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a b s t r a c t

Given integersm1, . . . ,mℓ, theweighted clique graph of G is the clique graph K(G), in which
there is a weight assigned to each complete set S of size mi of K(G), for each i = 1, . . . , ℓ.
This weight equals the cardinality of the intersection of the cliques of G corresponding
to S. We characterize weighted clique graphs in similar terms as Roberts and Spencer’s
characterization of clique graphs. Further we characterize several classical graph classes in
terms of theirweighted clique graphs, providing a common framework for describing some
different well-known classes of graphs, as hereditary clique-Helly graphs, split graphs,
chordal graphs, interval graphs, proper interval graphs, line graphs, among others.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The clique graph of a graph G is the intersection graph of the maximal cliques of G. Clique graphs have been studied
extensively, for over forty years. The subject has attracted the attention of several researchers and many problems still
remain unsolved in the area.

In this paper, we consider the generalization where weights are assigned to complete subsets of vertices of the clique
graph, having certain prescribed sizes. The weights equal the cardinalities of the intersections of the cliques of G which
correspond to the complete sets under consideration. This concept has been considered before for weights assigned only
to the edges of the clique graph, in [29,30], in [16,19–21,31,33,38] in the context of chordal graphs, and recently in [13] in
the context of complex networks analysis. The more general concept where weights might be assigned to any complete
subset of vertices is introduced in this work. An extended abstract containing partial results of the paper has appeared
as [6]. We recently knew about a work by McKee [32] that considers weights assigned to edges and triangles with the aim
of characterizing two graph classes, in the same spirit of the present paper.

There are some distinct motivations for this study. First, within clique graph theory itself. We describe a characterization
of weighted clique graphs, in similar terms as Roberts and Spencer’s classical characterization of clique graphs. The problem
of recognizing weighted clique graphs then arises naturally. Observe that weighted clique graphs carry information about
sizes of intersecting maximal cliques, not found in the usual clique graphs. The first question is whether weighted clique
graphs are easier to recognize than clique graphs. In this direction, we show that it is NP-complete to recognize weighted
clique graphs, if only intersections of size one are given. That is, when all vertices of K(G) are weighted with the cardinality
of the corresponding clique in G.
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We remark that in many instances there is interest to obtain a pre-image of a clique graph that has some structural
properties, as diamond-free, claw-free, chordal, etc. Another possibility is to ask for a pre-image where sizes of the
corresponding cliques, or their intersections, are prescribed. This leads to the notion of weighted clique graphs, considered
in this paper. We also investigate connections between properties of graphs and their weighted clique graphs. In many
instances, some properties of a graph carry over to its clique graph, which makes it possible to characterize clique graphs
of specific graph classes. So, it is natural to ask the question in the context of weighted clique graphs, in other words, what
properties of weighted clique graphs, of some class of graphs, characterize the class itself. That is, the statement we look for
is of the form: G has property X if and only its weighted clique graph has property Y . It turns out that many standard graph
classes admit such a characterization. These are presented in the second part of the paper.

The above consists of a further motivation for this work: describing classical graph classes under a unified approach,
where a general description of each class differs from the other by some parameter in this description. We show that this
can be achieved by employing weighted clique graphs. In fact, we describe new characterizations for some classical well-
known classes of graphs, as chordal graphs, interval graphs, diamond-free graphs, among others, all of them in terms of
weighted clique graphs. They differ by the way the weights of the graph are related. The aim is to state characterizations
in terms of weights corresponding to complete sets of vertices of sizes as small as possible. In fact, we show that some of
the characterizations are best possible, in the sense that there is no characterization employing weights corresponding to
complete subsets of smaller size.

Finally, we refer to an application of weighted clique graphs, in complex networks, where the weights are restricted to
complete sets of size two. The purpose of [13] was to employ clique graphs to study overlapping communities. In fact, the
concept of clique graphs fits naturally into the idea of overlapping communities. Furthermore, by relaxing the constraints
that the weights ought to correspond to complete sets of size two, and considering general weighted clique graphs instead,
we would have a tool to analyze larger number of overlapping communities.

We now describe the terminology employed in the paper.
Given a graph, a complete set is a set of pairwise adjacent vertices. A clique is an inclusion-wise maximal complete set.

We will denote by M(G) the set of cliques of a graph G, and by MG(v) the set of cliques containing the vertex v in G. We will
denote by ω(G) the maximum size of a clique of G.

Consider a finite family of non-empty sets. The intersection graph of this family is obtained by representing each set by a
vertex, two vertices being connected by an edge if and only if the corresponding sets intersect.

The clique graph K(G) of G is the intersection graph of the cliques of G, that is, V (K(G)) = M(G) and M,M ′ are adjacent
in K(G) if and only if M ∩ M ′

≠ ∅. A graph G is a clique graph if there exists a graph H such that K(H) = G.
Let A be a class of graphs. We write K(A) to denote the class of clique graphs of the graphs in A, that is, B = K(A) if

and only if for each G in A, K(G) belongs to B and for each H in B, there exists G in A such that K(G) = H .
Given a graph G, the set of its cliques can be computed in O(mnp) time [42], where n,m and p are the number of vertices,

edges and cliques of G, respectively. So, employing a straightforward algorithm that would just apply the definition, the
clique graph of G can be computed in O(mnp + np2) time. Note that the number of cliques of a graph with n vertices can
grow exponentially in n, so this time complexity is not necessarily polynomial in the size of G. In fact, even deciding if the
clique graph of a given graph G is a complete graph is already a co-NP-complete problem [28].

The converse problem is also apparently not easy to solve. Clique graphs have been characterized by Roberts and Spencer
in [37] (see Theorem 4), but the problem of deciding if a graph is a clique graph is NP-complete [1].

A family F of subsets of a set S is separating if for every pair of different elements x, y in S, there is a subset in F that
contains x and does not contain y or, equivalently, if for each x in S, the intersection of all the subsets in F containing x is
{x}.

A family of subsets of a set satisfies the Helly property if every subfamily of it consisting of pairwise intersecting subsets
has a common element. A graph is clique-Helly if its cliques satisfy the Helly property.

Clique-Helly graphs are clique graphs [22]. In that case, given a graph H , the problem of building a graph G such that
K(G) = H can be solved with the same time complexity as building K(H). Nevertheless, the problem of deciding whether
the clique graph of a given graph G is clique-Helly is NP-hard [10].

Given a graph G and integers m1, . . . ,mℓ, an {m1, . . . ,mℓ}-weighting of G is a function w that assigns a non-negative
weight to each complete set S of G of size |S| ∈ {m1, . . . ,mℓ}. A full-weighting of G is a function w that assigns a non-
negative weight to each complete set of G.

An {m1, . . . ,mℓ}-weighted graph is a graph G together with an {m1, . . . ,mℓ}-weighting w of G. Analogously, a fully-
weighted graph is a graph G together with a full-weighting w of G.

If ℓ = 1, we will write simply m1-weighting and m1-weighted graph, instead of {m1}-weighting and {m1}-weighted
graph. Also, we will omit the brackets and write w(M1, . . . ,Ms) instead of w({M1, . . . ,Ms}) for the weight of the set
{M1, . . . ,Ms}.

The {m1, . . . ,mℓ}-weighted clique graph ofG is the clique graph K(G) togetherwith an {m1, . . . ,mℓ}-weightingw of K(G)
such that for each s ∈ {m1, . . . ,mℓ} and each complete set {M1, . . . ,Ms} of K(G) satisfiesw(M1, . . . ,Ms) = |M1 ∩· · ·∩Ms|.
Analogously, the fully-weighted clique graph of G is the clique graph K(G) together with a full-weighting w of K(G) such that
for each complete set {M1, . . . ,Ms} of K(G) satisfies w(M1, . . . ,Ms) = |M1 ∩ · · · ∩ Ms|. We write Kw

m1,...,mℓ
(G) to denote

the {m1, . . . ,mℓ}-weighted clique graph of G and Kw
full(G) to denote the fully-weighted clique graph of G. Observe that w is
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Fig. 1. A graph G and its {1, 2, 3}-weighted clique graph.

non-decreasing with respect to set inclusion, i.e.,w(S) ≥ w(S ′)whenever S ⊆ S ′. In Fig. 1, a graph G and its weighted clique
graph Kw

1,2,3(G) are shown.
Note that the graphs Kw

1 (G), Kw
1,2(G), Kw

2 (G) are graphs with special vertex and/or edge weights, where each vertex gets
the size of the corresponding clique in G as weight and each edge gets the size of the intersection of the two corresponding
cliques in G as weight. Also, by definition of K(G), in Kw

1,2(G) and Kw
2 (G), we have that w(M,M ′) > 0 for every edge MM ′ of

K(G).
The organization of this paper is as follows. In Section 2, we introduce some definitions and results related to clique

graphs. In Section 3, we prove the characterization of weighted clique graphs. As mentioned, one of the contributions
of this work is to characterize several classical and well-known graph classes by means of their weighted clique graph,
and this is given in Section 4. We prove a characterization of hereditary clique-Helly graphs in terms of Kw

3 and show that
Kw
1,2 is not sufficient to characterize neither hereditary clique-Helly graphs nor clique-Helly graphs. For chordal graphs and

their subclass UV graphs, we obtain a characterization by means of Kw
2,3. We show furthermore that Kw

1,2 is not sufficient to
characterize UV graphs. We describe also a characterization of interval graphs in terms of Kw

2,3 and of proper interval graphs
in terms of Kw

1,2. In addition, we prove that {Kw
1 , Kw

2 } is not sufficient to characterize proper interval graphs. For split graphs
and line graphs, we give a characterization bymeans of Kw

1,2, and also prove that {Kw
1 , Kw

2 } is neither sufficient to characterize
split graphs nor line graphs. Finally, we characterize trees in terms of Kw

1 and block graphs in terms of Kw
2 , and show that

the latter cannot be characterized by means of their 1-weighted clique graphs.

2. Preliminaries

We shall consider finite, simple, loopless, undirected graphs. Let G be a graph. Denote by V (G) its vertex set and by E(G)
its edge set. Given a vertex v of G, denote by NG(v) the set of neighbors of v in G and by NG[v] the set NG(v) ∪ {v}. A vertex
v of G is called universal if NG[v] = V (G). Diamond is the unique graph on 4 vertices with 5 edges. Claw consists of a vertex
adjacent to three pairwise non-adjacent vertices. If H is a graph, a graph G is H-free if G does not contain H as an induced
subgraph.

A stable set in a graph is a set of pairwise non-adjacent vertices.
A graph is a split graph if its vertices can be partitioned into a clique and a stable set. A graph is a (not necessarily induced)

star if it has a universal vertex. In that case, any universal vertex is called a center of the star.
A graph G is an interval graph if G is the intersection graph of a finite family of intervals of the real line, and it is a proper

interval graph if it admits an intersection model in which no interval properly contains another. A unit interval graph is the
intersection graph of a finite family of intervals of the real line, all of the same length. Proper interval graphs and unit interval
graphs coincide, and they are exactly the claw-free interval graphs [36].

Theorem 1 (Fulkerson and Gross, 1965 [14]). A graph G is an interval graph if and only if its cliques can be linearly ordered such
that, for each vertex v of G, the cliques containing v are consecutive.

Such an ordering is called a canonical ordering of the cliques.

Theorem 2 (Roberts, 1969 [36]). A graph G is a proper interval graph if and only if its vertices can be linearly ordered such that,
for each clique M of G, the vertices contained in M are consecutive.

Such an ordering is called a canonical ordering of the vertices.
The line graph L(G) of G is the intersection graph of the edges of G. A graph G is a line graph if there exists some simple

graph H such that G = L(H). Line graphs were extensively studied and there are several characterizations of them. We will
use in this work a characterization by Krausz [26], that is also related with our characterization of weighted clique graphs.

Theorem 3 (Krausz, 1943 [26]). A graph G is a line graph if and only if there is a collectionF of complete sets of G such that every
edge of G is contained in exactly one complete set of F , and each vertex of G is contained in at most two complete sets of F .
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Fig. 2. Pyramids.

Table 1
Clique graphs of some graph classes.

Class A K(A) Reference

Block Block [23]
Trees Block [23]
Chordal Dually chordal [7,18,41]
UV Dually chordal [41]
Dually chordal Chordal ∩ clique-Helly [7,18]
Clique-Helly Clique-Helly [11]
Hereditary clique-Helly Hereditary clique-Helly [35]
Interval Proper interval [24]
Proper interval Proper interval [24]
Diamond-free Diamond-free [9]
Split Stars
Triangle-free Linear domino [34]
Linear domino Triangle-free [9]
UV Dually chordal [41]
Trivially perfect Component complete

A graph G is a tree if it is connected and contains no cycle. A graph is chordal if it contains no chordless cycle of length at
least 4. Equivalently, a graph is chordal if it is the intersection graph of subtrees of a tree [8,15,45]. A graph is a UV graph if it
is the intersection graph of paths of a tree. UV graphs are also called path graphs in the literature. A graph is strongly chordal
when it is chordal and each of its cycles of even length at least 6 has an odd chord.

A graph G is trivially perfect if for all induced subgraphs H of G, the cardinality of the maximum stable set of H is equal to
the number of cliques of H . Equivalently, a graph is trivially perfect if it contains no chordless cycle of length 4 or chordless
path of length 3 [17].

A graph G is a block graph if each 2-connected subgraph of G is a complete subgraph. Equivalently, a graph is a block graph
if it is chordal and diamond-free.

A graph is a domino if each of its vertices belongs to at most two cliques. If in addition, each of its edges belongs to at most
one clique, then G is a linear domino graph. Linear domino graphs coincide with {claw, diamond}-free graphs [25]. Note that
sometimes a cycle of length 6 with a unique chord joining two vertices at distance three in the cycle is also called a domino.
Notice that this graph does not belong to the class of dominoes according to the notation in [25].

A graph G is dually chordal if it admits a spanning tree T such that, for every edge vz of G, the vertices of the v–z path in
T induce a complete subgraph in G [7,41]. In that case, T is called a compatible tree of G.

A graph G is hereditary clique-Helly if H is clique-Helly for every induced subgraph H of G. Equivalently, a graph G is
hereditary clique-Helly if none of the pyramids (Fig. 2) is an induced subgraph of G [35].

Clique graphs of many graph classes have been characterized. The known results involving the graph classes that will be
considered in this paper are summarized in Table 1.

3. Characterization of weighted clique graphs

The characterization of clique graphs is as follows.

Theorem 4 (Roberts and Spencer, 1971 [37]). A graph H is a clique graph if and only if there is a collection F of complete sets of
H such that every edge of H is contained in some complete set of F , and F satisfies the Helly property.

A characterization for 2-weighted clique graphs, formulated in similar terms, was presented independently in [29,37]. The
result was presented in terms of multigraphs, but restated with our notation it reads as follows.

Theorem 5 (Roberts and Spencer, 1971 [37], McKee, 1991 [29]). Let H be a graph and let w be a 2-weighting of H. Then there
exists a graph G such that H = Kw

2 (G) if and only if there is a collection F of complete sets of H, not necessarily distinct, such
that every edge e of H is contained in w(e) complete sets of F and F satisfies the Helly property.

We extend this characterization to weighted clique graphs with arbitrary weights.
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Theorem 6. Let H be a graph and let w be an {m1, . . . ,mℓ}-weighting of H. Then there exists a graph G such that H =

Kw
m1,...,mℓ

(G) if and only if there is a collection F of complete sets of H, not necessarily distinct, such that:

(1) every edge of H is contained in some complete set of F ,
(2) F satisfies the Helly property,
(3) F is separating,
(4) for every 1 ≤ j ≤ ℓ, each complete set S of size mj in H satisfies S ⊆ F for exactly w(S) sets F ∈ F .

Proof. If |V (H)| = 1, the theorem trivially holds. So, from now on, we will assume |V (H)| ≥ 2.

(⇒) Let G be a graph such that H = Kw
m1,...,mℓ

(G) and let F = {MG(v)}v∈V (G). It is clear that the elements of the family F are
complete sets of H since for each v in V (G), all cliques in MG(v) contain v, so they are pairwise adjacent as vertices of H . Let
MM ′ be an edge of H . Then the cliquesM andM ′ share a vertex v in G, thus both belong to MG(v), which is a complete set of
F . This proves (1). Now, let F ′ be a pairwise intersecting subfamily of F . That is, F ′

= {MG(v)}v∈V ′⊆V (G). If |V ′
| = 1, there

is nothing to prove. Otherwise, let v, w be two vertices of V ′. Since MG(v) has non-empty intersection with MG(w), there is
a clique of G containing both v and w and, in particular, v and w are adjacent. So V ′ is a complete set of G, and it is contained
in some cliqueM of G, which in turn belongs to every element in F ′. This proves (2). LetM,M ′ be two distinct vertices of H .
Since they are two different cliques of G, by maximality, neither of them is contained in the other one. So there is a vertex
v in M \ M ′, and some vertex v′ in M ′

\ M . In F ,M belongs to MG(v) \ MG(v
′) and M ′ belongs to MG(v

′) \ MG(v). This
proves (3). Finally, let 1 ≤ j ≤ ℓ and let {M1, . . . ,Mmj} be a complete set of sizemj in H . Let V ′

= M1 ∩ · · ·∩Mmj ⊆ V (G). By
definition of F , the subfamily of all sets F ∈ F such that {M1, . . . ,Mmj} ⊆ F is F ′

= {MG(v)}v∈V ′ . Since H = Kw
m1,...,mℓ

(G),
by definition of w, we conclude w(M1, . . . ,Mmj) = |V ′

|. This proves (4).

(⇐) Let F be a collection of complete sets of H satisfying (1)–(4). Let G be the intersection graph of F . We will prove that
H = Kw

m1,...,mℓ
(G). For each vertexM of H , let FM be the set of elements of F containingM . We will prove that the cliques of

G are exactly {FM}M∈V (H), that they are pairwise different, and that FM intersects FM ′ if and only ifMM ′ is an edge of H . For
each M ∈ V (H), the elements in FM are mutually intersecting, so they form a complete set of G, which in turn is contained
in some clique of G. Suppose that Q is a clique of G, that is, a maximal set of pairwise intersecting elements of F . Since F
satisfies the Helly property, Q has a common elementM ′, so F ⊆ FM ′ and, by maximality, Q = FM ′ . Now, letM,M ′ be two
different vertices of H . Since F is separating, the intersection of all the members of FM is {M} and the intersection of all the
members of FM ′ is {M ′

}, so FM and FM ′ are different and neither is contained in the other one. In addition, FM and FM ′ have
non-empty intersection if and only if there is some set ofF containing bothM andM ′. Since themembers ofF are complete
sets of H and each edge of H is contained in some member of F , that happens if and only if MM ′ is an edge of H . So K(G) is
isomorphic toH , with bijectionFM → M . Finally, let 1 ≤ j ≤ ℓ and let {M1, . . . ,Mmj} be a complete set of sizemj inH . Then
FM1 ∩· · ·∩FMmj

is the family of all members F ∈ F with {M1, . . . ,Mmj} ⊆ F . By (4), |FM1 ∩· · ·∩FMmj
| = w(M1, . . . ,Mmj).

Therefore H = Kw
m1,...,mℓ

(G). �

It seems interesting to analyze the computational complexity of deciding whether a weighted graph is a weighted clique
graph. For 1-weightings, the problem is apparently already difficult.

Theorem 7. The problem of deciding whether a graph with vertex weights is a 1-weighted clique graph is NP-complete.

Proof. Wewill reduce the problem of deciding if a given graph is a clique graph to the problem of deciding if a 1-weighted
graph is a 1-weighted clique graph. Since the decision problem for clique graphs is NP-complete [1], the theoremwill follow.
Let H be an instance of the first problem, and define w as w(M) = |E(H)| + 1 for each vertex M of H . It is clear that if the
1-weighted graph H is a 1-weighted clique graph, then H is a clique graph. So let us prove the converse, and suppose that H
is a clique graph. By Theorem 4, there is a familyF of complete sets ofH that covers all the edges ofH and satisfies the Helly
property. Note that the Helly property is hereditary, so every subfamily of F satisfies it as well, and so we can consider a
subfamily of F with at most |E(H)| elements, one covering each edge of H . This observation was previously done in [12].
We can add to the family one-vertex sets in such a way that each vertex of H is covered |E(H)| + 1 times. Note that for
each vertex M of H , the set {M} will be added at least once, so the new family is separating. Also, adding one-vertex sets
does not alter the Helly property. Then, by Theorem 6, H with the 1-weighting w is a 1-weighted clique graph. It remains
to prove that the problem belongs to NP. If some graph H provided with a 1-weighting w is a 1-weighted clique graph, by
Theorem 6, there is a family of complete sets of H that is separating, satisfies the Helly property, covers all the edges of
H and covers each vertex M of H exactly w(M) times. We can always choose a subfamily of it of size at most |E(H)| that
covers all the edges, and then split every other complete set in the family into one-vertex sets. This operation does neither
alter the separability nor the Helly property, and the resulting family still covers all the edges of H and covers each vertex
M of H exactly w(M) times. So, as a certificate of polynomial size, we can give a family F ′ of complete sets of H such that
|F ′

| ≤ |E(H)|, F ′ covers all the edges of H , each vertex M of H is covered at most w(M) times and, if it is covered exactly
w(M) times, then F ′ separatesM , that is, the intersection of all the complete sets containingM is {M}. All these properties
can be verified in polynomial time (for the Helly property, see [5]). �
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The clique graph operator is far from being one-to-one. Indeed, the clique graph of any graph with a universal vertex is a
complete graph, and moreover a graph G such that K(G) is complete does not necessarily have a universal vertex [28]. If we
have a full-weighting of a graphH , we will show that we can actually either build the unique graph G such thatH = Kfull(G),
or decide that such a graph does not exist. But the size of a full-weighting of H can be exponential in the size of H . The
compact fully-weighted clique graph of G is the clique graph K(G) together with a full-weighting w̄ of K(G) such that for each
complete set S of K(G) satisfies w̄(S) = |{v ∈ V (G) : MG(v) = S}|. We write K w̄

full(G) to denote the compact fully-weighted
clique graph of G. It is ‘‘compact’’ in the sense that w̄(S) > 0 for O(|V (G)|) sets S. We can compute Kw

full(G) from K w̄
full(G)

by defining w(S) =


S′⊇S w̄(S ′) for each complete set S of K(G). Analogously, we can compute K w̄
full(G) from Kw

full(G) by
defining w̄(S) = w(S) if S is a maximum size clique of K(G) and w̄(S) = w(S) −


S′)S w̄(S ′) otherwise.

Theorem 8. Let H be a graph and let w̄ be a full-weighting of H. Then there exists a graph G such that H = K w̄
full(G) if and only

if {S : w̄(S) > 0} covers the edges of H, is separating and satisfies the Helly property. In that case, G is unique and obtained as
the intersection graph of w̄(S) copies of the set S for each complete set S of H.

Proof. (⇒) Suppose that there exists a graph G such that H = K w̄
full(G). As it was argued in the proof of Theorem 6, the

family F = {MG(v)}v∈V (G) covers the edges, is separating and satisfies the Helly property. But, by definition of the compact
fully-weighted clique graph, if S is a complete set of K w̄

full(G) then w̄(S) > 0 if and only if S = MG(v) for w̄(S) vertices v of
G. So the sets {MG(v)}v∈V (G) and {S : w̄(S) > 0} are equal. The last statement is a consequence of the known fact that every
graph G is the intersection graph of the (multi)family {MG(v)}v∈V (G).
(⇐) Suppose that {S : w̄(S) > 0} covers the edges of H , is separating and satisfies the Helly property. Let G be the
intersection graph of a family F composed by w̄(S) copies of the set S for each complete set S of H . We will prove that
H = K w̄

full(G). For each vertex M of H , let FM be the set of elements of F containing M . We will prove that the cliques of G
are exactly {FM}M∈V (H), that they are pairwise different, and that FM intersects FM ′ if and only if MM ′ is an edge of H . For
each M ∈ V (H), the elements in FM are mutually intersecting, so they form a complete set of G, which in turn is contained
in some clique of G. Suppose that Q is a clique of G, that is, a maximal set of pairwise intersecting elements of F . Since F
satisfies the Helly property, Q has a common elementM ′, so Q ⊆ FM ′ and, by maximality, Q = FM ′ . Now, letM,M ′ be two
different vertices of H . Since F is separating, the intersection of all the members of FM is {M} and the intersection of all
the members of FM ′ is {M ′

}, so FM and FM ′ are different and neither is contained in the other one. In addition, FM and FM ′

have non-empty intersection if and only if there is some set of F containing both M and M ′. Since the members of F are
complete sets of H and each edge of H is contained in some member of F , that happens if and only if MM ′ is an edge of H .
So K(G) is isomorphic to H , with bijection FM → M . For F ∈ F = V (G) and M ∈ V (H), F ∈ FM if and only if M ∈ F , thus
MG(F) maps to F in H . As F contains w̄(S) copies of the set S for each complete set S of H , it follows that H = K w̄

full(G). �

Corollary 9. Given a graph H and a full-weighting w̄ of it. Then, the question ‘‘is there a graph G such that H = K w̄
full(G)?’’ can be

answered in O(|V (H)|3|{S : w̄(S) > 0}|) time. In particular, if the answer is positive, this it is O(|V (H)|3|V (G)|), and the unique
graph G such that H = K w̄

full(G) can be build in O(|V (H)|3|V (G)| + |E(G)|) time.

Proof. The Helly property of the sets {S : w̄(S) > 0} can be tested in O(|V (H)|3|{S : w̄(S) > 0}|) time [5]. It is not difficult
to see that the remaining conditions can be tested within that computational complexity as well. Finally, the fact that if the
answer is positive then |V (G)| =


S w̄(S) concludes the proof of this corollary. �

Corollary 10. Let H be a graph and let w be a full-weighting of H. Then there exists a graph G such that H = Kw
full(G) if

and only if the function w̄ defined on the complete sets of H as w̄(S) = w(S), if S is a maximum size clique of H, and
w̄(S) = w(S) −


S′)S w̄(S ′), otherwise, is non-negative and such that {S : w̄(S) > 0} covers the edges of H, is separating and

satisfies the Helly property. In that case, G is unique and obtained as the intersection graph of w̄(S) copies of the set S for each
complete set S of H.

Proof. (⇒) Is a direct consequence of Theorem 8 and the fact that if there exists a graph G such that H = Kw
full(G), then the

weight w̄ associatedwith the compact fully-weighted clique graph of G can be computed as w̄(S) = w(S), if S is amaximum
size clique of K(G), and w̄(S) = w(S) −


S′)S w̄(S ′), otherwise.

(⇐) If the function w̄ is non-negative, then it is a full-weighting of H . By Theorem 8, there is a unique graph G such that H
provided with the full-weighting w̄ is the compact fully-weighted clique graph of G, and G is obtained as the intersection
graph of w̄(S) copies of the set S for each complete set S of H . Finally, observe that by the definition of w̄ in terms of w, it
holds w(S) =


S′⊇S w̄(S ′) for each complete set S of H . Thus H provided with the full-weighting w is the fully-weighted

clique graph of G. �

4. Characterizations by means of the weighted clique operator

Some graph classes can be naturally defined in terms of their weighted clique graphs. This is the case for clique-Helly
graphs and their generalizations. A family of subsets of a set satisfies the (p, q, r)-Helly property if every subfamily with the
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property that any p of its members have q elements in common, has a total intersection of at least r elements. A graph is
(p, q, r)-clique-Helly if its cliques satisfy the (p, q, r)-Helly property [10].

The following claims follow directly from the respective definitions.

Proposition 11. Let G be a graph. Then G is clique-Helly if and only if Kw
3,...,ω(K(G))(G) satisfies w(S) > 0 for every complete set

S of K(G) of size at least 3.

Proposition 12. Let G be a graph. Then G is (p, q, r)-clique-Helly if and only if Kw
p,...,ω(K(G))(G) satisfies that every complete set

of size at least p in which all its subsets of size p have weight at least q, has weight at least r.

By the results in [11] shown in Table 1, we have the following corollary.

Corollary 13. Let H be a graph and let w be a {3, . . . , ω(H)}-weighting of H that is strictly positive over every complete set of
H of size at least 3. If there is a graph G such that H = Kw

3,...,ω(H)(G), then H is clique-Helly.

Diamond-free graphs have also a natural characterization in terms of their weighted clique graphs. It is well-known (e.g. [9])
that a graph is diamond-free if and only each edge belongs to exactly one clique. This property can be restated as follows.

Proposition 14. Let G be a graph. Then G is diamond-free if and only if Kw
2 (G) satisfies w(M,M ′) = 1 for every edge MM ′ of

K(G).

In particular, by the results in [9] shown in Table 1, we have the following corollary, that was also pointed out in [29].

Corollary 15. Let H be a graph and let w be a 2-weighting of H. If w(M,M ′) = 1 for every MM ′ in E(H), then there exists some
graph G such that H = Kw

2 (G) if and only if H is diamond-free.

Moreover, since diamond-free graphs are clique-Helly, we have that in a fully-weighted clique graph of a diamond-free
graph, the weight of each complete set of size at least two is exactly one. In [2], the authors establish whether a 1-weighted
graph H is Kw

1 (G) for some diamond-free graph G, thus completing the characterization of weighted clique graphs of
diamond-free graphs.

Theorem 16 (Barrionuevo and Calvo, 2004 [2]). Let H be a graph and let w be a 1-weighting of H. Then there exists some
diamond-free graph G such that H = Kw

1 (G) if and only if H is diamond-free and w(M) ≥ max{2, |MH(M)|} for each M in
V (H).

The result above can be obtained also as a corollary of Theorem6. Joining itwith Proposition 14,wehave shown the following
corollary.

Corollary 17. Let H be a graph and let w be a {1, 2}-weighting of H, such that w(M,M ′) = 1 for each edge MM ′ of H. Then
there exists a graph G such that H = Kw

1,2(G) if and only if H is diamond-free and w(M) ≥ max{2, |MH(M)|} for each M in
V (H).

It is clear that diamond-free graphs cannot be characterized solely by their 1-weighted clique graph, since the diamond and
two triangles sharing a vertex have the same 1-weighted clique graph.

A connected graphGwith at least two vertices is triangle-free if and only ifw(M) = 2 for each vertexM of Kw
1 (G). Indeed,

the results in [34] showed in Table 1 imply the following proposition.

Proposition 18. Let H be a graph and let w be a 1-weighting of H such that w(M) = 2 for each vertex M of H. Then there exists
a graph G such that H = Kw

1 (G) if and only if H is linear domino.

Also linear domino graphs can be naturally defined in terms of their weighted clique graph.

Proposition 19. Let G be a graph. Then G is linear domino if and only if Kw
2 (G) is triangle-free and satisfies w(M,M ′) = 1 for

every edge MM ′ of K(G).

In the remainder of this section, we will present characterizations of some classical and extensively studied graph classes in
terms of their weighted clique graphs. Many of them are subclasses of chordal and/or clique-Helly graphs.

4.1. Hereditary clique-Helly graphs

First, we characterize hereditary clique-Helly graphs in terms of their weighted clique graphs as presented in the
following theorem.

Theorem 20. Let G be a graph. Then G is hereditary clique-Helly if and only if Kw
2,3(G) satisfies w(M1,M2,M3) =

min{w(M1,M2), w(M2,M3), w(M1,M3)}, for every triangle M1,M2,M3 of K(G).
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Fig. 3. Two graphs G,G′ such that Kw
1,2(G) = Kw

1,2(G
′). The graph G′ is hereditary clique-Helly, the graph G is not even clique-Helly. On the other hand, G is

a UV graph, while the graph G′ is not.

Proof. (⇒) Suppose that, for some triangle M1,M2,M3 of K(G), we have w(M1,M2,M3) < min{w(M1,M2), w(M2,M3),
w(M1,M3)}. Let v1 be a vertex in (M2 ∩ M3) \ M1, v2 be a vertex in (M1 ∩ M3) \ M2, and v3 be a vertex in (M1 ∩ M2) \ M3.
Then v1, v2, v3 are pairwise adjacent, since each pair of them is contained in a clique. Since v1 does not belong to M1, there
is a vertex v′

1 in M1 that is not adjacent to v1. Since, v2 and v3 are in M1, v
′

1 is adjacent to both. Analogously, define v′

2 and
v′

3. Then v1, v2, v3, v
′

1, v
′

2, v
′

3 induce a pyramid in G, a contradiction.
(⇐) Suppose that Kw

2,3(G) satisfies w(M1,M2,M3) = min{w(M1,M2), w(M2,M3), w(M1,M3)}, for every triangle M1,M2,
M3 of K(G). If G is not hereditary clique-Helly, then G contains one of the pyramids as an induced subgraph. That is, there
are six vertices x, y, z, x′, y′, z ′ in G such that x is adjacent to all but x′, y is adjacent to all but y′, and z is adjacent to all but
z ′. LetMx,My andMz be cliques of G containing {x′, y, z}, {x, y′, z} and {x, y, z ′

}, respectively. Then x belongs toMy ∩Mz but
not toMx, y belongs toMx ∩Mz but not toMy, and z belongs toMx ∩My but not toMz . Therefore,Mx,My,Mz form a triangle
in K(G) but w(Mx,My,Mz) < min{w(Mx,My), w(Mx,Mz), w(My,Mz)}, a contradiction. �

Moreover, this property holds also for {2,m}-weightings, with m ≥ 3. We can re-state some of the results of [35] and [44]
as follows.

Theorem 21 (Prisner, 1993 [35], Wallis and Zhang, 1990 [44]). Let G be a hereditary clique-Helly graph, and let m ≥ 3. Then
Kw
2,m(G) satisfies w(S) = min{w(M,M ′) : M,M ′

∈ S}, for every complete set S of size m in K(G).

The examples in Fig. 3 show that Kw
1,2 is not sufficient to characterize neither hereditary clique-Helly graphs nor clique-Helly

graphs. But we can obtain a characterization of hereditary clique-Helly graphs in terms of Kw
3 .

Theorem 22. Let G be a graph. Then G is hereditary clique-Helly if and only if Kw
3 (G) satisfies w(M1,M2,M3) ≥ min{w(M1,

M2,M4), w(M2,M3,M4), w(M1,M3,M4)}, for every complete set {M1,M2,M3,M4} of size four in K(G).

Proof. (⇒) Suppose that for some complete set M1,M2,M3,M4 of size four in Kw
3 (G), we have w(M1,M2,M3) <

min{w(M1,M2,M4), w(M2,M3,M4), w(M1,M3,M4)}. Then, in Kw
2,3(G), w(M1,M2,M3) < min{w(M1,M2,M4), w(M2,M3,

M4), w(M1,M3,M4)} ≤ min{w(M1,M2), w(M2,M3), w(M1,M3)}. By Theorem 20, G is not hereditary clique-Helly.
(⇐) If G is not hereditary clique-Helly, then G contains one of the pyramids as an induced subgraph. That is, there are six
vertices x, y, z, x′, y′, z ′ in G such that x is adjacent to all but x′, y is adjacent to all but y′, and z is adjacent to all but z ′.
Let Mx,My and Mz be cliques of G containing {x′, y, z}, {x, y′, z} and {x, y, z ′

}, respectively. Let S = Mx ∩ My ∩ Mz . None
of x, y, z, belong to S, but S ∪ {x, y, z} is a complete set of G. Let M be a clique of G containing it, thus different from
Mx,My and Mz . Then S ∪ {x} ⊆ (My ∩ Mz ∩ M), S ∪ {y} ⊆ (Mx ∩ Mz ∩ M), and S ∪ {z} ⊆ (Mx ∩ My ∩ M). Therefore,
w(Mx,My,Mz) < min{w(Mx,My,M), w(Mx,Mz,M), w(My,Mz,M)} in Kw

3 (G). �

4.2. Trees and block graphs

The characterizations of trees and block graphs are as follows.

Theorem 23. Let G be a graph, |V (G)| > 1. Then G is a tree if and only if Kw
1 (G) is a connected block graph such that w(M) = 2

for all M ∈ V (K(G)).

Proof. (⇒) Let G be a tree. Then K(G) is a block graph (see Table 1). Moreover, K(G) is connected and all cliques of G have
size 2.
(⇐) Let G be a graph such that Kw

1 (G) satisfies the hypotheses of the theorem. Then G is triangle-free since all of its cliques
have size 2, and connected since Kw

1 (G) is connected. Suppose G is not a tree, and let C be the shortest cycle of G. Since G is
triangle-free, |C | ≥ 4 and every edge of C is a clique. Then these cliques induce a chordless cycle of length at least four in
Kw
1 (G), a contradiction with the fact that it is a block graph. �

Theorem 24. Let G be a connected graph. Then G is a block graph if and only if Kw
2 (G) is a connected block graph such that

w(M,M ′) = 1, for every edge MM ′ of K(G).
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Fig. 4. Two graphs G,G′ such that Kw
1 (G) = Kw

1 (G′) and Kw
2 (G) = Kw

2 (G′). The graph G is a split graph, the graph G′ is not. On the other hand, the graph G′

is a proper interval graph, while the graph G is not. Furthermore, the graph G′ is a line graph, while the graph G is not.

Proof. (⇒) Let G be a connected block graph. Then G is diamond-free, so by Proposition 14, Kw
2 (G) satisfies w(M,M ′) = 1,

for every edgeMM ′ of K(G). Moreover, K(G) is connected since G is connected and it is a block graph (see Table 1).
(⇐) LetG be a graph such that Kw

2 (G) satisfies the hypotheses of the theorem. ThenG is diamond-free, by Proposition 14, and
connected since K(G) is connected. Suppose G is not a block graph. So G is not chordal. Let C = v1v2 · · · vkv1 be the shortest
chordless cycle of G with k ≥ 4. Since C is chordless, each edge vivj of C is contained in a clique of G whose intersection
with C is exactly the set {vi, vj}. These cliques induce a 2-connected subgraph in K(G) and, since K(G) is a block graph, they
are pairwise adjacent. LetM be the clique containing v1v2,M ′ be the clique containing v3v4, and z be their common vertex.
Since C is chordless, z is none of v1, v2, v3 or v4, and it is adjacent to all of them, so {v1, v2, v3, z} induce a diamond in G, a
contradiction. �

The same example used in the case of diamond-free graphs shows that block graphs cannot be characterized by their 1-
weighted clique graph.

4.3. Split graphs

A characterization of split graphs in terms of Kw
1,2 is the following.

Theorem 25. Let G be a graph. Then G is a connected split graph if and only if Kw
1,2(G) is a star with a center M such that

w(M,M ′) = w(M ′) − 1 for every vertex M ′
∈ V (K(G)),M ′

≠ M.

Proof. (⇒) Let G be a connected split graph with split partition consisting of a maximal clique M and a stable set S. Since
G is connected, each v ∈ S is adjacent to some vertex of M . Since S is a stable set, each v ∈ S belongs to exactly one clique
M ′

≠ M , and M ′
∩ M ≠ ∅. Then, K(G) is a star with center M . Moreover, each clique M ′

≠ M contains exactly one vertex
not in M , so w(M ′,M) = w(M ′) − 1, for each cliqueM ′

≠ M .
(⇐) Let G be a graph and suppose that Kw

1,2(G) is a star with center M and w(M ′,M) = w(M ′) − 1, for each M ′
∈

V (K(G)),M ′
≠ M . Let S = V (G) \ M . Since for each clique M ′ of G different from M we have w(M ′,M) = w(M ′) − 1,

there is no clique of G containing two vertices from S. So S is a stable set, and G is a split graph. �

The examples in Fig. 4 show that {Kw
1 , Kw

2 } is not sufficient to characterize split graphs. Notice that having {Kw
1 (G), Kw

2 (G)}
is not the same as having Kw

1,2(G), since when K(G) has a non-trivial automorphism, one does not necessarily know the
correspondence between vertices of Kw

1 (G) and vertices of Kw
2 (G).

4.4. Interval graphs

For interval and proper interval graphs, we have the following characterizations.

Theorem 26. Let G be a graph. Then G is an interval graph if and only if Kw
2,3(G) admits a linear ordering M1, . . . ,Mp of its

vertices such that for every 1 ≤ i < j < k ≤ p, we have w(Mi,Mj,Mk) = w(Mi,Mk).

Proof. (⇒) Let G be an interval graph and letM1, . . . ,Mp be a canonical ordering of its cliques. Let v ∈ Mi ∩ Mk, i < j < k,
then v ∈ Mj. Therefore, w(Mi,Mj,Mk) = w(Mi,Mk).
(⇐) Let σ = M1, . . . ,Mp be a linear ordering of the vertices of Kw

2,3(G) satisfying w(Mi,Mj,Mk) = w(Mi,Mk) for every
1 ≤ i < j < k ≤ p. Then, σ corresponds to a canonical ordering of the cliques of G. Otherwise, there are three cliques
Mi,Mj,Mk, i < j < k in σ , and v ∈ V (G) such that v ∈ Mi,Mk and v ∉ Mj. In that case, w(Mi,Mk) ≥ w(Mi,Mj,Mk) + 1,
thus w(Mi,Mk) > w(Mi,Mj,Mk), a contradiction. �

Theorem 27. Let G be a graph. Then G is a proper interval graph if and only if Kw
1,2(G) admits a linear ordering M1, . . . ,Mp of

its vertices such that for every triangle Mi,Mj,Mk, 1 ≤ i < j < k ≤ p, we have w(Mj) = w(Mi,Mj)+w(Mj,Mk)−w(Mi,Mk).
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Proof. (⇒) Let G be a proper interval graph and σ a canonical ordering of its vertices. Define an ordering≺ over the cliques
such that if M,M ′ are two different cliques, M ≺ M ′ if the smallest vertex of M , with respect to σ , is smaller than all the
vertices ofM ′. Sinceσ is a canonical ordering,≺defines a total orderingM1, . . . ,Mp of the cliques ofG. LetMi,Mj,Mk be three
pairwise intersecting cliques such that i < j < k. Clearly, |Mi ∩Mj ∩Mk| = |Mi ∩Mk|, becauseMi,Mj,Mk are distinct cliques.
Moreover, |Mj| = |Mi ∩Mj| + |Mj ∩Mk| − |Mi ∩Mk|, otherwise the vertices of some of the cliques would not be consecutive
in σ . ThenM1, . . . ,Mp is an ordering of the vertices of Kw

1,2(G) satisfying w(Mj) = w(Mi,Mj) + w(Mj,Mk) − w(Mi,Mk) for
every triangleMi,Mj,Mk, with 1 ≤ i < j < k ≤ p.

(⇐) For every three pairwise intersecting cliquesMi,Mj,Mk, it is clear that

w(Mj) ≥ w(Mi,Mj) + w(Mj,Mk) − w(Mi,Mj,Mk). (1)

By hypothesis, Kw
1,2(G) admits a linear ordering of its cliques σ = M1, . . . ,Mp such that for every triangle Mi,Mj,Mk, 1 ≤

i < j < k ≤ p,

w(Mj) = w(Mi,Mj) + w(Mj,Mk) − w(Mi,Mk). (2)

From (1) and (2), we have that w(Mi,Mj,Mk) ≥ w(Mi,Mk), thus w(Mi,Mj,Mk) = w(Mi,Mk). By Theorem 1, G is
an interval graph. If G is claw-free, then it is a proper interval graph. So suppose that G contains a claw induced by
{v, x, y, z}, where {x, y, z} is a stable set and v is adjacent to x, y and z. Let Mi,Mj,Mk be cliques of G containing vx, vy, vz,
respectively. By symmetry, without loss of generality, we may assume i < j < k. By elementary finite set theory,
|Mj| = |Mi ∩ Mj| + |Mj ∩ Mk| − |Mi ∩ Mj ∩ Mk| + |Mj \ (Mi ∪ Mk)|. By (2) and since w(Mi,Mj,Mk) = w(Mi,Mk), we
conclude that |Mj \ (Mi ∪ Mk)| = 0, that is, Mj ⊆ Mi ∪ Mk. This is a contradiction, because y does neither belong to Mi
nor to Mk, because it is not adjacent to x and z, respectively. Therefore, G is claw-free and, consequently, a proper interval
graph. �

The examples in Fig. 4 show that {Kw
1 , Kw

2 } is not sufficient to characterize proper interval graphs.

4.5. Chordal and UV graphs

It is a known result that clique graphs of chordal graphs are dually chordal graphs [7,18,41]. Moreover, it holds that, for
a chordal graph G, there is some compatible tree T of K(G) such that, for every vertex v of G, the subgraph of T induced by
MG(v) is a subtree. Such a tree is called a clique tree of G. Gavril [16] and independently Shibata [38] proved that those trees
are exactly the maximum weight spanning trees of Kw

2 (G). Also in the context of chordal graphs, 2-weighted clique graphs
where considered in [19–21,27,31]. Very recently, strongly chordal graphs and trivially perfect graphs were characterized
by means of their {2, 3}-weighted clique graphs.

Theorem 28 (McKee, 2012 [32]). Let G be a graph. Then G is strongly chordal if and only if, for every k ≥ 1, every cycle of Kw
2,3(G)

whose edges have weight at least k either has a chord of weight at least k or is a triangle of weight at least k.

Theorem 29 (McKee, 2012 [32]). Let G be a graph. Then G is trivially perfect if and only if, for every k ≥ 1, every two adjacent
edges of Kw

2,3(G) of weight at least k lie in a triangle of weight at least k.

In this work, we characterize chordal and UV graphs by means of their {2, 3}-weighted clique graphs.

Theorem 30. Let G be a connected graph. Then G is chordal if and only if Kw
2,3(G) admits a spanning tree T such that for every

three different vertices M1,M2,M3 of T , if M2 belongs to the path M1–M3 in T , then w(M1,M2,M3) = w(M1,M3).

Proof. (⇒) Let G be a connected chordal graph and T be a clique tree of G. Then T is a spanning tree of K(G). If G is a
complete graph, the property trivially holds. Otherwise, letM1 andM3 be two cliques of G. The property is clearly true when
M1 ∩ M3 = ∅. So, suppose that M1 and M3 contain a common vertex v. The subtree Tv of T induced by MG(v) contains
vertices M1 and M3, and, being connected, it also contains all the vertices M2 in the path M1–M3 in T . Then, those vertices
are also in MG(v), i.e.,M2 contains the vertex v. Therefore, w(M1,M2,M3) = w(M1,M3).

(⇐) Let T be a spanning tree of Kw
2,3(G) satisfying the property above. Suppose that G is not a chordal graph. Then, there is

some vertex v such that the graph Tv induced by MG(v) in T is not connected. Since T is connected, there is a pathM1–M3 in
T joining two different connected components C1, C2 of Tv , withM1 ∈ C1 andM3 ∈ C2. That path contains at least one vertex
M2 corresponding to a clique not inMG(v). In that case,w(M1,M3) ≥ w(M1,M2,M3)+1, thusw(M1,M3) > w(M1,M2,M3),
a contradiction. �

Let G be a connected UV graph, and let (T , F ) be a representation of G as the intersection graph of a family of paths of a
tree T , where F is the family of paths. By taking a smallest such tree T , we obtain that V (T ) = M(G) and each path in F
representing vertex v corresponds to MG(v) [19]. This is called a clique tree of the UV graph G.
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Theorem 31. Let G be a connected graph. Then G is UV if and only if Kw
2,3(G) admits a spanning tree T such that for every three

different vertices M1,M2,M3 of T , if M2 belongs to the path M1–M3 in T , then w(M1,M2,M3) = w(M1,M3), and for every M
in T and M1,M2,M3 distinct neighbors of M in T , we have w(M1,M2,M3) = 0.

Proof. (⇒) Let G be a connected UV graph and T be a clique tree of G. Since T is also a clique tree in the sense of chordal
graphs, following the proof of Theorem 30, T satisfies that for every three different vertices M1,M2,M3 of T , if M2 belongs
to the pathM1–M3 in T , then w(M1,M2,M3) = w(M1,M3). In addition, for each vertex v of G, the subgraph of T induced by
MG(v) is a path. So, for everyM in T and M1,M2,M3 distinct neighbors ofM in T , we conclude w(M1,M2,M3) = 0.
(⇐) Let T be a spanning tree of Kw

2,3(G) satisfying the property above. In particular, by Theorem 30, G is a chordal graph and,
following the proof of that theorem, T is a clique tree of G in the sense of chordal graphs. So, for every vertex v of G, the graph
Tv induced by MG(v) in T is connected. If for some vertex v the tree Tv it is not a path, then it should have a vertex M of
degree at least three. LetM1,M2,M3 three distinct neighbors ofM in Tv . All of them contain vertex v, sow(M1,M2,M3) > 0,
a contradiction. �

The examples in Fig. 3 show that Kw
1,2 is not sufficient to characterize UV graphs.

4.6. Line graphs

Line graphs have been characterized in several ways, for instance by minimal forbidden induced subgraphs [3,4,39],
coverings [26] and structural properties [40,43]. We present here a characterization in terms of Kw

1,2.

Theorem 32. Let G be a graph. Then G is the line graph of a simple graph if and only if Kw
1,2(G) admits a partition of its vertices

into two (possibly empty) subsets V1, V2, such that:

(a) The weight of each vertex in V2 is 3.
(b) The weight of each edge whose endpoints are in the same set of the partition is 1, and the weight of each edge whose endpoints

are in different sets of the partition is 2.
(c) Each vertex in V2 has at most three neighbors in V1, and they are pairwise adjacent.
(d) Each pair of adjacent vertices in V2 has exactly two common neighbors in V1.
(e) Each triangle in V1 has a common neighbor in V2.

Proof. (⇒) It is a known result that if G is the line graph of a simple graphH , then a clique of G is formed either by the edges
of a triangle of H or by the edges incident to a common vertex v of H , when they are not properly contained in a triangle of
H (recall that this structure is called star, and v is called the center of the star). Let V1 be the set of cliques of G corresponding
to stars of H and let V2 be the set of cliques of G corresponding to triangles of H . Point (a) is trivial by definition of V2. If a
triangle and a star of H share an edge, then the star is centered at some vertex of the triangle, and in fact, they share two
edges. On the other hand, two triangles can share at most one edge, and two stars centered at v and z respectively, share
at most the edge vz, when it does exist, since H is simple. This proves the points (b) and (c). If two triangles of H share an
edge vz, then vertices v and z have degree at least three in H , and the stars centered at them are maximal cliques of G, thus
corresponding to vertices of V1. These are the two neighbors of the vertices of V2 corresponding to the triangles. Note that
they do not share the (possible) third neighbor. This proves item (d). For the last point, if the stars of H centered at vertices
u, v and z pairwise share an edge, then u, v and z are pairwise adjacent, and there is a vertex in V2 corresponding to the
clique of G formed by the edges of the triangle uvz, that intersects the three cliques corresponding to the stars.
(⇐) Let G be a graph such that Kw

1,2(G) admits a partition of its vertices into two (possibly empty) subsets V1, V2, satisfying
(a)–(e). We will use Krausz’s characterization by building a collection F of complete sets of G such that every edge of G is
contained in exactly one complete set of F , and each vertex of G is contained in at most two complete sets of F .

Let us first observe someproperties of the cliques ofG. LetM be a vertex ofV2 having three neighbors inV1, sayM1,M2,M3
(by (c),M cannot havemore than three neighbors in V1 andM1,M2,M3 are pairwise adjacent). Note that, by (a) and (b), each
of M1,M2,M3 shares two vertices with M,M has only three vertices, and each pair of cliques in {M1,M2,M3} shares one
vertex. Then, M1 ∩ M2 ∩ M3 = ∅ and each of M1,M2,M3 covers a different edge of M . Thus, it follows by (e) that no vertex
of G belongs to three cliques corresponding to vertices in V1.

Let M be a vertex of V2 having no neighbors in V1. By (d), M is an isolated vertex. By the same fact, if M has only one
neighbor in V1, then it has no neighbors in V2. In that case, ifM1 is the neighbor ofM , by (b), thenM1 covers one of the three
edges ofM . No other clique of G in (V1 ∪ V2) \ {M,M1} contains a vertex ofM .

Let M be a vertex of V2 having two neighbors M1,M2 in V1. Each of M1,M2 shares two vertices with M and they have
only one vertex in common, so M1 and M2 cover two of the three edges of M . Namely, we can denote the vertices of M as
v1, v2, v3 in such a way that v3 ∈ M1 ∩ M2, v1 ∈ M1 and v2 ∈ M2. Let us suppose that there is some other clique M ′ in
V2, adjacent to M and having less than three neighbors in V1. By (d), M ′ has exactly two neighbors in V1 and they are M1
andM2, otherwiseM would have 3 neighbors in V1. Reasoning as above,M1 andM2 share a common vertex withM ′ and, as
|M1 ∩ M2| = 1 and |M ∩ M ′

| = 1, it follows that {v3} = M ∩ M ′. As a consequence, the endpoints of the edge of M that is
not covered by the cliques in V1 do not belong to any other clique in V2 having less than three neighbors in V1.
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The collection F will be composed by the cliques of G that are vertices of V1, plus the cliques of G that are vertices of V2
with no neighbors in V1, plus two cliques of size 2 for each vertex of V2 with one neighbor in V1 (namely, the two edges that
are not covered by the cliques corresponding to vertices in V1, as discussed above), plus one clique of size 2 for each vertex
of V2 with two neighbors in V1 (namely, the edge that is not covered by the cliques corresponding to vertices in V1).

Each edge of G belongs to some clique corresponding to a vertex in (V1 ∪ V2), and, by the analysis above, all the edges of
G are covered by F . Moreover, by the way of selecting edges from cliques of G corresponding to vertices in V2 and since the
intersection of two cliques corresponding to vertices in V1 is at most one vertex, each edge of G is covered by exactly one
complete set of F , as required.

In order to complete the proof, we point out that no vertex of G belongs to three cliques corresponding to vertices in V1.
Also, by the analysis above, each vertex that is covered by some complete set of F that does not correspond to a vertex in
V1, is either covered by the clique corresponding to an isolated vertex in V2, or by two edges of the clique corresponding to
a vertex in V2, or by one edge of the clique corresponding to a vertex in V2 and one clique corresponding to a vertex in V1,
and does not belong to any other complete set in F . �

The examples in Fig. 4 show that {Kw
1 , Kw

2 } is not sufficient to characterize line graphs.

5. Conclusions

We have defined the concept of weighted clique graph Kw
m1,...,mℓ

(G), which consists of adding a weight function w to
the clique graph K(G). For each i = 1, . . . , ℓ and each complete set formed by mi vertices of Kw

m1,...,mℓ
(G), the weighting

w assigns to the set the cardinality of the intersection of the corresponding cliques of G. We have described a general
characterization of weighted clique graphs, in terms similar to the characterization of Roberts and Spencer for clique graphs.
We have then proved that the problem of recognizing 1-weighted clique graphs is NP-complete. Further, we have then
formulated characterizations of several known classes of graphs, in terms of their weighted clique graphs, specifying the
sets {m1, . . . ,mℓ} needed in each case. These classes include chordal graphs, interval graphs, line graphs, proper interval
graphs, trees, among others.

Some questions related to the above results remain.

(1) The first one concerns the recognition of clique graphs. The question is whether the additional information carried by
weighted clique graphs with respect to clique graphs can be used to recognize them, in polynomial time in the size of
K(G). More precisely, can we find some set of integers {m1, . . . ,mℓ} and some polynomial-time algorithm to recognize
{m1, . . . ,mℓ}-weighted clique graphs?

(2) In case of an affirmative answer of the above question, what would be the minimum mℓ and minimum size of
|{m1, . . . ,mℓ}| to obtain such an algorithm?

(3) What is the complexity of recognizing {m1, . . . ,mℓ}-weighted clique graphs for different sets {m1, . . . ,mℓ}?
(4) Describe a characterization of circular-arc graphs, in terms of their weighted clique graphs.
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