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Abstract Given a eigenvalue μ2
0m of −� in the unit ball B1, with Neumann boundary

conditions, we prove that there exists a class D of C0,1-domains, depending on μ0m , such
that if u is a no trivial solution to the following problem �u + μu = 0 in �, u = 0 on ∂�,
and

∫
∂�
∂nu = 0, with� ∈ D, and μ = μ2

0m + o(1), then� is a ball. Here μ is a eigenvalue
of −� in �, with Neumann boundary conditions.

Mathematics Subject Classification 35N05

1 Introduction

The objective of the present paper is to study a overdetermined eigenvalue problem, known
in literature as Schiffer conjecture. The latter can be formulated as follows: the only domain
� such that there exists a no trivial solution ϕ to the problem

{
�ϕ + μϕ = 0 in �,

∂nϕ = 0 on ∂�,
(1.1)

with

ϕ = c on ∂�, (1.2)

is a ball. Hereμ and ϕ are respectively a eigenvalue and a corresponding eigenfunction of −�
with Neumann boundary conditions (∂nϕ is the external normal derivative to the boundary
∂�),� is a sufficiently smooth bounded domain in R

N , with N ≥ 2, and c is a given constant.
By a direct calculation we have that

ϕ = I0(μ0mr) in B1,
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306 B. Canuto

solves (1.1), (1.2), when� = B1, and μ = μ2
0m , for some m ≥ 1. Here r = |x |, | · | denoting

the Euclidean norm in R
N , B1 is the ball of radius 1, centered at zero, andμ0m is the mth-zero

of the first derivative of the so-called N -dimensional zero-order Bessel function of first kind
I0, i.e. I ′

0(μ0m) = 0, the symbol ′ denoting the ordinary derivative (see Sect. 2 for more
details). Berenstein [1] gives a positive answer to the conjecture by supposing that there exist
infinitely many pairs (μn, ϕn) satisfying (1.1 ), (1.2) in R

2. This result has been extended for
N ≥ 3 by Berenstein and Yang [2].

We begin by observing that (see Liu [6]) the following change of variable

u = 1

μc
(ϕ − c) in �, (1.3)

implies that ϕ solves (1.1), (1.2) if and only if u solves
{
�u + μu = −1 in �,

u = 0 on ∂�,
(1.4)

with

∂nu = 0 on ∂�. (1.5)

We have that

u(0) = 1

μ2
0m

(
I0(μ0mr)

I0(μ0m)
− 1

)

in B1, (1.6)

solves (1.4), (1.5), when � = B1, and μ = μ2
0m , for some m ≥ 1. We point out that since

problems (1.1), (1.2), and (1.4), (1.5), are invariant up to isometries and up to homotheties
of R

N , we have that

ϕ = I0(μ0m |x − x0|/1 + R) in B1+R(x0),

and

u(0) = (1 + R)2

μ2
0m

(
I0(μ0m |x − x0| /1 + R)

I0(μ0m/1 + R)
− 1

)

in B1+R(x0),

solve as well respectively (1.1), (1.2) and (1.4), (1.5), when � = B1+R(x0), and μ =
μ2

0m/(1 + R)2, where B1+R(x0) denotes the ball centered at x0, of radius 1 + R.
By following [3,4], let us define by E the vector space of C2,α-functions defined on the

unit sphere ∂B1, centered at zero, i.e.

E = {k ∈ C2,α(∂B1)},
α ∈ (0, 1). For k ∈ E , let�k be a domain whose boundary ∂�k can be written as perturbation
of the unit sphere ∂B1, i.e.

∂�k = {x = (1 + k)y, y ∈ ∂B1} (1.7)

(in particular for k ≡ 0 on ∂B1, ∂�0 = ∂B1). We begin by proving the following

Theorem 1.1 Let ϕ be a no trivial solution to (1.1), (1.2), when � = �k , for some k ∈ E.
Then μ is a perturbation of μ2

0m, for some m ≥ 1, i.e.

μ = μ2
0m + o(1),

and ϕ is a perturbation of I0(μ0m ·), i.e.

ϕ = I0(μ0m ·)+ o(1).
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The N -dimensional Schiffer conjecture 307

Being problem (1.4), (1.5) equivalent, by (1.3), to (1.1), (1.2), in what follows we will
study problem (1.4), (1.5).

Let μ be a eigenvalue of −� in �k . Let assume that μ has the form μ = μ2
0m + o(1), for

some m ≥ 1. Let us denote by � the operator

� : E → R,

defined by

�(k) =
∫

∂�k

∂nupar,

where upar is a particular solution to (1.4), when� = �k (upar = u(0), when� = B1). Now,
since if u solves (1.4), (1.5), when� = �k , it follows that�(k) = 0, we will concentrate our
attention on studying the sign of the operator � in a neighborhood of 0 in E . By observing
that the sphere of radius 1 + R, centered at the point x0 ∈ R

N , is parameterized by

∂B1+R(x0) = {x = (1 + k R,x0)y, y ∈ ∂B1},
where k R,x0 is given by

k R,x0(y) = x0 · y − 1 +
√
(1 + R)2 + |x0 · y|2 − |x0|2 (1.8)

(for R, x0 such that (1 + R)2 + |x0 · y|2 − |x0|2 ≥ 0 on ∂B1), we have that � vanishes
identically on the variety

M = {k; k = k R,x0}
(we observe that k R,x0 → 0 in E , as R, x0 → 0). So the best one can expect is that � is
different to 0 in O\M, for some neighborhood O of 0 in E .

A function f ∈ E can be written, in Fourier series expansion, as

f = f0 +
∑

p≥1

dp∑

q=1

f pq Ypq on ∂B1,

where f0 = 1
|∂B1|

∫
∂B1

f , and f pq = 1
|∂B1|

∫
∂B1

f Ypq are respectively the zero-order and the
p-order Fourier coefficient of f , and Ypq is the spherical harmonic of degree p. We say that
f has the frequency p, if the p-order coefficient of f is different to zero, i.e. f pq �= 0, for
some q ∈ {1, . . . , dp}. On the other hand we say that f doesn’t have the frequency p, if the
p-order coefficient of f is equal to zero, i.e. f pq = 0 for all q ∈ {1, . . . , dp}.

By studying the behavior of the operator� at 0, we prove in a first step that if the eigenvalue
μ2

0m is simple, i.e.

L = {p ∈ N; I ′
p(μ0m) = 0}

is a empty set of positive integers, then � is differentiable at 0 in E , and 0 is a critical point
of � in E (see Theorem 5.2). On the other hand if the eigenvalue μ2

0m is singular, i.e. L is
a no empty (finite) set [whose cardinality depends on the multiplicity of the eigenvalue μ2

0m
(see Sect. 2 for more details)], then � is differentiable at 0 in

⋃
p∈L E p , and 0 is a critical

point of � in
⋃

p∈L E p , where

E p = {k ∈ E; kpq = 0} (1.9)
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308 B. Canuto

is the vector space of functions k ∈ E which don’t have the frequency p. By studying the
second derivative of � at 0, we can show

Theorem 1.2 Given a μ0m, for some m ≥ 1, there exists a neighborhood O of 0 in E, and
two orthogonal spaces V, V ′ in E, with O, V, V ′ depending on μ0m, such that� is positive
in O\{0} ∩ V , and it is negative in O\{0} ∩ V ′.

As corollary of Theorem 1.2, we can prove the following

Theorem 1.3 Given aμ0m, for some m ≥ 1, there exists a class D of C2,α-domains, depend-
ing on μ0m, such that if u is a no trivial solution to (1.4), and

∫

∂�

∂nu = 0,

with � ∈ D, and μ = μ2
0m + o(1), then � = B1, μ = μ2

0m, and u = u(0) in B1.

Since the proof of Theorem 1.3 is short, and it doesn’t require particular technical tools,
we prove it now.

Proof of Theorem 1.3 Let us denote by G the class of domains �k , defined by

G = {�k; k ∈ O ∩ (V ∪ V ′)},
with O, V , and V ′ as in Theorem 1.2. Let � be the class of operators φ, defined by

∑
= {φ;φ = τ ◦ σ },

for some homothety τ and isometry σ of R
N . Finally let us denote by D the class of domains

�, defined by

D = {�;� = φ(�k)},
for �k ∈ G, and φ ∈ �. Let assume that u solves (1.4), and

∫
∂�
∂nu = 0, with � ∈ D, and

μ = μ2
0m + o(1). Since problem (1.4) is invariant up to isometries and to homotheties, we

have that
∫
∂�k

∂nu = 0, for some k ∈ O ∩ (V ∪ V ′). Now by writing u as

u = upar + uh in �k,

where uh solves the corresponding homogenous problem, and since by Fredholm theorem
−1 ∈ ker(�+ μ)⊥ in �k , by divergence theorem we obtain

0 =
∫

�k

uh = − 1

μ

∫

�k

�uh = − 1

μ

∫

∂�k

∂nuh .

Then we have

0 =
∫

∂�k

∂nu =
∫

∂�k

∂nupar,

i.e. �(k) = 0, which implies that k = 0, since, by Theorem 1.2, � has a sign in O\{0} ∩
(V ∪ V ′). �


Finally by using (1.3), and Theorem 1.3, the following theorem holds true:
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The N -dimensional Schiffer conjecture 309

Theorem 1.4 Given a μ0m, for some m ≥ 1, there exists a class D of C2,α-domains,
depending on μ0m, such that if ϕ is a no trivial solution to (1.1), (1.2), with � ∈ D, and
μ = μ2

0m + o(1), then � = B1, μ = μ2
0m, and ϕ = I0(μ0mr) in B1.

We observe that E through the paper is the space of functions of class C2,α on ∂B1 (this
means that we consider only regular perturbations of the unit sphere), but we will prove that
the same conclusions hold true in the case where E is the space of functions of class C0,1 on
∂B1, i.e. the boundary ∂�k is of Lipschitz class.

We recall that in a article appeared in 1976, S. A. Williams [8] proves that Schiffer
conjecture is related to the celebrated Pompeiu conjecture. In a series of papers appeared in
1929 the Roumanian mathematician Pompeiu proposes the following problem. We say that
a bounded domain� has Pompeiu property if and only if the only continuous function f on
R

N , N ≥ 2, such that
∫

σ(�)

f = 0, for all σ ∈ �,

is the function f ≡ 0, where � denotes the set of isometries of R
N . Pompeiu conjecture

says that among bounded domains of R
N , only balls fail to have Pompeiu property. The

connection between Schiffer and Pompeiu conjecture asserts that the failure of the Pompeiu
property is equivalent to the existence of a no trivial solution to (1.1), (1.2).

A stability result for Pompeiu problem has been proved by F. Segala [7]. By analyzing
the asymptotic behavior of the Fourier transform of the characteristic function χ�, Segala
proves, for N = 2, that if � is a domain with Pompeiu property, then all sufficiently small
homotheties of � have Pompeiu property as well.

It is of interest to recall a application of Pompeiu conjecture. This occurs for example in
medical imaging, a technic which consists in determining mass density of a organ in a human
body, by measuring the variation of intensity of a X -ray crossing through it. More precisely
Pompeiu conjecture says that knowledge of all possible values of variation of intensity of
the X -ray (i.e. all isometries σ(�) ∈ �) determines uniquely, up to balls, the mass density
of the organ. For further references concerning Pompeiu conjecture, see [9].

The paper is organized as follows: in the next section we give some preliminaries and
notations used through the paper. In Sect. 3 we prove Theorem 1.1. In Sects. 4 and 5 we give,
via perturbation methods, the first-order approximation, in a neighborhood of 0, respectively
of the eigenvalue μ and of the operator �. In Sects. 6 and 7 we give the second-order
approximation of μ and � respectively. In Sect. 8 we prove Theorem 1.2. Finally in Sect. 9
we consider Lipschitz case.

2 Preliminaries and notations

Let us denote by B1 the unit ball in R
N , centered at zero. By B1 we define the Euclidean

closure of B1. Let I
 be the so-called N -dimensional 
-order Bessel function of first kind,
i.e.

I
(r) = r−ν Jν+
(r), (2.1)

where ν = N
2 − 1, and Jν+
 is the well-known ν + 
 -order Bessel function of the first kind

(we observe that for N = 2, I
 coincides with the 
-order Bessel function J
). I
 solves the
following Bessel equation
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310 B. Canuto

I ′′

 + N − 1

r
I ′

 +

(

1 − 
(
+ N − 2)

r2

)

I
 = 0 in R. (2.2)

By μ
m we denote the mth-zero of the first derivative of the 
-order Bessel function I
, i.e.
I ′

(μ
m) = 0. We recall in particular that (see Lemma 3.5 in [3])

I ′
0 = −I1 in R.

This yields that

μ0m = λ1m,

where λ1m denotes the mth-zero of the one-order Bessel function I1, i.e. I1(λ1m) = 0.
Let (μn)n≥1 be the sequence, in increasing order, of eigenvalues of −� in B1 with Neu-

mann boundary conditions. A eigenvalue μn , for some n ∈ N, coincides, for some integer

 ≥ 0, and m ≥ 1, with μ2


m . The corresponding eigenfunctions can be written in polar
coordinates (up to a multiplicative constant) as

ϕ1 = I
(μ
mr)Y
1(θ),
...

...
...

ϕd
 = I
(μ
mr)Y
d
 (θ),
ϕpq = Ip(μ
mr)Ypq(θ),

where p ∈ L , and L is a (eventually empty) finite set (by Fredholm theorem) of positive
integers such that I ′

p(μ
m) = 0. We numerate pq with natural numbers d
 + 1, . . . , n. The

number of eigenfunctions is called multiplicity of the eigenvalueμ2

m . Here Yst is the spherical

harmonic of degree s, with t = 1, . . . , ds , and

ds =
{

1 if s = 0,
(2s+N−2)(s+N−3)!

s!(N−2)! if s ≥ 1.
(2.3)

For example, since d1 = N , the multiplicity of the eigenvalue μ2
1m is at least equal to N .

Let k̃ be a C2,α-extension of k into B1. Let us call A the Jacobian matrix of change of
variables

x = (1 + k)y, y ∈ B1, (2.4)

where we have denoted k̃ by k. The matrix A is given by

Ai j =

⎡

⎢
⎢
⎢
⎣

1 + k + y1∂1k y1∂2k · · · y1∂nk
y2∂1k 1 + k + y2∂2k · · · y2∂nk

...
. . .

...
...

yn∂1k · · · · · · 1 + k + yn∂nk

⎤

⎥
⎥
⎥
⎦
.

Following [4], the external unit normal vector at the point x = (1 + k)y ∈ ∂�k is given by

n((1 + k)y) = (AT )−1 y
√

G−1 y · y
, (2.5)

where G−1 is the inverse of the matrix G, and G = AT A. We write the matrix G as

G = IN + G(1) + G(2),
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The N -dimensional Schiffer conjecture 311

where IN is the N -order identity matrix, and the matrix G(1) and G(2) depend respectively lin-
early and quadratically on k and ∇k. The matrix G(1) and G(2) (see [4]) are given respectively
by

G(1)
i j = 2k IN +

⎡

⎢
⎢
⎢
⎣

2x1∂1k x1∂2k + x2∂1k · · · x1∂N k + xN ∂1k
x1∂2k + x2∂1k 2x2∂2k · · · x2∂N k + xN ∂2k

...
. . .

...
...

x1∂N k + xN ∂1k · · · · · · 2xN ∂N k

⎤

⎥
⎥
⎥
⎦
, (2.6)

and

G(2)
i j = k2 IN + k

⎡

⎢
⎢
⎢
⎣

2x1∂1k x1∂2k + x2∂1k · · · x1∂N k + xN ∂1k
x1∂2k + x2∂1k 2x2∂2k · · · x2∂N k + xN ∂2k

...
...
. . .

...

x1∂N k + xN ∂1k · · · · · · 2xN ∂N k

⎤

⎥
⎥
⎥
⎦

+|x |2

⎡

⎢
⎢
⎢
⎣

(∂1k)2 ∂1k∂2k · · · ∂1k∂N k
∂2k∂1k (∂2k)2 · · · ∂2k∂N k

...
...
. . .

...

∂N k∂1k · · · · · · (∂N k)2

⎤

⎥
⎥
⎥
⎦
. (2.7)

3 Proof of Theorem 1.1

Let μ be a eigenvalue of −� in �k , and let ϕ be a corresponding no trivial eigenfunction.
We can assume that the eigenvalue μ can be written as

μ = μ2

m + o(1),

for some 
 ≥ 0, and m ≥ 1. By change of variable (2.4), denoting by

ϕ̃(y) = ϕ((1 + k)y) in B1,

and using (2.5), we have that

∂nϕ((1 + k)y) = (AT )−1∇ϕ̃ · n((1 + k)y)

= (G−1 y · y)−1/2G−1∇ϕ̃ · y on ∂B1.

By a direct calculation we obtain that the function ϕ̃ solves
{

div(
√

gG−1∇ϕ̃)+ μ
√

gϕ̃ = 0 in B1,

G−1∇ϕ̃ · n = 0 on ∂B1.
(3.1)

Similarly, let us define by

ũ(y) = u((1 + k)y) in B1,

where u solves (1.4), when � = �k . The function ũ solves
{

div(
√

gG−1∇ũ)+ μ
√

gũ = −√
g in B1,

ũ = 0 on ∂B1.
(3.2)

Let us denote ũ by u, ϕ̃ by ϕ, and y by x . We have that a solution u to (3.2) can be written as

u = 1

μ2

m

(
I0(μ
mr)

I0(μ
m)
− 1

)

+ u(0)h + o(1) in B1, (3.3)
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312 B. Canuto

where the function

1

μ2

m

(
I0(μ
mr)

I0(μ
m)
− 1

)

is a particular solution to the (unperturbed) problem
{
�u + μ2


mu = −1 in B1,

u = 0 on ∂B1,

and u(0)h solves the corresponding homogenous unperturbed problem. We observe that u(0)h =
0, if the kernel ker(�+ μ2


m) = {0} in B1 (with Dirichlet boundary conditions). Otherwise,
if the kernel ker(�+ μ2


m) �= {0} in B1, i.e.

μ
m = λ
′m′ ,

for some 
, 
′ (with 
 �= 
′), then u(0)h has the form (in polar coordinates)

u(0)h =
d
′∑

q=1

α
′q I
′(μ
mr)Y
′q(θ)+
∑

p∈I

dp∑

q=1

αpq Ip(μ
mr)Ypq(θ),

where

I = {p ∈ N; Ip(μ
m) = 0}
is a (eventually empty) finite set of positive integers, and α
′1, . . . , α
′d
′ , αpq ∈ R. We
observe finally that in order that (3.3 ) makes sense in what follows we will suppose that

μ
m /∈ {λ0n}n≥1.

Proof of Theorem 1.1 We have

μ = μ2

m + o(1),

for some 
 ≥ 0, and m ≥ 1. Similarly we have

ϕ = ϕ(0) + o(1) in B1,

where ϕ(0) is a eigenfunction to (1.1), when μ = μ2

m , and � = B1. By (1.3), we have that

u can be written as

u = 1

μ2

mc

(ϕ(0) − c)+ o(1) in B1.

By (3.3), the zero-order term of u is given by

1

μ2

m

(
I0(μ
m ·)
I0(μ
m)

− 1

)

+ u(0)h .

Then we obtain

1

μ2

m

(
I0(μ
m ·)
I0(μ
m)

− 1

)

+ u(0)h = 1

μ2

mc

(ϕ(0) − c),

i.e.

ϕ(0) = c
I0(μ
m ·)
I0(μ
m)

+ cμ2

mu(0)h .

In particular we have
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The N -dimensional Schiffer conjecture 313

∂nϕ
(0) = cμ
m

I ′
0(μ
m)

I0(μ
m)
+ cμ2


m∂nu(0)h on ∂B1. (3.4)

Now since ∂nϕ
(0) = 0 on ∂B1, and c �= 0, by integrating (3.4) over ∂B1, we obtain I ′

0(μ
m) =
0, i.e. μ
m = μ0m . So u(0)h becomes

u(0)h =
N∑

q=1

α1q I1(μ0mr)Y1q(θ)+
∑

p∈I

dp∑

q=1

αpq Ip(μ0mr)Ypq(θ).

Now by multiplying (3.4) by Yi j (θ), and integrating over ∂B1, we obtain αi j = 0, for
i = 1, j = 1, . . . , N , and for i ∈ I, j = 1, . . . , di . �


4 The first-order approximation of the eigenvalue μ

By writing the matrix
√

gG−1 in (3.1) as

√
gG−1 = IN + K , (4.1)

we have that (3.1) can be written as (we denote ϕ̃ by ϕ)
{
�ϕ + div(K∇ϕ)+ μ

√
gϕ = 0 in B1,

G−1∇ϕ · n = 0 on ∂B1.
(4.2)

In particular we obtain

√
gIN − G = K G

= (K (1) + K (2))(IN + G(1) + G(2))+ · · · ,
where K (1) and K (2) denote respectively the one-order and the second-order approximation
of the matrix K (the matrix G(1) and G(2) are given respectively by (2.6) and (2.7)). One can
verify that

√
g = (1 + k)N + (1 + k)N−1x · ∇k.

This yields that the matrix

K (1) = g(1) IN − G(1), (4.3)

where g(1), the one-order approximation of
√

g, is given by

g(1) = Nk + x · ∇k,

and that the matrix

K (2) = g(2) IN − G(2) − K (1)G(1), (4.4)

where g(2), the second-order approximation of
√

g, is given by

g(2) = N (N − 1)

2
k2 + (N − 1)kx · ∇k.

By (4.1), (4.3), and (4.4) we obtain
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314 B. Canuto

G−1 = IN√
g

+ 1√
g
(K (1) + K (2))+ · · ·

= IN − G(1) − g(1)2 IN

+g(2) IN − G(2) + G(1)2 + · · · . (4.5)

Let assume that the eigenvalue μ is a perturbation of μ2
0m , for some m ≥ 1, i.e. μ has the

form

μ = μ2
0m + o(1).

We say that the eigenvalue μ2
0m is simple, if

L = {p ∈ N; I ′
p(μ0m) = 0}

is a empty set of positive integers. In this case the eigenspace is generated by the eigenfunction

ϕ(0) = I0(μ0mr). (4.6)

On the other hand we say that the eigenvalue μ2
0m is singular, if L is a no empty (finite) set

of positive integers. In this case the eigenspace is generated by the eigenfunctions

ϕ(0) = I0(μ0mr),

ϕ(0)pq
= Ip(μ0mr)Ypq(θ),

with p ∈ L . By numerating pq with natural numbers 2, 3, . . . , n, we call multiplicity of μ2
0m

the number n.
Now if μ2

0m is simple, we can prove that μ can be written as

μ = μ2
0m + μ(1) + o(‖k‖) in E . (4.7)

On the other hand if μ2
0m is singular, then μ has the same expression as above in

⋃
p∈L E p ,

where E p , defined in (1.9), is the space of functions k which don’t have the frequency p.

Theorem 4.1 Let μ2
0m be simple, then μ can be written as (4.7), where

μ(1) = −2k0μ
2
0m in E .

If μ2
0m is singular, the same holds by changing E with the space

⋃
p∈L E p.

Proof of Theorem 4.1 Let us assume that μ can be written as

μ = μ2
0m + μ(1) + o(‖k‖) in E .

Let ϕ be a corresponding eigenfunction, which, we suppose, can be written as

ϕ = ϕ(0) + ϕ(1) + o(‖k‖) in E,

where ϕ(0) = I0(μ0mr). By writing the term div(Kϕ)+ μ
√

gϕ in (4.2) as

div(K∇ϕ)+ √
gμϕ (4.8)

= div((K (1) + K (2))∇(ϕ(0) + ϕ(1)))+ μϕ + (g(1) + g(2))μϕ + · · · ,
one can verify that the one-order terms in (4.8) are

div(K (1)∇ϕ(0))+ μ2
0mϕ

(1) + μ(1)ϕ(0) + μ2
0m g(1)ϕ(0).

By taking the one-order terms in (3.1), and using (4.5), we obtain that ϕ(1) solves
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{
�ϕ(1) + μ2

0mϕ
(1) = f (1) in B1,

∂nϕ
(1) = 0 on ∂B1

(4.9)

(since G(1)∇ϕ(0) · n = μ0m G(1)x · x I ′
0(μ0m) = 0 on ∂B1), where

f (1) = −μ(1)ϕ(0) − μ2
0m g(1)ϕ(0) − div(K (1)∇ϕ(0)). (4.10)

One can verify that

w = x · ∇ϕ(0)k
solves

�w + μ2
0mw = −μ2

0m g(1)ϕ(0) − div(K (1)∇ϕ(0)).
So we look for ϕ(1) in the form

ϕ(1) = x · ∇ϕ(0)k + ϕ̃1,

where ϕ̃1 solves

�ϕ̃1 + μ2
0m ϕ̃1 = −μ(1)ϕ(0). (4.11)

By writing ϕ̃1 as

ϕ̃1 = a0(r)I0(μ0mr)+
∑

p≥1

dp∑

q=1

apq Ip(μ0mr)Ypq(θ),

where a0 solves

a′′
0 (r)+ q0(r)a

′
0(r) = −μ(1) in (0, 1),

by a direct calculation we have that

a′
0(1) = − μ(1)

I 2
0 (μ0m)

1∫

0

I 2
0 (μ0mr)r N−1.

Since the integral (see [4])

1∫

0

I 2
0 (μ0mr)r N−1 = 1

2
I 2
0 (μ0m), (4.12)

it follows that

a′
0(1) = −μ

(1)

2
.

Now we have that

∂nϕ
(1) = 0 on ∂B1,

if and only if
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0 = −μ2
0m I ′

1(μ0m)k + ∂nϕ̃1

= −μ2
0m I ′

1(μ0m)k0 − μ2
0m I ′

1(μ0m)
∑

p≥1

dp∑

q=1

kpq Ypq(θ)

−μ
(1)

2
I0(μ0m)+ μ0m

∑

p≥1

dp∑

q=1

apq I ′
p(μ0m)Ypq(θ).

If μ2
0m is simple, by taking respectively the zero-order and the p-order Fourier coefficient,

we obtain

μ(1) = −2k0μ
2
0m,

and

apq = μ0mkpq I ′
1(μ0m)/I ′

p(μ0m).

On the other hand if μ2
0m is singular, it must be kpq = 0, for p ∈ L , i.e. μ(1) has the desired

form in the space
⋃

p∈L E p .
Next we prove that

μ− μ2
0m − μ(1) = o(‖k‖) as k → 0,

and similarly

ϕ − ϕ(0) − ϕ(1) = o(‖k‖) as k → 0.

By defining by

μ̃ = μ− μ2
0m − μ(1), and ϕ̃ = ϕ − ϕ(0) − ϕ(1),

by following [4] one can prove that μ̃ = o(‖k‖), and ‖ϕ̃‖C2,α(B1)
= o(‖k‖). �


5 The first-order approximation of the operator �

We recall that problem (1.4) cannot have solutions or, if a solution exists, it cannot be unique.
This happens all times the kernel

ker(�+ μ) �= {0} in �,

(with Dirichlet boundary conditions). In particular by Fredholm theorem there exists a solu-
tion u to (1.4) if and only if −1 ∈ ker(�+ μ)⊥. In this case u can be written as

u = upar + uh,

where upar is a particular solution to (1.4) such that

upar ∈ ker(�+ μ)⊥ in �, (5.1)

and uh solves the corresponding homogenous problem. We observe that u p is unique and
can be written as

upar =
∑

p∈FC

n p∑

q=1

αpqψpq ,
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where αpq =
∫
� ψpq
μ−λp

is the p-order Fourier coefficient of u, λp and ψpq are respectively the
pth-eigenvalue and a corresponding eigenfunction of −� in �, and n p is the dimension of
the corresponding eigenspace. F is a finite set of integer (by Fredholm theorem), and FC

is the complementary of F . On the other hand if the kernel ker(� + μ) = {0} in �, then a
solution u exists and is unique. Let us denote by � the following operator

� : E �→ R,

defined by

�(k) :=
∫

∂�k

∂nupar. (5.2)

Here upar is a particular solution to (1.4), verifying (5.1), when� = �k , and μ has the form
μ = μ2

0m + o(1). The operator � is well-defined, since we suppose that a solution u exists
for k lying in some neighborhood O of 0 in E . By using (2.4), the function ũ defined by

ũ(y) = u((1 + k)y) in B1,

solves
{

div(
√

gG−1∇ũ)+ μ
√

gũ = −√
g in B1,

ũ = 0 on ∂B1.
(5.3)

Moreover, since by (2.5) we have that

∂nu((1 + k)y) = (G−1 y · y)−1/2G−1∇ũ · y on ∂B1,

we obtain

�(k) =
∫

∂B1

(G−1 y · y)−1/2G−1∇ũpar · y
√

g̃,

where ũpar(y) = upar((1 + k)y), and
√

g̃ is the surface element of the new variable y. Let us
denote ũpar by upar, and y by x . Before proceeding to calculate the first-order derivative of
the operator � at 0, we need some preliminary lemmas.

Lemma 5.1 Let μ = μ2
0m + o(1), then

upar → u(0) in E as k → 0.

Proof of Lemma 5.1 See [4]. �

Theorem 5.2 Let μ2

0m be simple. Then� is differentiable at 0 in E. Moreover 0 is a critical
point of � in E, i.e.

d�(0) = 0 in E .

If μ2
0m is singular, the same holds true by changing E with the space

⋃
p∈L E p.

Proof of Theorem 5.2 Let assume that μ2
0m is simple. Then μ has the form

μ = μ2
0m + μ(1) + o(‖k‖) in E .

Assume that upar can be written as

upar = u(0) + u(1)par + o(‖k‖) in E . (5.4)

By following step by step (4.8), we have
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div(K∇upar)+ √
g(μupar + 1) = g(1)(μ2

0m(u
(0) + u(1)par) (5.5)

+μ(1)(u(0) + u(1)par))+ div(K (1)∇u(0))+ · · · .
The one-order terms in (5.5) are

g(1)(1 + μ2
0mu(0))+ μ2

0mu(1)par + μ(1)u(0) + div(K (1)∇u(0)).

By taking the one-order terms in (5.9), we obtain that u(1)par solves
{
�u(1) + μ2

0mu(1) = f (1) in B1,

u(1) = 0 on ∂B1,
(5.6)

and f (1) is given by

f (1) = −μ(1)u(0) − g(1)(1 + μ2
0mu(0))− div(K (1)∇u(0)).

By Lemma 3.2 in [4], we have that u(1)par can be written as

u(1)par = − I1(μ0mr)

μ0m I0(μ0m)
rk + v, (5.7)

where v is the radial solution to
{
�v + μ2

0mv = −μ(1)u(0) in B1,

v = 0 on ∂B1.
(5.8)

By (4.5) and (5.4), it follows that

�(k) =
∫

∂B1

(G−1x · x)−1/2G−1∇u(0) · x
√

g̃

+
∫

∂B1

(G−1x · x)−1/2G−1∇u(1)par · x
√

g̃ + · · ·

=
∫

∂B1

(1 − 2k − 2∂nk)−1/2(∂nu(1)par − G(1)∇u(1)par · x)+ · · · . (5.9)

By taking the one-order terms in (5.9), we obtain that the first-order derivative of � at 0 is
given by

〈d�(0) | k〉 =
∫

∂B1

∂nu(1)par.

By writing the radial solution v to (5.8) as

v = a0(r)I0(μ0mr),

by a direct calculation we have that

a′
0(1) = 2k0

I 2
0 (μ0m)

1∫

0

(
I0(μ0mr)

I0(μ0m)
− 1

)

I0(μ0mr)r N−1.

Since the integral (see [4])
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1∫

0

I0(μ0mr)r N−1 = 0,

by (4.12) we obtain

∂nv = a′
0(1)I0(μ0m) = k0.

Finally we have

〈d�(0) | k〉 = − I ′
1(μ0m)

I0(μ0m)

∫

∂B1

k + k0

∫

∂B1

= 0,

where in the last step we use that
I ′
1(μ0m )

I0(μ0m )
= 1. �


In what follows we will assume that the zero-order Fourier coefficient of k is zero, i.e.

k0 = 1

|∂B1|
∫

∂B1

k = 0.

6 The second-order approximation of the eigenvalue μ

In this section we calculate the second-order approximation of the eigenvalue μ.

Theorem 6.1 Let μ2
0m be simple, then μ can be written as

μ = μ2
0m + μ(2) + o(‖k‖2) in E,

where

μ(2) = 2

I 2
0 (μ0m)

1∫

0

f0(r)I0(μ0mr)r N−1 − 2

I0(μ0m)|∂B1|
∫

∂B1

G(1)∇ϕ(1) · n in E,

where f0 is the zero-order Fourier coefficient of the function

f = − μ2
0m g(1)ϕ(1) − div(K (1)∇ϕ(1))

− μ2
0m g(2)ϕ(0) − div(K (2)∇ϕ(0)).

If μ2
0m is singular, the same holds true by changing E with the space

⋃
p∈L∪L ′ E p. In

particular, for N = 2, L ′ is the following (eventually empty) set of positive integers

L ′ = {p ∈ N; 2p ∈ L}. (6.1)

Proof of Theorem 6.1 Let us assume that μ is simple and it can be written as

μ = μ2
0m + μ(2) + o(‖k‖2) in E .

Let ϕ be a corresponding eigenfunction, which, we suppose, has the form

ϕ = ϕ(0) + ϕ(1) + ϕ(2) + o(‖k‖2) in E .

By taking the second-order terms in (3.1), and using (4.5), we have that ϕ(2) solves
{
�ϕ(2) + μ2

0mϕ
(2) = f (2) in B1,

∂nϕ
(2) − G(1)∇ϕ(1) · n = 0 on ∂B1

(6.2)
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(since H (2)∇ϕ(0) · n = 0 on ∂B1, H (2) being the second-order approximation of the matrix
G−1), where f (2) is given by

f (2) = −μ(2)ϕ(0) − μ2
0m g(1)ϕ(1) − div(K (1)∇ϕ(1)) (6.3)

−μ2
0m g(2)ϕ(0) − div(K (2)∇ϕ(0)).

We look for ϕ(2) in the form

ϕ(2) = w + ϕ̃(2),

where w solves

�w + μ2
0mw = f,

with f given by

f = −μ2
0m g(1)ϕ(1) − div(K (1)∇ϕ(1)) (6.4)

−μ2
0m g(2)ϕ(0) − div(K (2)∇ϕ(0)),

and where ϕ̃(2) solves

�ϕ̃(2) + μ2
0m ϕ̃

(2) = −μ(2)ϕ(0).
By following the proof of Theorem 4.1, we obtain

∂nϕ̃
(2) = −μ

(2)

2
I0(μ0m)+ μ0m

∑

p≥1

dp∑

q=1

apq I ′
p(μ0m)Ypq(θ).

By passing in polar coordinates, we write w as

w = w0(r)+
∑

p≥1

dp∑

q=1

wpq(r)Ypq(θ),

where w0 solves

w′′
0 (r)+ N − 1

r
w′

0(r)+ μ2
0mw0(r) = f0(r) in (0, 1),

and where f0 is the zero-order Fourier coefficient of f . By writing w0 as

w0(r) = b0(r)I0(μ0mr),

by a direct calculation we obtain

b′
0(1) = 1

I 2
0 (μ0m)

1∫

0

f0(r)I0(μ0mr)r N−1.

Now we have that

∂nϕ
(2) − G(1)∇ϕ(1) · n = 0 on ∂B1,

if and only if
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0 = b′
0(1)I0(μ0m)+

∑

p≥1

dp∑

q=1

w′
pq(1)Ypq(θ) (6.5)

−μ
(2)

2
I0(μ0m)+ μ0m

∑

p≥1

dp∑

q=1

apq I ′
p(μ0m)Ypq(θ)− G(1)∇ϕ(1) · n.

By taking the zero-order Fourier coefficient we obtain

μ(2) = 2

I 2
0 (μ0m)

1∫

0

f0(r)I0(μ0mr)r N−1 − 2

I0(μ0m)|∂B1|
∫

∂B1

G(1)∇ϕ(1) · n.

On the other hand if μ2
0m is singular, (6.5) holds true if and only if

∫

∂B1

(∂nw − G(1)∇ϕ(1) · n)Ypq = 0 for p ∈ L . (6.6)

Before proceeding with the proof of the theorem, we need the following �


Lemma 6.2 Let μ2
0m be singular, then for p ∈ L we have that

∫

∂B1

G(1)∇ϕ(1) · nYpq = μ0m I ′
1(μ0m)

∑

s /∈L

ds∑

t=1

k2
st

Is(μ0m)

I ′
s(μ0m)

s(s + N − 2)
∫

∂B1

Y 2
st Ypq in

⋃

s∈L

Es .

(6.7)

Proof of Lemma 6.2 Since for y ∈ R
N we have

G(1)y = 2ky + x · y∇k + y · ∇kx,

it follows that

G(1)∇ϕ(1) · n = ∇ϕ(1) · ∇k on ∂B1.

By passing in polar coordinates it follows that

∇ϕ(1) · ∇k = ∂nϕ
(1)∂nk +

N−1∑

i=1

G−1
i i ∂θiϕ

(1)∂θi k,

123



322 B. Canuto

where G−1 is the inverse matrix of the N − 1 diagonal matrix G,G being the Euclidean
metric tensor induced on the sphere ∂B1. We obtain

∂θiϕ
(1)∂θi k = μ0m I ′

1(μ0m)
∑

s /∈L

ds∑

t=1

k2
st Is(μ0m)/I ′

s(μ0m)(∂θi Yst )
2

+2μ0m I ′
1(μ0m)

∑

s /∈L

ds∑

t �=n=1

kst ksn Is(μ0m)/I ′
s(μ0m)∂θi Yst∂θi Ysn .

By orthogonality of spherical harmonics, we obtain
∫

∂B1

G(1)∇ϕ(1) · n

= μ0m I ′
1(μ0m)

∑

s /∈L

ds∑

t=1

k2
st Is(μ0m)/I ′

s(μ0m)

∫

∂B1

G−1∇Yst · ∇Yst . (6.8)

By recalling that spherical harmonics Yst solve

1√
g

div(
√

gG−1∇Yst ) = −s(s + N − 2)Yst ,

where g = | det G|, by multiplying by Yst Ypq , and integrating over ∂B1, we obtain
∫

∂B1

1√
g

div(
√

gG−1∇Yst )Yst Ypq = −s(s + N − 2)
∫

∂B1

Y 2
st Ypq .

Now, by divergence theorem and orthogonality of spherical harmonics (by recalling that
p ∈ L , and s /∈ L), it follows that the surface integral

∫

∂B1

1√
g

div(
√

gG−1∇Yst )Yst Ypq =
∫

K

div(
√

gG−1∇Yst )Yst Ypq

= −
∫

∂B1

G−1∇Yst · ∇Yst Ypq .

Then we have
∫

∂B1

G−1∇Yst · ∇Yst Ypq = s(s + N − 2)
∫

∂B1

Y 2
st Ypq ,

which, by (6.8), yields (6.7). �


Next we conclude the proof of Theorem 6.1. Since ϕ(1) = x · ∇ϕ(0)k + ϕ̃(1), where

ϕ̃(1) = μ0m I ′
1(μ0m)

∑

p≥1

dp∑

q=1

kpq Ip(μ0mr)/I ′
p(μ0m)Ypq(θ),

and since x · ∇ϕ̃(1)k solves
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�(x · ∇ϕ̃(1)k)+ μ2
0m x · ∇ϕ̃(1)k = −μ2

0m g(1)ϕ̃(1) − div(K (1)∇ϕ̃(1)),

we can write w as

w = x · ∇ϕ̃(1)k + w̃,

where w̃ solves

�w̃ + μ2
0mw̃ = −μ2

0m g(1)x · ∇ϕ(0)k − div(K (1)∇(x · ∇ϕ(0)k))
−μ2

0m g(2)ϕ(0) − div(K (2)∇ϕ(0)).

Then we obtain

∂nw = ∂nϕ̃
(1)k + ∂2

r ϕ̃
(1)k + ∂nϕ̃

(1)∂nk + ∂nw̃

= μ2
0m I ′

1(μ0m)
∑

s /∈L

ds∑

t=1

kst Yst k + μ3
0m I ′

1(μ0m)
∑

s /∈L

ds∑

t=1

kst I ′′
s (μ0m)/I ′

s(μ0m)Yst k

+∂nϕ̃
(1)∂nk + ∂nw̃ on ∂B1.

Since ∂nw doesn’t depend on the extension of k into B1, it follows that the term ∂nϕ̃
(1)∂nk

must simplify with some terms of ∂nw̃. For sake of simplicity we continue to define by ∂nw̃

the new term ∂nw̃. By (2.2) it follows that

∂nw = −(N − 2)μ2
0m I ′

1(μ0m)
∑

s /∈L

ds∑

t=1

kst Yst k

−μ3
0m I ′

1(μ0m)
∑

s /∈L

ds∑

t=1

kst Is(μ0m)/I ′
s(μ0m)Yst k

+μ0m I ′
1(μ0m)

∑

s /∈L

ds∑

t=1

s(s + N − 2)kst Is(μ0m)/I ′
s(μ0m)Yst k + ∂nw̃ on ∂B1.

By orthogonality of spherical harmonics, we obtain

∫

∂B1

∂nwYpq = −(N − 2)μ2
0m I ′

1(μ0m)
∑

s /∈L

ds∑

t=1

k2
st

∫

∂B1

Y 2
st Ypq

−μ3
0m I ′

1(μ0m)
∑

s /∈L

ds∑

t=1

k2
st Is(μ0m)/I ′

s(μ0m)

∫

∂B1

Y 2
st Ypq

+μ0m I ′
1(μ0m)

∑

s /∈L

ds∑

t=1

s(s + N − 2)k2
st Is(μ0m)/I ′

s(μ0m)

∫

∂B1

Y 2
st Ypq +

∫

∂B1

∂nw̃Ypq .

Comparing with (6.7), we obtain
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∫

∂B1

(∂nw − G(1)∇ϕ(1) · n)Ypq

= −(N − 2)μ2
0m I ′

1(μ0m)
∑

s /∈L

ds∑

t=1

k2
st

∫

∂B1

Y 2
st Ypq

−μ3
0m I ′

1(μ0m)
∑

s /∈L

ds∑

t=1

k2
st Is(μ0m)/I ′

s(μ0m)

∫

∂B1

Y 2
st Ypq +

∫

∂B1

∂nw̃Ypq .

Since Y 2
st , for N = 2, written in Fourier series expansion, has only even terms with frequency

2s, it follows that (6.6) holds true for all integers q ∈ {1, . . . , dp} if 2s /∈ L . On the other
hand if 2s ∈ L , then (6.6) holds true for all integers q ∈ {1, . . . , dp} such that Ypq is odd,
while for q such that Ypq is not odd, it must be kst = 0. �


7 The second-order approximation of the operator �

In order to calculate the second-order derivative of the operator � at 0, we need the second-
order approximation of the particular solution upar. Let us write upar in polar coordinates
as

upar = upar0
(r)+

∑

p≥1

dp∑

q=1

upar pq
(r)Ypq(θ),

where, as usual, upar0
(r) = 1

|∂B1|
∫
∂B1

upar(r, θ) and upar pq
= 1

|∂B1|
∫

∂B1

uparYpq are respec-

tively the zero-order and the p-order Fourier coefficient of upar. Let us define by

vpar =
∑

p≥1

dp∑

q=1

upar pq
(r)Ypq(θ)

the non-radial part of upar.

Theorem 7.1 Let μ2
0m be simple. Then the operator � is two-times differentiable at 0 in E.

Moreover we have

〈d2�(0)k | k〉 = μ0m

∑

p≥1

dp∑

q=1

k2
pq Ip(μ0m)/I ′

p(μ0m) in E . (7.1)

If μ2
0m is singular, then

〈d2�(0)k | k〉 = μ0m

∑

p/∈L

dp∑

q=1

k2
pq Ip(μ0m)/I ′

p(μ0m) in
⋃

p∈L∪L ′
E p.

Proof of Theorem 7.1 Let μ2
0m be simple. Then μ has the form

μ = μ2
0m + μ(2) + o(‖k‖2) in E .
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Let assume that upar0
can be written as

upar0
= u(0) + u(1)par0

+ u(2)par0
+ o(‖k‖2) in E .

By taking the second-order terms of the zero-order coefficient in (5.3), we obtain that u(2)par0

is the radial solution to
{
�u(2) + μ2

0mu(2) = f (2)0 in B1,

u(2) = 0 on ∂B1,
(7.2)

where f (2)0 is the zero-order Fourier coefficient of the function

f (2) = −μ(2)u(0) − μ2
0m g(1)u(1)par − div(K (1)∇u(1)par)

−g(2) − μ2
0m g(2)u(0) − div(K (2)∇u(0)).

Now we prove that � is two-times differentiable at 0 in E . We have

�(k) =
∫

∂B1

(G−1x · x)−1/2G−1(∇upar0
+ ∇vpar) · x

√
g̃ + · · · (7.3)

=
∫

∂B1

(1 + k + ∂nk)(∂nupar0
+ ∂nvpar − G(1)(∇upar0

+ ∇vpar) · x)
√

g̃ + · · · ,

where in the last step we use that the surface element
√

g̃ is given by
√

g̃ = 1 + (N − 1)k + o(‖k‖) on ∂B1.

By taking the second-order terms in (7.3), we obtain that the second-order derivative of� at
0 is given by

〈d2�(0)k | k〉 =
∫

∂B1

∂nu(2)par0
+

∫

∂B1

(k + ∂nk)∂nu(1)par

+(N − 1)
∫

∂B1

k∂nu(1)par −
∫

∂B1

G(1)∇u(1)par · x . (7.4)

Since

G(1)∇u(1)par · x = 2(k + ∂nk)∂nu(1)par on ∂B1,

substituting in (7.4), it follows that

〈d2�(0)k | k〉 =
∫

∂B1

∂nu(2)par0
− (N − 2)

∫

∂B1

k2 +
∫

∂B1

∂nk, (7.5)

(we use that ∂nu(1)par = −k on ∂B1). By writing the function u(2)par0
as

u(2)par0
= a0(r)I0(μ0mr),

by a direct calculation we have that
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a′
0(1) = 1

I 2
0 (μ0m)

1∫

0

f (2)0 I0(μ0mr)r N−1

= − μ(2)

2I0(μ0m)μ
2
0m

+ 1

I 2
0 (μ0m)

1∫

0

g0(r)I0(μ0mr)r N−1,

where g0 is the zero-order Fourier coefficient of

g = −μ2
0m g(1)u(1)par − div(K (1)∇u(1)par)

−μ2
0m g(2)u(0) − g(2) − div(K (2)∇u(0)).

By recalling that

μ(2) = 2

I 2
0 (μ0m)

1∫

0

f0(r)I0(μ0mr)r N−1 − 2

I0(μ0m)|∂B1|
∫

∂B1

G(1)∇ϕ(1) · n,

where f0 is zero-order Fourier coefficient of

f = −μ2
0m g(1)ϕ(1) − div(K (1)∇ϕ(1))

−μ2
0m g(2)ϕ(0) − div(K (2)∇ϕ(0)),

we obtain

a′
0(1) = − 1

I 3
0 (μ0m)μ

2
0m

1∫

0

f0(r)I0(μ0mr)r N−1 + 1

I 2
0 (μ0m)

1∫

0

g0(r)I0(μ0mr)r N−1

+ 1

I 2
0 (μ0m)μ

2
0m |∂B1|

∫

∂B1

G(1)∇ϕ(1) · n. (7.6)

We have that

− f + g = μ2
0m g(1)ϕ(1) + div(K (1)∇ϕ(1))

+μ2
0m g(2)ϕ(0) + div(K (2)∇ϕ(0))

−μ2
0m g(1)u(1)par − div(K (1)∇u(1)par)

−μ2
0m g(2)u(0) − g(2) − div(K (2)∇u(0)). (7.7)

By writing u(0),∇u(0), ϕ(1) respectively as

u(0) = 1

μ2
0m

(
ϕ(0)

I0(μ0m)
− 1

)

,

∇u(0) = 1

μ2
0m I0(μ0m)

∇ϕ(0),

ϕ(1) = μ2
0m I0(μ0m)u

(1)
par + ϕ̃(1),

and by substituting in (7.7), we obtain

− 1

I 3
0 (μ0m)μ

2
0m

f + 1

I 2
0 (μ0m)

g = 1

I 3
0 (μ0m)

(g(1)ϕ̃(1) + 1

μ2
0m

div(K (1)∇ϕ̃(1))).

Then (7.6) becomes
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a′
0(1) = 1

I 3
0 (μ0m)

1∫

0

(g(1)ϕ̃(1) + 1

μ2
0m

div(K (1)∇ϕ̃(1)))0 I0(μ0mr)r N−1

+ 1

I 2
0 (μ0m)μ

2
0m |∂B1|

∫

∂B1

G(1)∇ϕ(1) · n,

where (g(1)ϕ̃(1) + 1
μ2

0m
div(K (1)∇ϕ̃(1)))0 is the zero-order Fourier coefficient of g(1)ϕ̃(1) +

1
μ2

0m
div(K (1)∇ϕ̃(1)).

Next we compute the integral

1

I 3
0 (μ0m)

1∫

0

(g(1)ϕ̃(1) + 1

μ2
0m

div(K (1)∇ϕ̃(1)))0 I0(μ0mr)r N−1. (7.8)

Let us consider the problem
{
�w + μ2

0mw = −μ2
0m g(1)ϕ̃(1) − div(K (1)∇ϕ̃(1)) in B1,

w = 0 on ∂B1.
(7.9)

By writing w0, the radial part of w, as

w0 = b0(r)I0(μ0mr),

by a direct computation we obtain

∂nw0 = − μ2
0m

I0(μ0m)

1∫

0

(g(1)ϕ̃(1))0 I0(μ0mr)r N−1 (7.10)

− 1

I0(μ0m)

1∫

0

(div(K (1)∇ϕ̃(1)))0 I0(μ0mr)r N−1.

Comparing (7.8) with (7.10), we obtain

1

I 3
0 (μ0m)

1∫

0

(g(1)ϕ̃(1) + 1

μ2
0m

div(K (1)∇ϕ̃(1)))0 I0(μ0mr)r N−1dr

= − 1

μ2
0m I 2

0 (μ0m)
∂nw0.

On the other hand, since a particular solution to (7.9) can be written as

w = x · ∇ϕ̃(1)k + w̃,

where w̃ solves
{
�w̃ + μ2

0mw̃ = 0 in B1,

w̃ = −μ2
0m I ′

1(μ0m)k2 on ∂B1

(since x · ∇ϕ̃(1)k = μ2
0m I ′

1(μ0m)k2 on ∂B1), we obtain that w0 has the form

w0 = r

|∂B1|
∫

∂B1

∂r ϕ̃
(1)k − μ2

0m I ′
1(μ0m)I0(μ0mr)

1

|∂B1|
∫

∂B1

k2.
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We have that

∂nw0 = 1

|∂B1|
∫

∂B1

∂r ϕ̃
(1)(1, θ)k(1, θ)+ 1

|∂B1|
∫

∂B1

∂rr ϕ̃
(1)(1, θ)k(1, θ)

+ 1

|∂B1|
∫

∂B1

∂r ϕ̃
(1)(1, θ)∂r k(1, θ).

Since

∂r ϕ̃
(1)(1, θ) = μ2

0m I ′
1(μ0m)k,

and

∂rr ϕ̃
(1)(1, θ) = μ3

0m I ′
1(μ0m)

∑

p≥1

dp∑

q=1

kpq I ′′
p (μ0m)/I ′

p(μ0m)Ypq(θ),

we obtain

∂nw0 = μ2
0m I ′

1(μ0m)
1

|∂B1|
∫

∂B1

k2 + μ3
0m I ′

1(μ0m)
∑

p≥1

dp∑

q=1

k2
pq I ′′

p (μ0m)/I ′
p(μ0m)

+μ2
0m

I ′
1(μ0m)

|∂B1|
∫

∂B1

k∂nk.

Then, by (2.2), it follows that

∂nw0 = −(N − 2)μ2
0m I ′

1(μ0m)
1

|∂B1|
∫

∂B1

k2

−μ3
0m I ′

1(μ0m)
∑

p≥1

dp∑

q=1

k2
pq Ip(μ0m)/I ′

p(μ0m)

+μ0m I ′
1(μ0m)

∑

p≥1

dp∑

q=1

k2
pq p(p + N − 2)Ip(μ0m)/I ′

p(μ0m)

+μ2
0m

I ′
1(μ0m)

|∂B1|
∫

∂B1

k∂nk.

Finally we have

∂nu(2)par0
= N − 2

|∂B1|
∫

∂B1

k2 + μ0m

∑

p≥1

dp∑

q=1

k2
pq Ip(μ0m)/I ′

p(μ0m)

− 1

|∂B1|
∫

∂B1

k∂nk − 1

μ0m

∑

p≥1

dp∑

q=1

k2
pq p(p + N − 2)Ip(μ0m)/I ′

p(μ0m)

+ 1

I0(μ0m)μ
2
0m

1

|∂B1|
∫

∂B1

G(1)∇ϕ(1) · n.
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Since by (6.7), for Y1q = 1, we have

1

|∂B1|
∫

∂B1

G(1)∇ϕ(1) · n = μ0m I ′
1(μ0m)

∑

p≥1

dp∑

q=1

k2
pq p(p + N − 2)Ip(μ0m)/I ′

p(μ0m),

it follows that

∂nu(2)par0
= N − 2

|∂B1|
∫

∂B1

k2 + μ0m

|∂B1|
∑

p≥1

dp∑

q=1

k2
pq Ip(μ0m)/I ′

p(μ0m)

− 1

|∂B1|
∫

∂B1

k∂nk.

Finally we have

〈d2�(0)k | k〉 =
∫

∂B1

∂nu(2)par0
− (N − 2)

∫

∂B1

k2 +
∫

∂B1

∂nkk

= μ0m

∑

p≥1

dp∑

q=1

k2
pq Ip(μ0m)/I ′

p(μ0m). (7.11)

Let us suppose now that k0 �= 0. Then we have

〈d2�(0)k | k〉 = αk2
0 + μ0m

∑

p≥1

dp∑

q=1

k2
pq Ip(μ0m)/I ′

p(μ0m),

for some constant α. Now since �(k0) = 0, it follows that 〈d2�(0)k0 | k0〉 = 0, and then
α = 0. �


8 Proof of Theorem 1.2

We begin our analysis by assuming that μ2
0m is simple. Two cases can happen: either μ2

0m ,
as eigenvalue with Dirichlet boundary conditions, has multiplicity equal to N , i.e. the set

I = {p ≥ 2; Ip(μ0m) = 0} (8.1)

is a empty set of positive integers, or μ2
0m has multiplicity bigger than N , i.e. I is a no empty

(finite) set of positive integers. If μ2
0m has multiplicity equal to N , then (7.11) is equal to

zero for k ∈< 1, Y11, . . . , Y1N > (the symbol <, f1, . . . , fN > denoting the vector space
generated by the vectors f1, . . . , fN ), i.e. for k having the form

k = k0 +
N∑

q=1

k1q Y1q .

We observe that the vector space < 1, Y11, . . . , Y1N > coincides with the tangent space to
the variety

M = {k; k = k R,x0},
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at 0, where k R,x0 , defined in (1.8), parametrizes the sphere ∂B1+R(x0) of radius 1 + R,
centered at x0. So the best that one can expect is that � has a sign in the space

H =
⋃

p∈{0,1}
E p, (8.2)

of functions k which don’t have neither the frequency zero, nor the frequency 1. We observe
that H is orthogonal to the space < 1, Y11, . . . , Y1N >. In what follows we prove the
following

Lemma 8.1 There exists a neighborhood O of 0 in R
N such that the function k R,x0 has the

frequency 1 for x0 ∈ O.

Proof of Lemma 8.1 Let x0 be such that x0q �= 0, for some q ∈ {1, . . . , N }. We have that

1

|∂B1|
∫

∂B1

k R,x0 Y1q =
N∑

n=1

x0n
1

|∂B1|
∫

∂B1

Y1nY1q + 1

|∂B1|
∫

∂B1

hY1q

= x0q + 1

|∂B1|
∫

∂B1

hY1q .

Since the function

h(x0, y) =
√
(1 + R)2 + |x0 · y|2 − |x0|2

is even on ∂B1, it follows that
∫
∂B1

hY1q = 0 for all such that Y1q is odd. Let q ∈ {1, . . . , N }
be such that

∫
∂B1

hY1q �= 0. Since

h(x0, y) = 1 + R + o(|x0|), as x0 → 0,

the thesis follows. �

Now if μ2

0m has multiplicity bigger than N , as eigenvalue with Dirichlet bound-
ary conditions (i.e. I is a no empty set), then (7.11) is equal to zero for k ∈<
1, Y11, . . . , Y1N , Yp1, . . . Ypdp >, i.e. for k having the form

k = k0 +
N∑

q=1

k1q Y1q +
∑

p∈I

dp∑

q=1

kpq Ypq .

Finally, if μ2
0m is singular, the same conclusions hold true, by changing E with the space⋃

p∈L∪L ′ E p .
Before proceeding with the proof of Theorem 1.2, we need some preliminary lemmas.

We begin by studying the sign of the term Ip(μ0m)/I ′
p(μ0m) in (7.11). We can prove the

following

Lemma 8.2 There exists a positive integer p0, depending on μ0m, such that, for all p ≥ p0,

Ip(μ0m)/I ′
p(μ0m) > 0. (8.3)

Proof of Lemma 8.2 Since the lim p→+∞ μp1 = +∞, we have that there exists a p0 such
that μp1 ≥ μ0m , for all p ≥ p0. Now since the function Ip/I ′

pis positive on the interval
(0, μp1), (8.3) follows. �
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Lemma 8.3 There exists a neighborhood O of the origin in E, such that if k ∈ O∩ EC
1 , then

the mass center x of �k is different to zero.

Here

EC
1 = {k ∈ E; k1q �= 0 for some q = 1, . . . , N },

the complementary of E1, is the set of functions k which have the frequency 1. We recall that
the mass center of a domain � is the point x of coordinates

xi = 1

|�|
∫

�

xi , i = 1, . . . , N .

This lemma implies that if the mass center of �k , for k ∈ O, is at the point zero, then k
doesn’t have the frequency 1 , i.e. k ∈ E1. In particular we have that a domain �k , with
k ∈ O ∩ E1 is either a domain with mass center at 0, or �k = τ(�k̃), for some translation τ
of R

N , and some domain �k̃ , where �k̃ has mass center at zero.

Proof of Lemma 8.3 See [4]. �

Lemma 8.4 There exists a neighborhood U of the origin in E, with U contained in O, such
that given a domain �k , with k ∈ U , one can find a k̃ ∈ O ∩ H such that

τ ◦ σ(�k̃) = �k,

for some translation τ , and some homothety σ of R
N .

As consequence of this lemma, since the operator � is invariant up to isometries and up
to homotheties, we obtain that � has a sign in U , if it has a sign in O ∩ H .

Proof of Lemma 8.4 Let us consider the set

F = {k ∈ O; x = 0},
where the point x is the mass center of the domain�k . Let U be a neighborhood of 0 in E,U
contained in O. If k ∈ U ∩ H , it is right. On the other hand if k /∈ H , then either

k ∈ E1,

or

k /∈ E1.

If k ∈ E1, then k0 �= 0, then k̃ = k −k0 lies in U ∩ H , and σ(�k̃) = �k , for some homothety
σ of R

N . Now if k /∈ E1, let x be the mass center of �k (we have that x �= 0, otherwise
k ∈ F , and then k ∈ E1). We have that k can be written as (see [4])

k(y) = k′((1 + k1,x )y − x)+ k1,x (y)(1 + k′((1 + k1,x )y − x)),

with k′ such that �k′ has mass center at 0. Then

‖k′‖ ≤ ‖k′ − k‖ + ‖k‖
Now since

k(y)− k′((1 + k1,x )y − x) → 0, as x → 0,

we obtain that k′ ∈ F , and the result follows. �

Now we can prove Theorem 1.2.
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Proof of Theorem 1.2 Case (i): μ2
0m is simple. Let assume that μ2

0m has multiplicity equal
to N , as eigenvalue with Dirichlet boundary conditions.

Step 1. Let V be the space

V = {k ∈ H ; kpq = 0, p ∈ K },
where

K = {p ∈ N; Ip(μ0m)/I ′
p(μ0m) < 0}

is a (eventually empty) finite set of positive integers (by Lemma 8.2). Let V ′ be the space

V ′ = {k; k ∈< kp1, . . . , kpdp > p ∈ K }.
We observe that V ′ is orthogonal to V , and

H = V ⊕ V ′.

Step 2. First we study the sign of (7.11) in V ′. Let us denote by

M = max
p∈K

Ip(μ0m)/I ′
p(μ0m).

We have that M < 0. We obtain

〈d2�(0)k | k〉 = μ0m

∑

p∈K

dp∑

q=1

k2
pq Ip(μ0m)/I ′

p(μ0m)

≤ Mμ0m,

for all k ∈ V ′, with ‖k‖V ′ = 1. So there exists a neighborhood O of the origin in E such that
� is negative in O\{0} ∩ V ′.

Step 3. Let us study the sign of (7.11) in V . Since

Ip(r)

I ′
p(r)

= r

p
(

1 − r
Ip+1(r)

Ip(r)

) ,

for I ′
p(r) �= 0 (see [5, pp. 486]), and since

Ip+1(r)

Ip(r)
∼ r

2p
as p → +∞

(see [3, pp. 23]), we obtain

1

(1 − μ0m Ip+1(μ0m)/Ip(μ0m))
≥ 1.

Then the general term in series (7.11) becomes

k2
pq Ip(μ0m)/I ′

p(μ0m) = k2
pq

p

μ0m

(1 − μ0m Ip+1(μ0m)/Ip(μ0m))

≥ k2
pq

p
μ0m,

which yields that
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〈d2�(0)k | k〉 = μ0m

∑

p∈K C

dp∑

q=1

k2
pq Ip(μ0m)/I ′

p(μ0m)

≥ μ2
0m

∑

p∈K C

dp∑

q=1

k2
pq

p

≥ μ2
0m,

for all k ∈ H , with ‖k‖V = 1 (we have normed V with the weighted L2(∂B1)-norm

‖k‖2 = ∑+∞
p=1

∑dp
q=1 k2

pq/p). So there exists a neighborhood O of the origin in E such that
� is positive in O\{0} ∩ V .

We point out that if Ip(μ0m)/I ′
p(μ0m) > 0, for all p ≥ 2, then the set K = ∅. In this case

� is positive in O\{0} ∩ H , and, by Lemma 8.4, it follows that � is positive in U\M, i.e.
the result is optimal. On the other hand if K �= ∅, then � must change sign in H .

Let assume thatμ2
0m has multiplicity bigger than N (as eigenvalue with Dirichlet boundary

conditions). In this case V becomes

V = {k ∈ H ; kpq = 0, p ∈ K ∪ I },
being the set I defined in (8.1), and V ′ becomes

V ′ = {k; k ∈< kp1, . . . , kpdp >, p ∈ K ∪ I }.
Case (ii): μ2

0m is singular. Let assume that μ2
0m has multiplicity equal to N . Let Ṽ be the

space

Ṽ = {k ∈ H ; kpq = 0, p ∈ K ∪ L ∪ L ′}.
Let V ′ be the space

V ′ = {k; k ∈< kp1, . . . , kpdp > p ∈ K }.
By using the same arguments as in previous case (i), we obtain that� is negative in O\{0}∩V ′,
and it is positive in O\{0} ∩ Ṽ . Now since� is continuous in E , and the space

⋃
p∈L∪L ′ E p

has zero Lebesgue measure in E , it follows that � is positive in O\{0} ∩ V , with V = {k ∈
H ; kpq = 0, p ∈ K }. Finally if μ2

0m has multiplicity bigger than N the same conclusion
holds true, with V = {k ∈ H ; kpq = 0, p ∈ K ∪ I }. �


9 Lipschitz case

In this section we examine briefly Lipschitz case, i.e. the case where

E = {k ∈ C0,1(∂B1)}.
By classical regularity results we know that u ∈ Cω

loc(�k)∩ C0,1(�k) solves (1.4) in a weak
sense, when � = �k , i.e.

∫

�k

∇u · ∇φ − μ

∫

�k

uφ =
∫

�k

φ,

for all φ ∈ C∞
c (�k). By repeating the same arguments as in the regular case, we can prove

the following
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Theorem 9.1 Given aμ0m, for some m ≥ 1, there exists a class D of C0,1-domains (depend-
ing on μ0m), such that if u is a weak no trivial solution to (1.4), and

∫

∂�

∂nu = 0,

with � ∈ D, and μ = μ2
0m + o(1), then � = B1, μ = μ2

0m, and u = u(0) in B1.
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