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Abstract

Under a partly linear model we study a family of robust estimates for the regression
parameter and the regression function when some of the predictor variables take values on
a Riemannian manifold. We obtain the consistency and the asymptotic normality of the
proposed estimators. Simulations and application to real data show the performance of our
proposal under small samples and contamination.
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1 Introduction

Partly linear regression models (PLM) assume that the regression function can be modeled
linearly on some covariates, while it depends nonparametrically on some others. To be more
precise, assume that we have a response yi ∈ IR and covariates (xi, ti) such that xi ∈ IRp, ti ∈
[0, 1] satisfying

yi = x
t
i β + g(ti) + εi 1 ≤ i ≤ n , (1)

where the errors εi are independent and independent of (x
t
i , ti). Since the introductory work

by [10], the partly linear models have become an important tool in the modeling of econometric
or biometric data, combining the flexibility of nonparametric models and the simple interpre-
tations of the linear ones. However, in many applications, the predictors variables take values
on a Riemannian manifold more than on Euclidean space and this structure of the variables
needs to be taken into account in the estimation procedure.

In a recent work [11], PLM are studied when the explanatory variables takes values on a
Riemannian manifold and the potential application of this model in an environment problem
are explored. Unfortunately, as we will see in Section 4, this approach may not work well in
presence of a small proportion of observations that deviate from the assumed model. One way
to avoid this problem is to derive robust estimators to fit PLM models that can resist the effect
of a small number of atypical observations. The goal of this paper is to introduce resistant
estimators for the regression parameter and the regression function under PLM (1), when the
predictor variable t takes values on a Riemannian manifolds.
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This paper is organized as follows. In Section 2, we give a brief summary of the classical
proposal of estimation for this model and we introduce the robust estimates. In Section 3,
we study the consistency and the asymptotic distribution of the regression parameter under
regular assumptions on the bandwidth sequence. Section 4 includes a simulation study in order
to explore the performance of the new estimators under normality and contamination. Also, a
robust cross validation method for the bandwidth selection is considered. We show an example
using real data, in Section 5. Proofs are given in the Appendix.

2 The model and the estimators

2.1 Classical estimators

Assume that we have a sample of n independent variables (yi,x
t
i , ti) in IRp+1×M with identi-

cally distribution to (y,x
t
, t), where (M,γ) is a Riemannian manifold of dimension d. Partly

linear models assume that the relation between the response variable yi and the covariates
(x

t
i , ti) can be represented as

yi = x
t
i β + g(ti) + εi 1 ≤ i ≤ n , (2)

where the errors εi are independent and independent of (x
t
i , ti) and we will assume that ε

has symmetric distribution. Denote φ0(τ) = E(y|t = τ) and φ(t) = (φ1(t), . . . , φp(t)) where
φj(τ) = E(xij |t = τ) for 1 ≤ j ≤ p, then we have that g(t) = φ0(t) − φ(t)

t
β and hence,

y − φ0(t) = (x − φ(t))
t
β + ε. The classical least square estimator of β, β̂ls can be obtained

by minimizing

β̂ls = arg min
β

n∑

i=1

[(yi − φ̂0,ls(ti))− (xi − φ̂ls(ti))
t
β]2,

with φ̂0,ls and φ̂ls are nonparametric kernel estimators of φ0 and φ(t), respectively. More
precisely, the nonparametric estimators φ̂0,ls and φ̂j,ls of φ0 and φj can be defined as (see [21]),

φ̂0,ls(t) =
n∑

i=1

wn,h(t, ti)yi and φ̂j,ls(t) =
n∑

i=1

wn,h(t, ti)xij (3)

where wn,h(t, ti) = θ−1
t (ti)K(dγ(t, ti)/hn)/[

∑n
k=1 θ−1

t (tk)K(dγ(t, tk)/hn)]−1 with K : IR → IR
a non-negative function, dγ the distance induced by the metric γ, θt(s) the volume density
function on (M, γ) and the bandwidth hn is a sequence of real positive numbers such that
limn→∞ hn = 0 and hn are smaller than the injectivity radius of (M,γ) (injγM ). As in [13]
we consider (M, γ) a d−dimensional compact oriented Riemannian manifold without boundary.
Note that in this case injγM > 0 . For a rigorous definition of the volume density function
and the injectivity radius see [1] or [14].

The final least square estimator of g can be taken as ĝls(t) = φ̂0,ls(t) − φ̂ls(t)
t
β̂ls. The

properties of these estimators have been studied in [11] and in the case of Euclidean data have
been widely studied in the literature, see for example [10], [22], [9] and [18].
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2.2 Robust estimates

As in the Euclidean setting, the estimators introduced by [21] are a weighted average of the
response variables, these estimates are very sensitive to large fluctuations of the variables and
so, the final estimator of β can be seriously affected by anomalous data, as mentioned in the
Introduction. To overcome this problem, [13] considered two families of robust estimators for
the regression function when the explanatory variables ti take values on a Riemannian manifold
(M, γ). The first family combines the ideas of robust smoothing in Euclidean spaces with the
kernel weights introduced in [21]. The second generalizes to our setting the proposal given by
[5], who considered robust nonparametric estimates using nearest neighbor weights when the
predictors t are on IRd.

We proposed a class of estimates based on a three-step robust procedure under the partly
linear model when some of the predictors takes values on a Riemannian manifolds. The three-
step robust estimators are defined as follows:

Step 1: Estimate φj(t), 0 ≤ j ≤ p through a robust smoothing. Denote by φ̂j,r the
obtained estimates and φ̂r(t) = (φ̂1,r(t), . . . , φ̂p,r(t))

t
.

Step 2: Estimate the regression parameter by applying a robust regression estimate to
the residuals yi − φ̂0,r(ti) and xi − φ̂r(ti). Denote by β̂r the obtained estimator.

Step 3: Define the robust estimate of the regression function g as ĝr(t) = φ̂0,r(t) −
β̂

t

rφ̂r(t).

Note that in Step 1, the regression functions correspond to predictors taking values in a
Riemannian manifold. Local M−type estimates φ̂0,r and φ̂j,r are defined in [13] as the solution
of

n∑

i=1

wn,h(t, ti)Ψ

(
yi − φ̂0,r(t)

σ0,n(t)

)
= 0 and

n∑

i=1

wn,h(t, ti)Ψ

(
xij − φ̂j,r(t)

σj,n(t)

)
= 0 (4)

respectively, where the score function Ψ is strictly increasing, bounded and continuous and
σ0,n(τ) and σj,n(τ) 1 ≤ j ≤ p are local robust estimates.

Possible choice for the score function Ψ can be the Huber or the bisquare Ψ-function. The
local robust scale estimates σ0,n(τ) and σj,n(τ) 1 ≤ j ≤ p can be taken as the local median
of the absolute deviations from the local median (local MAD), i.e. the MAD (see [15]) with
respect to the distributions

Fn(y|t = τ) =
n∑

i=1

wn,h(τ, ti)I(−∞,y](yi) and Fj,n(x|t = τ) =
n∑

i=1

wn,h(τ, ti)I(−∞,x](xij).

(5)
respectively.

In Step 2, the robust estimation of the regression parameter can be performed by applying
to the residuals any of the robust methods proposed for linear regression. For example, we can
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consider M-estimates ([15]) and GM-estimators ([19]). On the other hand, high breakdown
point estimates with high efficiency as MM-estimates could be evaluated ([26] and [27]).

We consider β̂r the solution of

n∑

i=1

ψ1

(
(r̂i − η̂

t
i β̂r)/sn

)
w1 (‖η̂i‖) η̂i = 0, (6)

with sn a robust consistent estimate of σε, r̂i = yi − φ̂0,r(ti), η̂i = xi − φ̂r(ti), ψ1 a score
function and w1 a weight function. The zero of this equation can be computed iteratively using
reweighting, as described for the location setting in [[20], Chapter 2].

The estimator defined by [21] corresponds to the choice Ψ(u) = u with the estimators of
the conditional distribution based on kernel weights defined in (5). Therefore, if we considered
the least square estimators of β in Step 2, we obtain the classical estimators proposed in [11].
On the other hand, when (M, γ) is IRd endowed with the canonical metric, the estimation
procedure reduces to proposal introduced in [2]. Details over the procedure to computing the
robust nonparametric estimators in Step 1 can be found in [13].

3 Asymptotic results

The theorems of this Section study the asymptotic behavior of the regression parameter esti-
mator of the model under standard conditions. Let U be an open set of M , we denote by Ck(U)
the set of k times continuously differentiable functions from U to IR. As in [21], we assume
that the image measure of P by t is absolutely continuous with respect to the Riemannian
volume measure νγ and we denote by f its density on M with respect to νγ .

Let σ0(τ) and σj(τ) for 1 ≤ j ≤ n be the MAD of the conditional distribution of y1|t = τ
for j = 0 and x1j |t = τ for 1 ≤ j ≤ n, respectively.

3.1 Consistency

To derive strong consistency result of the estimate β̂r of β defined in Step 2 , we will consider
the following set of assumptions.

H1. Ψ : IR → IR is an odd, strictly increasing, bounded and continuously differentiable
function, such that uΨ′(u) ≤ Ψ(u) for u > 0.

H2. F (y|t = τ) and Fj(x|t = τ) are symmetric around φ0(τ) and φj(τ) and there are contin-
uous functions of y and x for each τ .

H3. M0 is a compact set on M such that:

i) The density function f of t, is a bounded function such that infτ∈M0 f(τ) = A > 0.

ii) inf
τ∈M0
s∈M0

θτ (s) = B > 0.
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H4. The following equicontinuity condition holds

∀ε > 0, ∃δ > 0 : |z − z′| < δ ⇒ sup
s∈M0

|Gs(z)−Gs(z′)| < ε

for the functions Gs(z) equal to F (z|t = s) and Fj(z|t = s) for 1 ≤ j ≤ p.

H5. For any open set U0 of M such that M0 ⊂ U0,

i) f is of class C2 on U0.
ii) F (y|t = τ) and Fj(x|t = τ) are uniformly Lipschitz in U0, that is, there exists a

constant C > 0 such that |Gτ (z)−Gs(z)| ≤ C dg(τ, s) for all τ, s ∈ U0 and z ∈ IR,
for the functions Gs(z) equal to F (z|t = s) and Fj(z|t = s) for 1 ≤ j ≤ p.

H6. K : IR → IR is a bounded nonnegative Lipschitz function of order one, with compact
support [0, 1] satisfying

∫
IRd uK(‖u‖)du = 0 and 0 <

∫
IRd ‖u‖2K(‖u‖)du < ∞.

H7. The sequence hn is such that hn → 0 and nhd
n/log n →∞ as n →∞.

H8. The estimator σj,n(τ) of σj(τ) satisfy σj,n(τ) a.s.−→ σj(τ) as n → ∞ for all τ ∈ M0 and
0 ≤ j ≤ p.

Remark 3.1.1. Assumption H1 is a standard condition in a robustness framework. The fact
that θs(s) = 1 for all s ∈ M guarantees that H3 holds for a small compact neighborhood of s.
H4 and H5 are needed in order to derive strong uniform consistency results. Assumption H6 is
a standard assumption when dealing with kernel estimators. It is easy to see that Assumption
H8 is satisfied, when we consider σj,n(τ) as the local median of the absolute deviations from
the local median.

Theorem 3.1.1. Under the hypothesis H1 to H8 , we have that

a) |β̂r − β| a.s.−→ 0.

b) supτ∈M0
|ĝr(τ)− g(τ)| a.s.−→ 0.

3.2 Asymptotic distribution

In this Section, we assume that in the Step 2 of the estimation procedure, the choice for β̂r
is given as in (6). More precisely, let ψ1 be a score function and w1 be a weight function, we
will derive the asymptotic distribution of the regression parameter estimates β̂r defined as a
solution of

n∑

i=1

ψ1

(
(r̂i − η̂

t
i β̂r)/sn

)
w1 (‖η̂i‖) η̂i = 0,

with sn a robust consistent estimate of σε, r̂i = yi − φ̂0,r(ti), η̂i = xi − φ̂r(ti). Denote by
ηi = xi − φ(ti) and ri = yi − φ0(ti). Note that ri − η

t
i β = εi.

To derive the asymptotic distribution of the regression parameter estimates, we will need
the following set of assumptions.

5



A1. ψ1 is an odd, bounded and twice continuously differentiable function with bounded
derivatives ψ′1 and ψ′′1 , such that the functions uψ′1(u) and uψ′′1(u) are bounded.

A2. E(w1(||η1||) η1|t1) = 0, E(w1(||η1||) ||η1||2) < ∞ and A = E(ψ′1(ε/σε)w1(||η1||) η1η1
t)

is non singular.

A3. The function w1(u) is bounded, Lipschitz of order 1. Moreover, ϕ(u) = w1(u)u is also
a bounded and continuously differentiable function with bounded derivative ϕ′(u) such
that uϕ′(u) is bounded.

A4. The functions φj(t) for 0 ≤ j ≤ p are continuous with φ′j continuous in M .

A5. φ̂j(t) the estimates of φj(t) for 0 ≤ j ≤ p have first continuous derivatives in M and

n1/4 sup
t∈M

|φ̂j(t)− φj(t)| p−→ 0, for 0 ≤ j ≤ p, (7)

sup
t∈M

|∇φ̂j(t)−∇φj(t)| p−→ 0, for 0 ≤ j ≤ p. (8)

where ∇ξ corresponds to the gradient of ξ with ξ ∈ F(M) and F(M) the class of
functions {ξ ∈ C1(M) : ‖ξ‖∞ ≤ 1 ‖∇ξ‖∞ ≤ 1}.

A6. The estimator sn of σε satisfies sn
p−→ σε as n →∞.

Theorem 3.2.1. Under the assumptions A1 to A6 we have that
√

n(β̂r − β) D−→ N(0, σ2
εA

−1ΣA−1),

where A is defined in A2 and Σ = E(ψ2
1(ε/σε))E(w2

1(||η1||) η1η
t
1 ).

Remark 3.2.1. To proof the previous result, we will need an inequality for the covering
number of F(M). The Appendix include some results related to the covering number on a
Riemannian manifold.

4 Simulation study

In this section, we consider a simulation study designed to evaluate the performance of the
robust procedure introduced in Section 2. The main objective of this study is to compare
the behavior of the classical and robust estimators under normal samples and contamination.
We consider the cylinder endowed with the metric induced by the canonical metric of IR3.
Because of the computational burden of the robust procedure, we performed 500 replications
of independent samples of size n = 200. In the smoothing procedure, the kernel was taken as
the quadratic kernel K(t) = (15/16)(1−t2)2I(|x| < 1). In the next subsection, we will describe
a robust cross validation procedure that we will use in order to obtain the robust estimates
and to compute the classical estimators we consider a classical cross validation described in
[11]. The distance dγ and the volume density function for the cylinder were computed in [14]
and [13]. We considered the following model:
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The variables (yi, xi, ti) for 1 ≤ i ≤ n were generated as

yi = 2 xi + (t1i + t2i − t3i)2 + εi and xi = sin(2t3i) + ηi

where ti = (t1i, t2i, t3i) = (cos(θi), sin(θi), si) with the variables θi follow a uniform distribution
in (0, 2π) and the variables si are uniform in (0, 1), i.e. ti have support in the cylinder with
radius 1 and height between (0, 1).

The non contaminated cases that denoted with C0 corresponds to the errors εi and ηi

are i.i.d. normal with mean 0 and standard deviation 1 and 0.05, respectively. Besides,
the so-called contaminations C1 and C2, which correspond to selecting a distribution in a
neighborhood of the central normal distribution, are defined as ε ∼ 0.9N(0, 1) + 0.1N(0, 25)
and ε ∼ 0.9N(0, 1)+0.1N(5, 0.25), respectively. The contamination C1 corresponds to inflating
the errors and thus, will affect the variance of the regression estimates.

4.1 Bandwidth Selection

To select the smoothing parameter there exist two commonly used approaches: L2 cross-
validation and plug-in methods. However, these procedures may not be robust. Their sen-
sitivity to anomalous data was discussed by several authors, see for example [17], [28], [6],
[8] and [16]. Under a nonparametric regression model with carriers in an Euclidean space for
spline-based estimators, [8] introduced a robust cross-validation criterion to select the band-
width parameter. Robust cross-validation selectors for kernel M-smoothers were considered in
[17], [28] and [16], under a fully nonparametric regression model. In the Euclidean setting, for
partly linear model, a robust cross-validation criterion in the cases of autoregression models
was considered in [3], while a robust plug-in procedure was studied in [7]. When the variables
belong in a Riemannian manifold, a robust cross validation procedure was discussed in [13] un-
der a fully nonparametric regression model, while a classical cross-validation procedure under
a partly linear models was considered in [11].

We included a robust cross-validation method for the choice of the bandwidth in the case of
partly linear models that robustified the proposal given in [11] and generalized the procedure
given in [7]. The robust cross-validation method constructs an asymptotically optimal data-
driven bandwidth, and thus adaptive data-driven estimators, by minimizing

RCV (h) =
n∑

i=1

µ2
n(ε̂i(h)) + σ2

n(ε̂i(h)),

with ε̂i(h) = yi−φ̂0,−i,h(ti))−(xi−φ̂−i,h(ti))
t
β̃; φ̂0,−i,h(t) and φ̂−i,h(t) = (φ̂1,−i,h(t), . . . , φ̂p,−i,h(t))

denote the robust nonparametric estimators computed with bandwidth h using all the data
expect the i−th observation and β̃ estimate the regression parameter by applying a robust
regression estimate to the residuals yi − φ̂0,−i,h(ti) and xi − φ̂−i,h(ti) and µn and σ2

n denote
robust estimators of location and scale, respectively.

The asymptotic properties of data-driven estimators require further careful investigation
and are beyond the scope of this paper.
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4.2 Simulation results

Table 4.1 shows the mean, standard deviations, mean square error for the regression estimates
of β and the mean of the mean square error of the regression function g over the 500 replica-
tions for the considered model. We denote with ls and r the classical and robust estimators,
respectively. Figure 4.1 shows the boxplot of the regression parameter.

mean(β̂ls) sd(β̂ls) MSE(β̂ls) MSE(ĝls)
C0 2.0732 0.1445 0.0262 0.2396
C1 1.8789 1.7592 3.1095 20.4485
C2 1.8722 1.7975 3.2475 45.9719

mean(β̂r) sd(β̂r) MSE(β̂r) MSE(ĝr)
C0 2.0646 0.1433 0.0274 0.2431
C1 2.0198 0.2303 0.0534 0.4897
C2 2.0109 0.2540 0.0646 1.3580

Table 4.1: Performance of regression parameter and the regression functions under the different contaminations.

a) b)

-4
-2

0
2

4
6

8

C0 C1 C2

-4
-2

0
2

4
6

8

C0 C1 C2

Figure 4.1: Boxplot of a) β̂ls the classical estimators and b) β̂r the robust estimators under the different

contaminations.

The simulation results confirm the inadequate behavior of the classical estimators under
the considered contaminations. The robust estimators of the regression function introduced in
this work showing only a small lack of efficiency under normality. In both cases, the results
obtained with the classical estimators are not reliable giving high mean square errors that
those corresponding to the robust procedure, under C1 and C2, respectively. This extreme
behavior of the classical estimators show its inadequacy when one suspects that the sample
can contain outliers.
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5 Real Example

The solar insolation is the amount of electromagnetic energy or solar radiation incident on
the surface of the earth. This variable measures the duration of sunlight in seconds. In the
automatic stations, the World Meteorological Organization defines insolation as the sum of
time intervals in which the irradiance exceeds the threshold of 120 watts per square meter.
The irradiance is direct radiation normal or perpendicular to the sun on Earth’s surface. The
values of the insolation in a particular location depend of the weather conditions and the sun’s
position on the horizon. For example, the presence of clouds increases the absorption, reflection
and dispersion of the solar radiation. Desert areas, given the lack of clouds, have the highest
values of insolation on the planet. More details about insolation can be seen in [4].

As we comment above, the isolation is related with the weather conditions. In particular,
to illustrate the proposed estimators, we will analyze the relation between the insolation,
the humidity, the direction and the speed of the wind. We consider a data set available in
http://meteo.navarra.es/. This data consists on the daily average of relative humidity, speed
and direction of the wind and the insolation. The direction’s wind was measure with the
point zero in the north direction and the wind’s speed was measure in meter per second. The
data was measure daily in the automatic meteorologic station of Pamplona-Larrabide GN,
in Navarra, Spain during the year 2004. In our study, we consider a random sample of this
dataset.

In Figure 5.1, we can see that the humidity and the insolation follows a lineal relation
less in the points contained in the ellipse. Therefore, we consider a partly lineal model to
explain the insolation, as a linear function of the humidity and a non parametric function of
the speed and direction of the wind. Note that, the variables corresponding to the wind to
be modeled nonparametrically, belong to a cylinder. In the smoothing procedure, we consider
the quadratic kernel K(t) = (15/16)(1− t2)2I(|x| < 1) and we select the bandwidth using the
robust cross validation procedure for the robust estimators and the classical cross validation
described in [11] for the classical estimators.
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Figure 5.1: Scatter plot between the insolation and humidity. The dots in the ellipse correspond to the potential

outliers.

In a first step, we apply the classical and robust methods to obtain an estimator of
the regression parameter using all the data. The results were β̂ls = −1032.869 and β̂r =
−1246.856. Also, based in the asymptotic results obtained in Theorem 3.2.1, we calculated
a confidence interval with level 0.05 in each case. To computed these confidence intervals,
we estimated the unknown quantities. The result of the classical confidence interval was
CCI0.05(β) = (−1229.9451−835.7935) and the confidence interval based in the robust estima-
tion was RCI0.05(β) = (−1453.658,−1040.053). On the other hand, we calculated the classical
estimator using the data except the potential outliers, the result was β̂ls = −1294.620 and
its confidence interval was CCI0.05(β) = (−1502.983,−1086.257). Thus, if we estimate the
regression parameter with the classical approach when the dataset have outliers, the conclu-
sion can be different. For example. in the classical case with all the data, the hypothesis that
β = −1000 is rejected, while the conclusions with the classical estimator without the outliers
or the robust estimators with all the data does not reject the null hypothesis.
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A Appendix

A.1 Proof of Theorem 3.1.1.

a) Denote by r̂i = yi − φ̂0,r(ti), η̂i = xi − φ̂r(ti), ηi = xi − φ(ti) and ri = yi − φ0(ti).
We note that ri = η

t
i β + εi and let P̂n(A) = 1

n

∑n
i=1 IA(r̂i, η̂i). It is well known that the

robust regression estimates can be written as a functional of the empirical distribution. More
precisely, β̂ = β(P̂n) where β(·) is continuous at P , the common distribution of (ri,η

t
i )t.

Therefore, it is suffice to prove that Π(P̂n, P ) a.s.−→ 0 where Π stands for the Prohorov distance.
Thus, we will show that for any bounded and continuous function f : IRp+1 → IR we have that
|E

P̂n
f − EP | a.s.−→ 0.

Note that

|E
P̂n

f − EP f | ≤ 1
n

n∑

i=1

|f(ri + (φ0(ti)− φ̂0(ti)), ηi + (φ(ti)− φ̂(ti)))− f(ri,ηi)|IC(ri, ηi, ti)

+
1
n

n∑

i=1

ICc(ri, ηi, ti)

where C1 ⊂ IRp+1 and M0 ⊂ M are compact sets such that for any ε > 0 P (C) > 1−ε/(4‖f‖∞)
with C = C1 ×M0.

Under the assumptions by Theorem 3.3 of [13], we have that

sup
t∈M0

|φ̂j,r(t)− φ̂j,r(t)| a.s.−→ 0

for 0 ≤ j ≤ p. From this fact and the Strong Law of Large Numbers, we have that there exists
a set ℵ ⊂ Ω such that P (Ω) = 0 and that for any ω 6∈ ℵ we obtain that

1
n

n∑

i=1

ICc(ri, ηi, ti) → P (Cc).

Let C̄1 the closure of a neighborhood of radius 1 of C1.The uniform continuity of f on C̄1

implies that there exists δ such that max1≤j≤p+1 |uj − ui|, u, v ∈ C̄1 entails |f(u)− f(v)| ≤ ε
2 .

Thus, we have that for ω 6∈ ℵ and n large enough max0≤j≤p supt∈M0
|φ̂j(t) − φj(t)| < δ and

then, for 1 ≤ i ≤ n, we obtain that

|f(ri + (φ0(ti)− φ̂0(ti)), ηi + (φ(ti)− φ̂(ti)))− f(ri, ηi)| ≤
ε

2
.

that conclude the proof.

b)

A.2 Entropy number

The main objective of this Section is to obtain an upper-bound to the entropy number of the
class of functions F(M) = {ξ ∈ C1(M) : ‖ξ‖∞ ≤ 1 ‖∇ξ‖∞ ≤ 1}. The covering number
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N(δ,F , ‖ · ‖) is the minimal number of balls, {ξ : ‖ξ − η‖ < δ} of radius δ needed to cover
the set F . The entropy number is the logarithm of the covering number. This upper-bound
will be use to obtain the asymptotic distribution of the regression parameter. Several authors
were studied bounds to the covering numbers for different sets, see for example [23], [24] and
[25]. In particular, [25] obtained an upper-bound to the covering number for F(M) when M
is a bounded, convex subset of IRd. For the convenience of the reader, we have included the
following remark (see [12]).

Remark A.1. Let N(δ) be the minimal number of balls with radius δ needed to cover (M, δ).
A δ-filling is a maximal family of pairwise disjoint open balls of radius δ. We denote by D(δ),
the packing number, i.e. the maximum number of such balls. Is easy to see that N(2δ) ≤ D(δ).
Let diam(M,γ) be the diameter of (M,γ) and consider κ ∈ IR such that Ricc(M,γ) ≥ (d − 1)κ
where Ricc(Mγ) is the Ricci curvature and d the dimension of M . For example, if γ is an Einstein
metric’s with scalar curvature 2(d − 1)κ then the inequality is attained. Note that if κ > 0
since Myers’s Theorem [12], (M, γ) is necessary a compact manifolds with diam(M,γ) ≤ π/

√
κ.

Since M is compact there exists κ with this property. Denote by V κ(r) the volume of a ball of
radius r in a complete, simply connected Riemannian manifold with constant curvature κ. By
the Theorem of Bishop (see [12]) we know that V ol(B(x,r))

V κ(r) is a non increasing function where
B(x, r) = {z ∈ M : dγ(x, z) ≤ r} is the geodesic ball centered in x with radius r. Note that, M
is the closure of B(x, diam(M,γ)) for any x ∈ M . If {B(a1,

δ
2), . . . , B(aD, δ

2)} with D = D( δ
2)

is a δ
2−filling then,

N(
δ

2
) ≤ V ol(M)

inf1≤i≤D V ol(B(ai,
δ
2))

≤ V κ(diam(M,γ))

V κ( δ
2)

.

Therefore N(δ) ≤ C(diam(M,γ), κ)δ−d.

Lemma A.1. Let F(M) = {ξ ∈ C1(M) : ‖ξ‖∞ ≤ 1 ‖∇ξ‖∞ ≤ 1}, then the covering
number for the supremum norm of F(M) that we denote by N(δ,F(M), ‖ · ‖∞) satisfies that
log N(δ,F(M), ‖ · ‖∞) < Aδ−d.

Proof of Lemma A.1. Let A = {B(a1, δ), . . . , B(aN , δ)} be a covering of M by open balls of
radius δ. By the remark above, we may assume that N ≤ C(diam(M,γ), κ)δ−d. Also, we can
choose the covering A such that B(ai, δ) ∩ B(ai+1, δ) 6= ∅ for 1 ≤ i ≤ N − 1 and ai 6= aj for
1 ≤ i, j ≤ N . Let ξ ∈ F(M), we define the function ξ̃ =

∑N
i=1 δ

[
ξ(ai)

δ

]
IDi where D1 = B(a1, δ),

Di = B(ai, δ)\ ∪i−1
j=1 B(aj , δ) and [a] denotes the integer part of a.

Let x ∈ M and 1 ≤ k ≤ N such that x ∈ Dk, then we have that |ξ̃(x) − ξ(x)| ≤ |ξ̃(x) −
ξ(ak)|+ |ξ(ak)− ξ(x)|. Since ξ̃(ak) = ξ̃(x) and ξ(ak) = ξ̃(ak) + δ( ξ(ak)

δ − [ ξ(ak)
δ ]) = ξ̃(ak) + δB

with 0 ≤ B < 1, we have that |ξ̃(x)− ξ(x)| ≤ 2δ.

For the first value ξ̃(a1) of a generic function ξ̃, we have [1δ ] + 1 possibilities. Since,

|ξ̃(ak)− ξ̃(ak−1)| ≤ |ξ̃(ak)− ξ(ak)|+ |ξ(ak)− ξ(ak−1)|+ |ξ(ak−1)− ξ̃(ak−1)| ≤ 4δ.

Therefore, for each value of ξ̃(ak−1) we can choose 9 possibilities for ξ̃(ak). Then is easy to
verify that

N(2δ,F(M), ‖ · ‖∞) ≤ ([
1
δ
] + 1)9N .

12



which finish the proof.

Remark A.2. Since N(δ,F(M), L2(Q)) ≤ N(δ,F(M), ‖ · ‖∞) then Lemma A.1 entails that
the covering number of F(M) satisfies, log N(δ,F(M), L2(Q)) < Aδ−d.

A.3 Proof of Theorem 3.2.1.

Using a Taylor expansion around β̂r we have that Sn = An(β̂r − β) where

Sn =
1
n

n∑

i=1

ψ1

(
(r̂i − η̂

t
i β)/sn

)
w1 (‖η̂i‖) η̂i

An =
1
n

n∑

i=1

ψ′1
(
(r̂i − η̂

t
i β̃)/sn

)
w1 (‖η̂i‖) η̂iη̂

t
i .

where β̃ is an intermediate point between β and β̂r. Analogous arguments to those used in
Lemma 2 in [2] allow to show that An

p−→ A where A is defined in A2.

Since
√

n
n

∑n
i=1 ψ1 (εi/σε)w1 (‖ηi‖)ηi is asymptotically normally distributed with covari-

ance Σ, it will enough to show that

√
n [Sn − 1

n

n∑

i=1

ψ1 (εi/sn) w1 (‖ηi‖) ηi]
p−→ 0, (9)

√
n [

1
n

n∑

i=1

ψ1 (εi/sn) w1 (‖ηi‖) ηi −
1
n

n∑

i=1

ψ1 (εi/σε) w1 (‖ηi‖) ηi]
p−→ 0. (10)

We first prove (9). Using a Taylor expansion of order two, we have that the following decom-
position.

√
n[Sn − 1

n

n∑

i=1

ψ1 (εi/sn) w1 (‖ηi‖) ηi] =
5∑

i=1

Sni

where

Sn1 =
√

n

n

n∑

i=1

ψ′1 (εi/sn) [γ̂t(ti)β − γ̂0(ti)]w1 (‖ηi‖) ηi

Sn2 =
sn
√

n

n

n∑

i=1

ψ1 (εi/sn) [w1 (‖η̂i‖) η̂i − w1 (‖ηi‖) ηi]

Sn3 =
sn
√

n

n

n∑

i=1

[ψ1

(
r̂i − η̂

t
i β/sn

)
− ψ1 (εi/sn)]w1 (‖η̂i‖) [η̂i − ηi]

Sn4 =
√

n

2n

n∑

i=1

ψ′′1 (ςi/sn) [γ̂t(ti)β − γ̂0(ti)]2w1 (‖η̂i‖)ηi

Sn5 =
√

n

n

n∑

i=1

ψ1 (εi/sn) [γ̂t(ti)β − γ̂0(ti)][w1 (‖η̂i‖)− w1 (‖ηi‖)]ηi

13



where γ̂j(t) = φ̂j(t) − φj(t) for 0 ≤ j ≤ n and γ̂(t) = (γ̂1, . . . , γ̂n). By A3, A5 and A6 is easy
to see that ‖Sin‖ p−→ 0 for i = 3, 4, 5.

Let

J (j)
1n (σ, ξ) =

√
n

n

n∑

i=1

f
(j)
1,σ,ξ(ri,ηi, ti)

=
√

n

n

n∑

i=1

ψ′1

(
ri − ηt

i β

σ

)
ξ(ti)w1 (‖ηi‖) (ηi)j

J (j)
2n (σ, ξ) =

√
n

n

n∑

i=1

f
(j)

2,σ,ξ(ri,ηi, ti)

=
σ
√

n

n

n∑

i=1

ψ1

(
ri − ηt

i β

σ

)
[w1 (‖ηi + ξ‖) (ηi + ξ(ti))j − w1 (‖ηi‖) (ηi)j ]

Therefore, it remains to show that J (j)
1n (sn, γ̂s)

p−→ 0 and J (j)
1n (sn, γ̂)

p−→ 0 for 0 ≤ j, s ≤ p.
From now on, we will omitted the superscript j for the sake of simplicity.

Let F(M) = {ξ ∈ C1(M) : ‖ξ‖∞ ≤ 1 ‖ξ′‖∞ ≤ 1} and consider the classes of functions

F1 = {f1,σ,ξ(r,η, t) σ ∈ (σε/2, 2σε) ξ ∈ F(M)}
F2 = {f2,σ,ξ(r,η, t) σ ∈ (σε/2, 2σε) ξ = (ξ1, . . . , ξp), ξs ∈ F(M)}

Note that, the independence of εi and (xi, ti), A2 and the fact that the errors ε have symmetric
distribution imply that E(f(ri, ηi, ti)) = 0 for any f ∈ F1 ∪F2. As in [2], it is easy to see that
the covering number of the classes F1 and F2 satisfy

N(C1ε,F1, L
2(Q)) ≤ N(ε,F(M), L2(Q)) N(ε, (σε/2, 2σε), | · |)

N(C2ε,F2, L
2(Q)) ≤ Np(ε,F(M), L2(Q)) N(ε, (σε/2, 2σε), | · |)

where Q is any probability measure. Since Remark A.2, the covering number of F(M) satisfies
that log N(ε,F(M), L2(Q)) < Aε−d. Therefore, we get that these classes have finite uniform-
entropy. For 0 < δ < 1, consider the subclasses F1,δ and F2,δ of F1 and F2 respectively, defined
by,

F1,δ = {f ∈ F1 ξ ∈ F(M), ‖ξ‖∞ < δ}
F2,δ = {f ∈ F2 ξ = (ξ1, . . . , ξp), ξs ∈ F(M), ‖ξs‖∞ < δ}

For any ε > 0, let 0 < δ < 1 since A5 and A6 we obtain that for n large enough P (sn ∈
(σε/2, 2σε)) > 1− δ/2 and P (γ̂s ∈ F(M) and ‖γ̂s‖∞ < δ) > 1− δ/2 for 0 ≤ s ≤ p.

Then, the maximal inequality for covering numbers entails that for 0 ≤ s ≤ p

P (|J1n(sn, γ̂s)| > ε) ≤ P (|J1n(sn, γ̂s)| > ε; sn ∈ (σε/2, 2σε); γ̂s ∈ F(M) and ‖γ̂s‖∞ < δ) + δ

≤ P

(
sup

f∈F1,δ

∣∣∣∣∣

√
n

n

n∑

i=1

f(ri, ηi, ti)

∣∣∣∣∣ > ε

)
+ δ
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≤ 1
ε
E

(
sup

f∈F1,δ

∣∣∣∣∣

√
n

n

n∑

i=1

f(ri, ηi, ti)

∣∣∣∣∣

)
+ δ

≤ 1
ε
G(δ,F1) + δ

where G(δ,F) = supQ

∫ δ
0

√
1 + log N(ε‖F‖Q,2,F , L2(Q))dε, then the fact that F1 satisfies the

the uniform–entropy conditions we get that limδ→0 G(δ,F1) = 0, therefore S1n
p−→ 0. Similarly

for J2n(sn, γ̂) and the class F2 and we get that S2n
p−→ 0.

The proof of (10), follows using analogous arguments that those considered in (9).
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