin L} \sum_{t=1}^{d_s} k_{st} I''_s(\mu_{0m}) / I'_s(\mu_{0m}) Y_{st} k
$$
\n
$$
+ \partial_{\mathbf{n}} \widetilde{\varphi}^{(1)} \partial_{\mathbf{n}} k + \partial_{\mathbf{n}} \widetilde{w} \quad \text{on } \partial B_1.
$$

Since $\partial_{\bf n}w$ doesn't depend on the extension of *k* into \overline{B}_1 , it follows that the term $\partial_{\bf n}\tilde{\varphi}^{(1)}\partial_{\bf n}k$
must simplify with some terms of $\partial_{\bf n}\tilde{\varphi}$. For sake of simplicity we continue to define b must simplify with some terms of $\partial_{\bf n} \tilde{w}$. For sake of simplicity we continue to define by $\partial_{\bf n} \tilde{w}$ the new term $\partial_{\bf n} \tilde{w}$. By [\(2.2\)](#page-5-2) it follows that

$$
\partial_{\mathbf{n}} w = -(N-2)\mu_{0m}^2 I'_1(\mu_{0m}) \sum_{s \notin L} \sum_{t=1}^{d_s} k_{st} Y_{st} k
$$

$$
-\mu_{0m}^3 I'_1(\mu_{0m}) \sum_{s \notin L} \sum_{t=1}^{d_s} k_{st} I_s(\mu_{0m}) / I'_s(\mu_{0m}) Y_{st} k
$$

$$
+\mu_{0m} I'_1(\mu_{0m}) \sum_{s \notin L} \sum_{t=1}^{d_s} s(s+N-2) k_{st} I_s(\mu_{0m}) / I'_s(\mu_{0m}) Y_{st} k + \partial_{\mathbf{n}} \tilde{w} \text{ on } \partial B_1.
$$

By orthogonality of spherical harmonics, we obtain

$$
\int_{\partial B_1} \partial_{\mathbf{n}} w Y_{pq} = -(N-2)\mu_{0m}^2 I'_1(\mu_{0m}) \sum_{s \notin L} \sum_{t=1}^{d_s} k_{st}^2 \int_{\partial B_1} Y_{st}^2 Y_{pq}
$$
\n
$$
-\mu_{0m}^3 I'_1(\mu_{0m}) \sum_{s \notin L} \sum_{t=1}^{d_s} k_{st}^2 I_s(\mu_{0m}) / I'_s(\mu_{0m}) \int_{\partial B_1} Y_{st}^2 Y_{pq}
$$
\n
$$
+\mu_{0m} I'_1(\mu_{0m}) \sum_{s \notin L} \sum_{t=1}^{d_s} s(s+N-2) k_{st}^2 I_s(\mu_{0m}) / I'_s(\mu_{0m}) \int_{\partial B_1} Y_{st}^2 Y_{pq} + \int_{\partial B_1} \partial_{\mathbf{n}} \widetilde{w} Y_{pq}.
$$

Comparing with (6.7) , we obtain

² Springer

$$
\int_{\partial B_1} (\partial_{\mathbf{n}} w - G^{(1)} \nabla \varphi^{(1)} \cdot \mathbf{n}) Y_{pq}
$$
\n
$$
= -(N-2) \mu_{0m}^2 I'_1(\mu_{0m}) \sum_{s \notin L} \sum_{t=1}^{d_s} k_{st}^2 \int_{\partial B_1} Y_{st}^2 Y_{pq}
$$
\n
$$
- \mu_{0m}^3 I'_1(\mu_{0m}) \sum_{s \notin L} \sum_{t=1}^{d_s} k_{st}^2 I_s(\mu_{0m}) / I'_s(\mu_{0m}) \int_{\partial B_1} Y_{st}^2 Y_{pq} + \int_{\partial \mathbf{n}} \tilde{w} Y_{pq}.
$$

Since Y_{st}^2 , for $N = 2$, written in Fourier series expansion, has only even terms with frequency 2*s*, it follows that [\(6.6\)](#page-16-3) holds true for all integers $q \in \{1, \ldots, d_p\}$ if 2*s* $\notin L$. On the other hand if $2s \in L$, then [\(6.6\)](#page-16-3) holds true for all integers $q \in \{1, ..., d_p\}$ such that Y_{pq} is odd, while for *q* such that Y_{pq} is not odd, it must be $k_{st} = 0$.

7 The second-order approximation of the operator Φ

In order to calculate the second-order derivative of the operator Φ at 0, we need the secondorder approximation of the particular solution u_{par} . Let us write u_{par} in polar coordinates as

$$
u_{\text{par}} = u_{\text{par}_0}(r) + \sum_{p \ge 1} \sum_{q=1}^{d_p} u_{\text{par}_{pq}}(r) Y_{pq}(\theta),
$$

where, as usual, $u_{\text{par}_0}(r) = \frac{1}{|\partial B_1|} \int_{\partial B_1} u_{\text{par}}(r,\theta)$ and $u_{\text{par}_{pq}} = \frac{1}{|\partial B_1|} \int_{\partial B_2} u_{\text{par}}(r,\theta)$ $∂B_1$ *u*par*Ypq* are respectively the zero-order and the p -order Fourier coefficient of u_{par} . Let us define by

$$
v_{\text{par}} = \sum_{p \ge 1} \sum_{q=1}^{d_p} u_{\text{par}_{pq}}(r) Y_{pq}(\theta)
$$

the non-radial part of u_{par} .

Theorem 7.1 Let μ_{0m}^2 be simple. Then the operator Φ is two-times differentiable at 0 in E. *Moreover we have*

$$
\langle \mathbf{d}^2 \Phi(0) k \mid k \rangle = \mu_{0m} \sum_{p \ge 1} \sum_{q=1}^{d_p} k_{pq}^2 I_p(\mu_{0m}) / I'_p(\mu_{0m}) \text{ in } E. \tag{7.1}
$$

If μ_{0m}^2 is singular, then

$$
\langle d^2 \Phi(0) k \mid k \rangle = \mu_{0m} \sum_{p \notin L} \sum_{q=1}^{d_p} k_{pq}^2 I_p(\mu_{0m}) / I'_p(\mu_{0m}) \text{ in } \bigcup_{p \in L \cup L'} E_p.
$$

Proof of Theorem [7.1](#page-19-1) Let μ_{0m}^2 be simple. Then μ has the form

$$
\mu = \mu_{0m}^2 + \mu^{(2)} + o(\|k\|^2) \text{ in } E.
$$

 \bigcirc Springer

Let assume that u_{par_0} can be written as

$$
u_{\text{par}_0} = u^{(0)} + u_{\text{par}_0}^{(1)} + u_{\text{par}_0}^{(2)} + o(||k||^2) \text{ in } E.
$$

By taking the second-order terms of the zero-order coefficient in [\(5.3\)](#page-12-3), we obtain that $u_{\text{par}_0}^{(2)}$ is the radial solution to

$$
\begin{cases} \Delta u^{(2)} + \mu_{0m}^2 u^{(2)} = f_0^{(2)} & \text{in} \quad B_1, \\ u^{(2)} = 0 & \text{on} \quad \partial B_1, \end{cases}
$$
 (7.2)

where $f_0^{(2)}$ is the zero-order Fourier coefficient of the function

$$
f^{(2)} = -\mu^{(2)} u^{(0)} - \mu_{0m}^2 g^{(1)} u_{\text{par}}^{(1)} - \text{div}(K^{(1)} \nabla u_{\text{par}}^{(1)})
$$

$$
-g^{(2)} - \mu_{0m}^2 g^{(2)} u^{(0)} - \text{div}(K^{(2)} \nabla u^{(0)}).
$$

Now we prove that Φ is two-times differentiable at 0 in E . We have

$$
\Phi(k) = \int_{\partial B_1} (G^{-1}x \cdot x)^{-1/2} G^{-1} (\nabla u_{\text{par}_0} + \nabla v_{\text{par}}) \cdot x \sqrt{\tilde{g}} + \cdots
$$
\n
$$
= \int_{\partial B_1} (1 + k + \partial_{\mathbf{n}} k) (\partial_{\mathbf{n}} u_{\text{par}_0} + \partial_{\mathbf{n}} v_{\text{par}} - G^{(1)} (\nabla u_{\text{par}_0} + \nabla v_{\text{par}}) \cdot x) \sqrt{\tilde{g}} + \cdots,
$$
\n(7.3)

where in the last step we use that the surface element $\sqrt{\tilde{g}}$ is given by

$$
\sqrt{\tilde{g}} = 1 + (N - 1)k + o(\|k\|) \quad \text{on } \partial B_1.
$$

By taking the second-order terms in (7.3) , we obtain that the second-order derivative of Φ at 0 is given by

$$
\langle \mathbf{d}^2 \Phi(0) k | k \rangle = \int_{\partial B_1} \partial_{\mathbf{n}} u_{\text{par}}^{(2)} + \int_{\partial B_1} (k + \partial_{\mathbf{n}} k) \partial_{\mathbf{n}} u_{\text{par}}^{(1)}
$$

$$
+ (N - 1) \int_{\partial B_1} k \partial_{\mathbf{n}} u_{\text{par}}^{(1)} - \int_{\partial B_1} G^{(1)} \nabla u_{\text{par}}^{(1)} \cdot x. \tag{7.4}
$$

Since

$$
G^{(1)}\nabla u_{\text{par}}^{(1)} \cdot x = 2(k + \partial_{\mathbf{n}}k)\partial_{\mathbf{n}}u_{\text{par}}^{(1)} \text{ on } \partial B_1,
$$

substituting in [\(7.4\)](#page-20-1), it follows that

$$
\langle d^2 \Phi(0) k \mid k \rangle = \int_{\partial B_1} \partial_{\mathbf{n}} u_{\text{par}_0}^{(2)} - (N - 2) \int_{\partial B_1} k^2 + \int_{\partial B_1} \partial_{\mathbf{n}} k, \tag{7.5}
$$

(we use that $\partial_{\bf n} u_{\rm par}^{(1)} = -k$ on ∂B_1). By writing the function $u_{\rm par_0}^{(2)}$ as

$$
u_{\text{par}_0}^{(2)} = a_0(r)I_0(\mu_{0m}r),
$$

by a direct calculation we have that

² Springer

$$
a'_0(1) = \frac{1}{I_0^2(\mu_{0m})} \int_0^1 f_0^{(2)} I_0(\mu_{0m}r) r^{N-1}
$$

=
$$
-\frac{\mu^{(2)}}{2I_0(\mu_{0m})\mu_{0m}^2} + \frac{1}{I_0^2(\mu_{0m})} \int_0^1 g_0(r) I_0(\mu_{0m}r) r^{N-1},
$$

where g_0 is the zero-order Fourier coefficient of

$$
g = -\mu_{0m}^2 g^{(1)} u_{\text{par}}^{(1)} - \text{div}(K^{(1)} \nabla u_{\text{par}}^{(1)}) - \mu_{0m}^2 g^{(2)} u^{(0)} - g^{(2)} - \text{div}(K^{(2)} \nabla u^{(0)}).
$$

By recalling that

$$
\mu^{(2)} = \frac{2}{I_0^2(\mu_{0m})} \int_0^1 f_0(r) I_0(\mu_{0m}r) r^{N-1} - \frac{2}{I_0(\mu_{0m}) |\partial B_1|} \int_0^1 G^{(1)} \nabla \varphi^{(1)} \cdot \mathbf{n},
$$

where f_0 is zero-order Fourier coefficient of

$$
f = -\mu_{0m}^2 g^{(1)} \varphi^{(1)} - \text{div}(K^{(1)} \nabla \varphi^{(1)}) -\mu_{0m}^2 g^{(2)} \varphi^{(0)} - \text{div}(K^{(2)} \nabla \varphi^{(0)}),
$$

we obtain

$$
a'_0(1) = -\frac{1}{I_0^3(\mu_{0m})\mu_{0m}^2} \int_0^1 f_0(r)I_0(\mu_{0m}r)r^{N-1} + \frac{1}{I_0^2(\mu_{0m})} \int_0^1 g_0(r)I_0(\mu_{0m}r)r^{N-1} + \frac{1}{I_0^2(\mu_{0m})\mu_{0m}^2|\partial B_1|} \int_{\partial B_1} G^{(1)}\nabla\varphi^{(1)} \cdot \mathbf{n}.
$$
 (7.6)

We have that

$$
- f + g = \mu_{0m}^{2} g^{(1)} \varphi^{(1)} + \text{div}(K^{(1)} \nabla \varphi^{(1)}) + \mu_{0m}^{2} g^{(2)} \varphi^{(0)} + \text{div}(K^{(2)} \nabla \varphi^{(0)}) - \mu_{0m}^{2} g^{(1)} u_{\text{par}}^{(1)} - \text{div}(K^{(1)} \nabla u_{\text{par}}^{(1)}) - \mu_{0m}^{2} g^{(2)} u^{(0)} - g^{(2)} - \text{div}(K^{(2)} \nabla u^{(0)}).
$$
 (7.7)

By writing $u^{(0)}$, $\nabla u^{(0)}$, $\varphi^{(1)}$ respectively as

$$
u^{(0)} = \frac{1}{\mu_{0m}^2} \left(\frac{\varphi^{(0)}}{I_0(\mu_{0m})} - 1 \right),
$$

\n
$$
\nabla u^{(0)} = \frac{1}{\mu_{0m}^2 I_0(\mu_{0m})} \nabla \varphi^{(0)},
$$

\n
$$
\varphi^{(1)} = \mu_{0m}^2 I_0(\mu_{0m}) u_{\text{par}}^{(1)} + \widetilde{\varphi}^{(1)},
$$

and by substituting in [\(7.7\)](#page-21-0), we obtain

$$
-\frac{1}{I_0^3(\mu_{0m})\mu_{0m}^2}f+\frac{1}{I_0^2(\mu_{0m})}g=\frac{1}{I_0^3(\mu_{0m})}(g^{(1)}\tilde{\varphi}^{(1)}+\frac{1}{\mu_{0m}^2}\text{div}(K^{(1)}\nabla\tilde{\varphi}^{(1)})).
$$

Then (7.6) becomes

 \hat{Z} Springer

$$
a'_0(1) = \frac{1}{I_0^3(\mu_{0m})} \int_0^1 (g^{(1)}\tilde{\varphi}^{(1)} + \frac{1}{\mu_{0m}^2} \operatorname{div}(K^{(1)}\nabla \tilde{\varphi}^{(1)}))_0 I_0(\mu_{0m}r)r^{N-1} + \frac{1}{I_0^2(\mu_{0m})\mu_{0m}^2|\partial B_1|} \int_{\partial B_1} G^{(1)}\nabla \varphi^{(1)} \cdot \mathbf{n},
$$

where $(g^{(1)}\tilde{\varphi}^{(1)} + \frac{1}{\mu_{0m}^2} \text{div}(K^{(1)}\nabla \tilde{\varphi}^{(1)}))_0$ is the zero-order Fourier coefficient of $g^{(1)}\tilde{\varphi}^{(1)} + \frac{1}{\mu_{0m}^2} \text{div}(K^{(1)}\nabla \tilde{\varphi}^{(1)})$.

Next we compute the integral

$$
\frac{1}{I_0^3(\mu_{0m})} \int_0^1 (g^{(1)}\tilde{\varphi}^{(1)} + \frac{1}{\mu_{0m}^2} \operatorname{div}(K^{(1)}\nabla \tilde{\varphi}^{(1)}))_0 I_0(\mu_{0m}r) r^{N-1}.
$$
 (7.8)

Let us consider the problem

$$
\begin{cases} \Delta w + \mu_{0m}^2 w = -\mu_{0m}^2 g^{(1)} \tilde{\varphi}^{(1)} - \operatorname{div}(K^{(1)} \nabla \tilde{\varphi}^{(1)}) & \text{in} \quad B_1, \\ w = 0 & \text{on} \quad \partial B_1. \end{cases}
$$
(7.9)

By writing w_0 , the radial part of w, as

$$
w_0 = b_0(r)I_0(\mu_{0m}r),
$$

by a direct computation we obtain

$$
\partial_{\mathbf{n}} w_0 = -\frac{\mu_{0m}^2}{I_0(\mu_{0m})} \int_0^1 (g^{(1)} \tilde{\varphi}^{(1)})_0 I_0(\mu_{0m} r) r^{N-1}
$$
\n
$$
-\frac{1}{I_0(\mu_{0m})} \int_0^1 (\text{div}(K^{(1)} \nabla \tilde{\varphi}^{(1)}))_0 I_0(\mu_{0m} r) r^{N-1}.
$$
\n(7.10)

Comparing (7.8) with (7.10) , we obtain

$$
\frac{1}{I_0^3(\mu_{0m})} \int_0^1 (g^{(1)}\tilde{\varphi}^{(1)} + \frac{1}{\mu_{0m}^2} \operatorname{div}(K^{(1)} \nabla \tilde{\varphi}^{(1)}))_0 I_0(\mu_{0m} r) r^{N-1} dr
$$

=
$$
-\frac{1}{\mu_{0m}^2 I_0^2(\mu_{0m})} \partial_{\mathbf{n}} w_0.
$$

On the other hand, since a particular solution to (7.9) can be written as

$$
w = x \cdot \nabla \widetilde{\varphi}^{(1)} k + \widetilde{w},
$$

where \tilde{w} solves

$$
\begin{cases} \Delta \widetilde{w} + \mu_{0m}^2 \widetilde{w} = 0 & \text{in} \quad B_1, \\ \widetilde{w} = -\mu_{0m}^2 I'_1(\mu_{0m}) k^2 & \text{on} \quad \partial B_1 \end{cases}
$$

(since $x \cdot \nabla \tilde{\varphi}^{(1)} k = \mu_{0m}^2 I'_1(\mu_{0m}) k^2$ on ∂B_1), we obtain that w_0 has the form

$$
w_0 = \frac{r}{|\partial B_1|} \int\limits_{\partial B_1} \partial_r \widetilde{\varphi}^{(1)} k - \mu_{0m}^2 I'_1(\mu_{0m}) I_0(\mu_{0m} r) \frac{1}{|\partial B_1|} \int\limits_{\partial B_1} k^2.
$$

² Springer

We have that

$$
\partial_{\mathbf{n}} w_0 = \frac{1}{|\partial B_1|} \int_{\partial B_1} \partial_r \widetilde{\varphi}^{(1)}(1, \theta) k(1, \theta) + \frac{1}{|\partial B_1|} \int_{\partial B_1} \partial_{rr} \widetilde{\varphi}^{(1)}(1, \theta) k(1, \theta) + \frac{1}{|\partial B_1|} \int_{\partial B_1} \partial_r \widetilde{\varphi}^{(1)}(1, \theta) \partial_r k(1, \theta).
$$

Since

$$
\partial_r \widetilde{\varphi}^{(1)}(1,\theta) = \mu_{0m}^2 I'_1(\mu_{0m})k,
$$

and

$$
\partial_{rr}\widetilde{\varphi}^{(1)}(1,\theta) = \mu_{0m}^3 I'_1(\mu_{0m}) \sum_{p \ge 1} \sum_{q=1}^{d_p} k_{pq} I''_p(\mu_{0m}) / I'_p(\mu_{0m}) Y_{pq}(\theta),
$$

we obtain

$$
\partial_{\mathbf{n}} w_0 = \mu_{0m}^2 I'_1(\mu_{0m}) \frac{1}{|\partial B_1|} \int_{\partial B_1} k^2 + \mu_{0m}^3 I'_1(\mu_{0m}) \sum_{p \ge 1} \sum_{q=1}^{d_p} k_{pq}^2 I''_p(\mu_{0m}) / I'_p(\mu_{0m})
$$

$$
+ \mu_{0m}^2 \frac{I'_1(\mu_{0m})}{|\partial B_1|} \int_{\partial B_1} k \partial_{\mathbf{n}} k.
$$

Then, by [\(2.2\)](#page-5-2), it follows that

$$
\partial_{\mathbf{n}} w_0 = -(N-2)\mu_{0m}^2 I'_1(\mu_{0m}) \frac{1}{|\partial B_1|} \int_{\partial B_1} k^2
$$

$$
-\mu_{0m}^3 I'_1(\mu_{0m}) \sum_{p \ge 1} \sum_{q=1}^{d_p} k_{pq}^2 I_p(\mu_{0m}) / I'_p(\mu_{0m})
$$

$$
+\mu_{0m} I'_1(\mu_{0m}) \sum_{p \ge 1} \sum_{q=1}^{d_p} k_{pq}^2 p(p+N-2) I_p(\mu_{0m}) / I'_p(\mu_{0m})
$$

$$
+\mu_{0m}^2 \frac{I'_1(\mu_{0m})}{|\partial B_1|} \int_{\partial B_1} k \partial_{\mathbf{n}} k.
$$

Finally we have

$$
\partial_{\mathbf{n}} u_{\text{par}_0}^{(2)} = \frac{N-2}{|\partial B_1|} \int_{\partial B_1} k^2 + \mu_{0m} \sum_{p \ge 1} \sum_{q=1}^{d_p} k_{pq}^2 I_p(\mu_{0m}) / I'_p(\mu_{0m})
$$

$$
- \frac{1}{|\partial B_1|} \int_{\partial B_1} k \partial_{\mathbf{n}} k - \frac{1}{\mu_{0m}} \sum_{p \ge 1} \sum_{q=1}^{d_p} k_{pq}^2 p(p+N-2) I_p(\mu_{0m}) / I'_p(\mu_{0m})
$$

$$
+ \frac{1}{I_0(\mu_{0m}) \mu_{0m}^2} \frac{1}{|\partial B_1|} \int_{\partial B_1} G^{(1)} \nabla \varphi^{(1)} \cdot \mathbf{n}.
$$

 $\underline{\textcircled{\tiny 2}}$ Springer

Since by [\(6.7\)](#page-16-2), for $Y_{1q} = 1$, we have

$$
\frac{1}{|\partial B_1|} \int_{\partial B_1} G^{(1)} \nabla \varphi^{(1)} \cdot \mathbf{n} = \mu_{0m} I'_1(\mu_{0m}) \sum_{p \ge 1} \sum_{q=1}^{d_p} k_{pq}^2 p(p+N-2) I_p(\mu_{0m}) / I'_p(\mu_{0m}),
$$

it follows that

$$
\partial_{\mathbf{n}} u_{\text{par}_0}^{(2)} = \frac{N-2}{|\partial B_1|} \int_{\partial B_1} k^2 + \frac{\mu_{0m}}{|\partial B_1|} \sum_{p \ge 1} \sum_{q=1}^{d_p} k_{pq}^2 I_p(\mu_{0m}) / I'_p(\mu_{0m}) - \frac{1}{|\partial B_1|} \int_{\partial B_1} k \partial_{\mathbf{n}} k.
$$

Finally we have

$$
\langle d^{2} \Phi(0)k | k \rangle = \int_{\partial B_{1}} \partial_{\mathbf{n}} u_{\text{par}_{0}}^{(2)} - (N - 2) \int_{\partial B_{1}} k^{2} + \int_{\partial B_{1}} \partial_{\mathbf{n}} k k
$$

$$
= \mu_{0m} \sum_{p \ge 1} \sum_{q=1}^{d_{p}} k_{pq}^{2} I_{p}(\mu_{0m}) / I_{p}'(\mu_{0m}). \tag{7.11}
$$

Let us suppose now that $k_0 \neq 0$. Then we have

$$
\langle \mathrm{d}^2 \Phi(0) k \mid k \rangle = \alpha k_0^2 + \mu_{0m} \sum_{p \ge 1} \sum_{q=1}^{d_p} k_{pq}^2 I_p(\mu_{0m}) / I'_p(\mu_{0m}),
$$

for some constant α . Now since $\Phi(k_0) = 0$, it follows that $\langle d^2\Phi(0)k_0 | k_0 \rangle = 0$, and then $\alpha = 0$. $\alpha = 0$.

8 Proof of Theorem [1.2](#page-3-0)

We begin our analysis by assuming that μ_{0m}^2 is simple. Two cases can happen: either μ_{0m}^2 , as eigenvalue with Dirichlet boundary conditions, has multiplicity equal to *N*, i.e. the set

$$
I = \{ p \ge 2; I_p(\mu_{0m}) = 0 \}
$$
\n(8.1)

is a empty set of positive integers, or μ_{0m}^2 has multiplicity bigger than *N*, i.e. *I* is a no empty (finite) set of positive integers. If μ_{0m}^2 has multiplicity equal to *N*, then [\(7.11\)](#page-24-1) is equal to zero for $k \in \{1, Y_{11}, \ldots, Y_{1N}\}$ (the symbol $\{5, f_1, \ldots, f_N\}$) denoting the vector space generated by the vectors f_1, \ldots, f_N , i.e. for *k* having the form

$$
k = k_0 + \sum_{q=1}^{N} k_{1q} Y_{1q}.
$$

We observe that the vector space $< 1, Y_{11}, \ldots, Y_{1N} >$ coincides with the tangent space to the variety

$$
\mathcal{M} = \{k; k = \overline{k}_{R,x_0}\},\
$$

² Springer

at 0, where \overline{k}_{R,x_0} , defined in [\(1.8\)](#page-2-1), parametrizes the sphere $\partial B_{1+R}(x_0)$ of radius $1 + R$, centered at x_0 . So the best that one can expect is that Φ has a sign in the space

$$
H = \bigcup_{p \in \{0,1\}} E_p,\tag{8.2}
$$

of functions *k* which don't have neither the frequency zero, nor the frequency 1. We observe that *H* is orthogonal to the space $\langle 1, Y_{11}, \ldots, Y_{1N} \rangle$. In what follows we prove the following

Lemma 8.1 *There exists a neighborhood* \mathcal{O} *of* 0 *in* \mathbb{R}^N *such that the function* \overline{k}_{R} , \overline{k}_{0} *has the frequency* 1 *for* $x_0 \in \mathcal{O}$ *.*

Proof of Lemma [8.1](#page-25-0) Let x_0 be such that $x_{0q} \neq 0$, for some $q \in \{1, \ldots, N\}$. We have that

$$
\frac{1}{|\partial B_1|} \int_{\partial B_1} \overline{k}_{R,x_0} Y_{1q} = \sum_{n=1}^N x_{0n} \frac{1}{|\partial B_1|} \int_{\partial B_1} Y_{1n} Y_{1q} + \frac{1}{|\partial B_1|} \int_{\partial B_1} h Y_{1q}
$$

= $x_{0q} + \frac{1}{|\partial B_1|} \int_{\partial B_1} h Y_{1q}.$

Since the function

$$
h(x_0, y) = \sqrt{(1+R)^2 + |x_0 \cdot y|^2 - |x_0|^2}
$$

is even on ∂B_1 , it follows that $\int_{\partial B_1} hY_{1q} = 0$ for all such that Y_{1q} is odd. Let $q \in \{1, ..., N\}$ be such that $\int_{\partial B_1} hY_{1q} \neq 0$. Since

$$
h(x_0, y) = 1 + R + o(|x_0|)
$$
, as $x_0 \to 0$,

the thesis follows. \Box

Now if μ_{0m}^2 has multiplicity bigger than *N*, as eigenvalue with Dirichlet boundary conditions (i.e. *I* is a no empty set), then (7.11) is equal to zero for $k \in \le$ 1, $Y_{11}, \ldots, Y_{1N}, Y_{p1}, \ldots, Y_{pd_p} >$, i.e. for *k* having the form

$$
k = k_0 + \sum_{q=1}^{N} k_{1q} Y_{1q} + \sum_{p \in I} \sum_{q=1}^{d_p} k_{pq} Y_{pq}.
$$

Finally, if μ_{0m}^2 is singular, the same conclusions hold true, by changing *E* with the space $\bigcup_{p \in L \cup L'} E_p$.

Before proceeding with the proof of Theorem [1.2,](#page-3-0) we need some preliminary lemmas. We begin by studying the sign of the term $I_p(\mu_{0m})/I'_p(\mu_{0m})$ in [\(7.11\)](#page-24-1). We can prove the following

Lemma 8.2 *There exists a positive integer p₀, depending on* μ_{0m} *, such that, for all p* $\geq p_0$ *,*

$$
I_p(\mu_{0m})/I'_p(\mu_{0m}) > 0.
$$
\n(8.3)

Proof of Lemma [8.2](#page-25-1) Since the $\lim_{p\to+\infty} \mu_{p1} = +\infty$, we have that there exists a p_0 such that $\mu_{p1} \ge \mu_{0m}$, for all $p \ge p_0$. Now since the function I_p/I_p' is positive on the interval $(0, \mu_{p1}), (8.3)$ $(0, \mu_{p1}), (8.3)$ follows.

Lemma 8.3 *There exists a neighborhood* \mathcal{O} *of the origin in E, such that if* $k \in \mathcal{O} \cap E_1^C$ *, then the mass center* \bar{x} *of* Ω_k *is different to zero.*

Here

$$
E_1^C = \{k \in E; k_{1q} \neq 0 \text{ for some } q = 1, ..., N\},\
$$

the complementary of E_1 , is the set of functions *k* which have the frequency 1. We recall that the mass center of a domain Ω is the point \overline{x} of coordinates

$$
\overline{x}_i = \frac{1}{|\Omega|} \int\limits_{\Omega} x_i, \quad i = 1, \dots, N.
$$

This lemma implies that if the mass center of Ω_k , for $k \in \mathcal{O}$, is at the point zero, then *k* doesn't have the frequency 1, i.e. $k \in E_1$. In particular we have that a domain Ω_k , with $k \in \mathcal{O} \cap E_1$ is either a domain with mass center at 0, or $\Omega_k = \tau(\Omega_k)$, for some translation τ of \mathbb{R}^N , and some domain $\Omega_{\tilde{k}}$, where $\Omega_{\tilde{k}}$ has mass center at zero.

Proof of Lemma [8.3](#page-25-3) See [\[4](#page-29-4)]. 

Lemma 8.4 *There exists a neighborhood U of the origin in E, with U contained in O, such that given a domain* Ω_k , with $k \in \mathcal{U}$, one can find a $\widetilde{k} \in \mathcal{O} \cap H$ such that

$$
\tau\circ\sigma(\Omega_{\widetilde{k}})=\Omega_k,
$$

for some translation τ *, and some homothety* σ *of* \mathbb{R}^N *.*

As consequence of this lemma, since the operator Φ is invariant up to isometries and up to homotheties, we obtain that Φ has a sign in \mathcal{U} , if it has a sign in $\mathcal{O} \cap H$.

Proof of Lemma [8.4](#page-26-0) Let us consider the set

$$
F = \{k \in \mathcal{O}; \overline{x} = 0\},\
$$

where the point \bar{x} is the mass center of the domain Ω_k . Let $\mathcal U$ be a neighborhood of 0 in $E, \mathcal U$ contained in *O*. If $k \in \mathcal{U} \cap H$, it is right. On the other hand if $k \notin H$, then either

$$
k\in E_1,
$$

or

 $k \notin E_1$.

If $k \in E_1$, then $k_0 \neq 0$, then $\tilde{k} = k - k_0$ lies in $\mathcal{U} \cap H$, and $\sigma(\Omega_{\tilde{k}}) = \Omega_k$, for some homothety σ of \mathbb{R}^N . Now if $k \notin E_1$, let \overline{x} be the mass center of Ω_k (we have that $\overline{x} \neq 0$, otherwise $k \in F$, and then $k \in E_1$). We have that k can be written as (see [\[4\]](#page-29-4))

$$
k(y) = k'((1 + \overline{k}_{1,\overline{x}})y - \overline{x}) + \overline{k}_{1,\overline{x}}(y)(1 + k'((1 + \overline{k}_{1,\overline{x}})y - \overline{x})),
$$

with k' such that $\Omega_{k'}$ has mass center at 0. Then

$$
||k'|| \leq ||k' - k|| + ||k||
$$

Now since

$$
k(y) - k'((1 + \overline{k}_{1,\overline{x}})y - \overline{x}) \to 0, \text{ as } \overline{x} \to 0,
$$

we obtain that $k' \in F$, and the result follows.

Now we can prove Theorem [1.2.](#page-3-0)

Proof of Theorem [1.2](#page-3-0) *Case (i):* μ_{0m}^2 is *simple*. Let assume that μ_{0m}^2 has multiplicity equal to *N*, as eigenvalue with Dirichlet boundary conditions.

Step 1. Let *V* be the space

$$
V = \{k \in H; k_{pq} = 0, p \in K\},\
$$

where

$$
K = \{ p \in \mathbb{N}; I_p(\mu_{0m})/I'_p(\mu_{0m}) < 0 \}
$$

is a (eventually empty) finite set of positive integers (by Lemma [8.2\)](#page-25-1). Let V' be the space

$$
V' = \{k; \, k \in p \in K\}.
$$

We observe that *V* is orthogonal to *V*, and

$$
H=V\oplus V'.
$$

Step 2. First we study the sign of [\(7.11\)](#page-24-1) in *V* . Let us denote by

$$
M = \max_{p \in K} I_p(\mu_{0m})/I'_p(\mu_{0m}).
$$

We have that $M < 0$. We obtain

$$
\langle d^2 \Phi(0) k | k \rangle = \mu_{0m} \sum_{p \in K} \sum_{q=1}^{d_p} k_{pq}^2 I_p(\mu_{0m}) / I'_p(\mu_{0m})
$$

$$
\leq M \mu_{0m},
$$

for all $k \in V'$, with $||k||_{V'} = 1$. So there exists a neighborhood O of the origin in *E* such that Φ is negative in $\mathcal{O}\backslash\{0\} \cap V'$.

Step 3. Let us study the sign of [\(7.11\)](#page-24-1) in *V*. Since

$$
\frac{I_p(r)}{I'_p(r)} = \frac{r}{p\left(1 - r\frac{I_{p+1}(r)}{I_p(r)}\right)},
$$

for $I'_p(r) \neq 0$ (see [\[5,](#page-29-8) pp. 486]), and since

$$
\frac{I_{p+1}(r)}{I_p(r)} \sim \frac{r}{2p} \quad \text{as } p \to +\infty
$$

(see $[3, pp. 23]$ $[3, pp. 23]$), we obtain

$$
\frac{1}{(1-\mu_{0m}I_{p+1}(\mu_{0m})/I_p(\mu_{0m}))} \ge 1.
$$

Then the general term in series [\(7.11\)](#page-24-1) becomes

$$
k_{pq}^{2} I_{p}(\mu_{0m})/I'_{p}(\mu_{0m}) = \frac{k_{pq}^{2}}{p} \frac{\mu_{0m}}{(1 - \mu_{0m} I_{p+1}(\mu_{0m})/I_{p}(\mu_{0m}))}
$$

$$
\geq \frac{k_{pq}^{2}}{p} \mu_{0m},
$$

which yields that

 \circledcirc Springer

$$
\langle d^2 \Phi(0) k | k \rangle = \mu_{0m} \sum_{p \in K^C} \sum_{q=1}^{d_p} k_{pq}^2 I_p(\mu_{0m}) / I'_p(\mu_{0m})
$$

$$
\geq \mu_{0m}^2 \sum_{p \in K^C} \sum_{q=1}^{d_p} \frac{k_{pq}^2}{p}
$$

$$
\geq \mu_{0m}^2,
$$

for all $k \in H$, with $||k||_V = 1$ (we have normed *V* with the weighted $L^2(\partial B_1)$ -norm $||k||^2 = \sum_{p=1}^{+\infty} \sum_{q=1}^{d_p} k_{pq}^2 / p$. So there exists a neighborhood *O* of the origin in *E* such that Φ is positive in $\mathcal{O}\setminus\{0\} \cap V$.

We point out that if $I_p(\mu_{0m})/I'_p(\mu_{0m}) > 0$, for all $p \ge 2$, then the set $K = \emptyset$. In this case Φ is positive in $\mathcal{O}\setminus\{0\} \cap H$, and, by Lemma [8.4,](#page-26-0) it follows that Φ is positive in $\mathcal{U}\setminus\mathcal{M}$, i.e. the result is optimal. On the other hand if $K \neq \emptyset$, then Φ must *change* sign in *H*.

Let assume that μ_{0m}^2 has multiplicity bigger than *N* (as eigenvalue with Dirichlet boundary conditions). In this case *V* becomes

$$
V = \{k \in H; k_{pq} = 0, p \in K \cup I\},\
$$

being the set *I* defined in (8.1) , and *V'* becomes

$$
V' = \{k; k \in , p \in K \cup I\}.
$$

Case (ii): μ_{0m}^2 is *singular*. Let assume that μ_{0m}^2 has multiplicity equal to *N*. Let \tilde{V} be the space

$$
\widetilde{V} = \{k \in H; k_{pq} = 0, p \in K \cup L \cup L'\}.
$$

Let V' be the space

$$
V' = \{k; k \in p \in K\}.
$$

By using the same arguments as in previous case (i), we obtain that Φ is negative in $\mathcal{O}\setminus\{0\}\cap V'$, and it is positive in $\mathcal{O}\setminus\{0\} \cap V$. Now since Φ is continuous in *E*, and the space $\bigcup_{p\in L\cup L'}E_p$ has zero Lebesgue measure in *E*, it follows that Φ is positive in $\mathcal{O}\setminus\{0\} \cap V$, with $V = \{k \in \mathcal{V}\}$ *H*; $k_{pq} = 0$, $p \in K$. Finally if μ_{0m}^2 has multiplicity bigger than *N* the same conclusion holds true, with *V* = {*k* ∈ *H*; *k*_{*pq*} = 0, *p* ∈ *K* ∪ *I*}.

9 Lipschitz case

In this section we examine briefly Lipschitz case, i.e. the case where

$$
E = \{k \in C^{0,1}(\partial B_1)\}.
$$

By classical regularity results we know that $u \in C_{loc}^{omega}(\Omega_k) \cap C^{0,1}(\overline{\Omega}_k)$ solves [\(1.4\)](#page-1-0) in a weak sense, when $\Omega = \Omega_k$, i.e.

$$
\int_{\Omega_k} \nabla u \cdot \nabla \phi - \mu \int_{\Omega_k} u \phi = \int_{\Omega_k} \phi,
$$

for all $\phi \in C_c^{\infty}(\Omega_k)$. By repeating the same arguments as in the regular case, we can prove the following

 $\circled{2}$ Springer

Theorem 9.1 *Given a* μ_{0m} *, for some m* ≥ 1 *, there exists a class D of* $C^{0,1}$ *-domains (depending on* μ_{0m} *), such that if u is a weak no trivial solution to* [\(1.4\)](#page-1-0)*, and*

$$
\int\limits_{\partial \Omega} \partial_{\mathbf{n}} u = 0,
$$

 $with \Omega \in \mathcal{D}$, and $\mu = \mu_{0m}^2 + o(1)$, then $\Omega = B_1$, $\mu = \mu_{0m}^2$, and $u = u^{(0)}$ in B_1 .

References

- 1. Berenstein, C.A.: An inverse spectral theorem and its relation to the Pompeiu problem. J. d'Anal. Math. **37**, 128–144 (1980)
- 2. Berenstein, C.A., Yang, P.C.: An inverse Neumann problem. J. Reine Angew. Math. **382**, 1–21 (1987)
- 3. Canuto, B., Rial, D.: Local overdetermined linear elliptic problems in Lipschitz domains with solutions changing sign. Rend. Istit. Mat. Univ. Trieste **XL**, 1–27 (2009)
- 4. Canuto, B.: A local symmetry result for linear elliptic problems with solutions changing sign. Ann. Inst. H. Poincarè Anal. Non-linéaire **28**, 551–564 (2011)
- 5. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. I. Interscience Publishers, New York (1953)
- 6. Liu, G.Q.: Personal comunication
- 7. Segala, F.: Stability of the convex Pompeiu sets. Annali di Mat. Pura e Applicata **CLXXV**, 295–306 (1998)
- 8. Williams, S.A.: A partial solution of the Pompeiu problem. Math. Ann. **223**, 183–190 (1976)
- 9. Zalcman, L.: Supplementary bibliography to: "A bibliographic survey of the Pompeiu problem", Radon Transform and Tomography (South Hadley, MA). Contemp. Math. **278**, 69–74 (2000)