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Physical distance characterization using pedestrian dynamics simulation

D. R. Parisi1∗, G. A. Patterson1†, L. Pagni2, A. Osimani2, T. Bacigalupo2, J.
Godfrid2, F. M. Bergagna2, M. Rodriguez Brizi2, P. Momesso2, F. L. Gomez2, J.

Lozano2, J. M. Baader2, I. Ribas2, F. P. Astiz Meyer2, M. Di Luca2, N. E.
Barrera2, E. M. Keimel Álvarez2, M. M. Herran Oyhanarte2, P. R. Pingarilho2, X.

Zuberbuhler2, F. Gorostiaga2

In the present work we study how the number of simulated customers (occupancy) af-
fects social distance in an ideal supermarket, considering realistic typical dimensions and
processing times (product selection and checkout). From the simulated trajectories we
measure social distance events of less than 2 m, and their duration. Among other observ-
ables, we define a physical distance coefficient that informs how many events (of a given
duration) each agent experiences.

I Introduction1

One of the measures widely applied to mitigate the2

Coronavirus disease (COVID-19) outbreak is social3

distancing; that is, maintaining a certain physical4

distance between people [1]. This distance acts as a5

physical barrier to droplets released from the nose6

or mouth of a potentially infected person. When7

another person is too close, they could breathe8

in the droplets and become infected. Although9

COVID-19 is our current concern, physical dis-10

tancing could be useful for any contagious disease.11

We should emphasize that a physical distance12

of 1-2 m is not sufficient for some other types of13

transmissionsuch as transmission by aerosols [2, 3]14

or fomites [3]. Moreover, many other important15
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factors, such as good ventilation (for indoor sys- 16

tems) and the use of face masks, are not included 17

in our analysis. 18

Recent studies [4, 5] have suggested combining 19

microscopic agent simulation with general disease- 20

transmission mechanisms. However, because of un- 21

certainties and the complexity of current knowledge 22

for quantifying COVID-19 transmission processes, 23

here we will not consider any particular contagion 24

mechanism. We will focus instead on studying the 25

distance between people in an everyday pedestrian 26

facility as an isolated aspect to be integrated in the 27

future by experts considering all mechanisms for 28

any particular disease propagation. Additionally, 29

findings have been reported from recent physical 30

distance studies that considered field data from a 31

train station [6] and simulations of bottleneck sce- 32

narios [7]. 33

One of the key questions we will try to answer 34

is how to describe the physical distance for any 35

given occupation of an establishment. To solve this 36

problem, we must consider the displacements and 37

trajectories of pedestrians while they perform cer- 38

tain tasks, thus the obvious tool to use is pedes- 39
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trian simulation. The time evolution of positions1

of simulated agents can provide not only the rela-2

tive distance between agents, but also the duration3

of events in which the recommended social distance4

is not kept.5

Many industries and shops have been closed in6

different phases of the COVID-19 pandemic. How-7

ever, grocery shops have to be kept open, and su-8

permarkets in particular. To prevent crowding and9

to keep some physical distance between customers,10

the authorities reduced the allowed capacity. Dif-11

ferent countries’ regulations have adopted social12

distance requirements between 1 and 2 m [6]. In13

the present study we will consider a distance of 214

m as the social distance threshold.15

The main objective of this work is to introduce a16

methodology for characterizing and analyzing the17

physical distance between agents. We propose to18

investigate how the allowed capacity affects the19

physical distance between shoppers in an ideal su-20

permarket of 448 m2. The results should not be ex-21

trapolated directly to other supermarkets or facil-22

ities; nevertheless, the methodology could be used23

with other trajectories based either on simulations24

or field data obtained from a pedestrian system.25

II Models26

In order to simulate the complex environment and27

the agents’ behavior, the proposed model involves28

three levels of complexity: operational, tactical,29

and strategic [8].30

i Strategic Level31

The most general level of the model consists of a32

master plan for the agent when it is created. In33

practical terms, for the present system it gives a34

list of np products for agents to acquire (a shopping35

list). Each of the np items is chosen at random36

from a total of mp available products. Also, they37

are identified with a unique target location (xpn)38

in the supermarket.39

Once the agent is initialized with its shopping40

list, the strategic level shows the first item on the41

list to the agent. The agent will move toward it42

using the lower levels of the model. When the agent43

reaches the position of the product, it will spend44

a picking time (tp) choosing and picking up the45

product, after which the strategic level will present 46

the next item on the list to the agent. 47

When the list of products is complete, the agent 48

must proceed to the least busy supermarket check- 49

out line. It will adopt queuing behavior until it gets 50

to the checkout desk and spends time tco processing 51

its purchase. 52

ii Tactical Level 53

The function of the tactical level is to present the 54

agent with successive visible targets to guide it to 55

the location of the desired product (xpn) or check- 56

out line. As input the tactical module takes the 57

current agent position (xi(t)) and the position of 58

the current product (xpn) on the list. The output 59

is a temporal target (xv(t)) visible from the current 60

position of the agent. The definition of visibility is 61

that if we take a virtual segment between (xi(t)) 62

and (xv(t)), this segment does not intersect any of 63

the walls or obstacles (shelves). 64

The information delivered by the tactical mod- 65

ule is obtained by implementing a squared network 66

connecting all the accessible areas of the simulated 67

layout (see Fig. 2). For any pair of points within the 68

walkable domain, the corresponding nearest points 69

on the network are found and then the shortest 70

path between these points is computed using the 71

A* algorithm [9]. 72

Once the path in the network is defined, the tem- 73

porary target xv(t) is chosen as the farthest visible 74

point on that path, seen from the current agent po- 75

sition. Clearly, xv(t) will change with time, as the 76

position of the agent changes. When the product 77

target is visible from the agent’s position, this is 78

set as the visible target and the network path is 79

no longer considered until a new product should be 80

found. 81

iii Operational Level 82

For the lowest level describing the agents’ short- 83

range movements we propose an extended version 84

of the Contractile Particle Model (CPM) [10]. This 85

will provide efficient navigation to prevent poten- 86

tial collisions with other agents and obstacles. The 87

basic model is a first-order model in which parti- 88

cles have continuous variable radii, positions and 89

velocities that change according to certain rules. 90

Specifically, the position is updated as 91

13000X-2



Papers in Physics, vol. 13, art. 13000X (2021) / D. R. Parisi et al.

xi(t+ ∆t) = xi(t) + vi∆t , (1)

where vi is the desired velocity and xi(t) the po-1

sition at time t. The radius of the ith particle (ri)2

is dynamically adjusted between rimin and rimax.3

When this radius has large values, it represents the4

personal distance necessary for taking steps, but5

when it has low values it represents a hard incom-6

pressible nucleus that limits maximum densities.7

When particles are not in contact, the desired8

velocity vi points toward the visible target with a9

magnitude proportional to its radius,10

vi = eit v , (2)

where the direction eit and the magnitude v are11

defined by the following equations:12

eit =
(Xv −Xi)

|(Xv −Xi)|
, (3)

v = vd[
(r − rmin)

(rmax − rmin)
] , (4)

where vd is the desired speed.13

While the radius has not reached the maximum14

rmax, it increases at each time step, following15

∆r =
rmax
( τ

∆t )
. (5)

τ being a characteristic time at which the agent16

reaches its desired speed as if it was free, and ∆t17

is the simulation time step of Eq. (1). When two18

particles come into contact (dij = |xi − xj | −19

(ri + rj) < 0) both radii collapse instantaneously20

to the minimum values, while an escape velocity21

moves the particles in directions that will separate22

the overlap:23

eij =
(xi − xj)

|xi − xj |
. (6)

The escape velocity has the magnitude of the free24

speed and can thus be written as vie = vd eij . This25

velocity is only applied during one simulation step26

because, as the radii collapse simultaneously, the27

agents no longer overlap.28

So far we have described the basic CPM as it 29

appears in Ref. [10]. This model satisfactorily 30

describes experimental data of specific flow rates 31

and fundamental diagrams of pedestrian dynamics. 32

However, particles do not anticipate any collisions, 33

and this capacity is a fundamental requirement for 34

simulating the ideal supermarket (displaying low 35

and medium densities, and agents circulating in dif- 36

ferent directions). We therefore propose extending 37

the calculation of agent velocity (Eq. (2)) by con- 38

sidering a simple avoidance mechanism. 39

The general idea is that the self-propelled par- 40

ticle will produce an action only by changing its 41

desired velocity vi(t), as stated in Ref. [11]. In 42

this case, any change in the direction of desired ve- 43

locity v through the new mechanism will depend 44

on the neighbor particles and obstacles. First, the 45

collision vector (nc
i) is calculated as 46

nc
i = eij Ap e

−dij/Bp cos(θj)

+ eik Aw e−dij/Bw cos(θk) + η̂ , (7)

where j indicates the nearest visible neighbor, k 47

the nearest point of the nearest visible wall or ob- 48

stacle, and η̂ is a noise term for breaking possible 49

symmetric situations. 50

Then the avoidance direction is obtained from

eia =
(nc

i + eit)

|(nc
i + eit)|

, (8)

and finally, the velocity of the particle to be used 51

in Eq. (1), if particles are not in contact, is 52

vi = v eia. (9)

In Fig. 1 the vectors associated with the original 53

and modified model can be seen in detail. 54

For the sake of comparison with force-based mod- 55

els, we also implement other operational models: 56

the Social Force Model [12, 13] and the Predictive 57

Collision Avoidance (PCA) model [14]. The results 58

for all three operational models are compared for 59

selected observables, while the deeper study is per- 60

formed using the rule-based model(CPM). 61

a States of Agents 62

Because the agents must perform different tasks, 63

more complex than just going from one point to 64
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Figure 1: Contractile particle model. A: Two particles without contact. B: The radii of two particles that
overlapped in the previous time step (dashed circles)collapse, and the particles take the escape velocity. A and
B correspond to the original CPM. C: Modification considering an avoidance direction.

another, it was necessary to define five behavioral1

states. This was achieved by setting different model2

parameters and movement patterns. More con-3

cisely, the five behavioral states of agents were:4

- Going : This is the normal walking behavior5

when going from one arbitrary point to another6

with the standard velocity and model parameters.7

Only in this state does the agent use the modified8

CPM velocity (Eq. (9)) to avoid potential collisions.9

The other behavioral states use only the basic10

CPM (Eq. (1) to (6)).11

- Approaching : When the agent is closer than12

2 m to the current product, it reduces its desired13

speed and, because of how parameters are set, it14

will not be forced to reach it if there is another15

agent buying a product in the same target xpn.16

- Picking : Once the agent reaches the product17

(closer than 0.1 m) a timer starts and it will remain18

in the same position (Eq. (1) does not update its19

position) until the picking time (tp) is up.20

- Leaving : After spending time (tp), the agent21

leaves the current location and goes to the next22

product on the list. While abandoning this position23

it could find other waiting agents (in approaching24

behavioral state), so its parameters must be such25

that it can make its way through. Once the agent is26

farther than 2 m from the last product, it changes27

to the ”going” behavioral state.28

- Queuing : Finally, when the agent completes its29

shopping list it proceeds to the checkout desks by30

choosing the one with the shortest line. It waits31

at a distance of 1.5 m from the previous queuing32

agent, and when it reaches the checkout position it33
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Figure 2: The ideal supermarket layout. A: Only walls
and obstacles. B: The other model components as de-
scribed in section II.

remains there for tco time. 34

By considering these behavioral states in the 35

agent model, the conflicts and deadlock situations 36

are minimized. This model improvement thus en- 37

ables us to simulate higher densities than with the 38

basic operational models. 39

III Simulations 40

The 448 m2 site of the ideal supermarket to be 41

simulated is shown in Fig. 2. The dimensions of 42

shelf (1 m x 10 m) and aisle width (2 m) are taken 43

from typical real systems. The different processing 44

times and other data considered were provided by 45

an Argentine supermarket chain. 46

We define N as the allowed capacity or the oc- 47
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cupation of the supermarket; i.e., the total number1

of agents buying simultaneously inside the system.2

This is the most important input to be varied in our3

study and it ranges from N = 2 to N = 92. Dur-4

ing the pandemic social groups are not allowed to5

enter commercial buildings, so we focus our study6

on single agents.7

During the first wave of the pandemic there were8

long queues outside supermarkets, caused by ca-9

pacity limitations, fear of shortages, and limited10

hours of operation. We therefore assume that out-11

side the shop there is an infinite queue of clients12

who enter in order as the occupancy limit allows.13

The agent generator produces an inflow of 1 agent14

every 5 s until it reaches the N value for the simu-15

lation. From that moment on, the agent generator16

monitors occupation, generating a new agent ev-17

ery time an existing agent completes its tasks and18

is removed from the simulation. By doing this, the19

value of N is maintained constant over the entire20

simulation.21

Every agent created by the generator is equipped22

with a shopping list of exactly np = 15 items that,23

for simplicity, are chosen randomly from a total of24

228 available items (shown in Fig. 2B). The corre-25

sponding product locations (xpn) are separated by26

one meter from adjacent locations. Agents visit-27

ing the products on their lists spend a picking time28

with a uniform distribution ((tp) ∈ [60s, 90s]). Af-29

ter completing the lists, agents choose the shortest30

queue to one of the eight checkout points shown31

in Fig. 2B. The ideal supermarket has a maximum32

of four queues, each leading to two checkout desks.33

One of the strategies adopted in the supermarkets34

of Argentina was delimitation of the positions on35

the floor to guarantee the minimum physical dis-36

tance (1.5 m) while queuing for checkouts. The37

first positions in these queues are at a distance of 338

m (at y = 4 m, in Fig. 2) from the checkout points.39

Once an agent reaches the cashier (at y = 1 m,40

in Fig. 2) it spends a checkout time tco uniformly41

distributed between tco ∈ [120 s, 240 s].42

For each value of N we simulated 2 h (7200 s) and43

recorded the state of the system every ∆t2 = 0.544

s, thus producing 14400 data files with agents’ po-45

sitions, velocity, and behavioral state.46

The simulation time step ∆t used in Eq. (1) for47

all simulations was ∆t = 0.05 s.48

The noise term in Eq. (7) is a ran-49

dom vector, whose components ηx and50

ηy are uniformly distributed in the range 51

ηx = ηy = [−0.1 m/s, 0.1 m/s]. And the 52

relaxation time τ is set to τ = 0.5 s. 53

The remaining model parameters depend on the 54

behavioral state of the agent. For the case of ”go- 55

ing”, the parameters of the avoidance mechanism 56

described in Eq. (7) are Aa = 1.25, Ba = 1.25 57

m, Aw = 15 and Bw = 0.15 m. 58

The other behavioral states implement only the 59

original CPM (without the avoidance mechanism) 60

with the parameters displayed in Table 1. 61

IV Results 62

i General Aspects 63

We first show general results of the simulated 64

supermarket by displaying typical trajectories 65

(Fig. 3) and density fields (Fig. 4). Figure 3 plots 66

ten randomly chosen trajectories in the second hour 67

of simulations for the selected N values. Quali- 68

tatively, more intricate trajectory patterns can be 69

seen as occupancy increases. However, in all cases 70

it can be observed that the available area is uni- 71

formly visited by simulated agents while selecting 72

the products on their list. 73

Complementary information is shown in Fig. 4, 74

where density is averaged overl the entire simula- 75

tion time (2 h). As expected, greater occupancy 76

presents higher mean density values. Moreover, 77

these density fields present higher values at the 78

spots where agents stay longer, thus revealing prod- 79

uct selection points and predefined queuing places. 80

Also, as a macroscopic observable of the system, 81

we study the number of agents that could be pro- 82

cessed (i.e., complete the shopping list and exit the 83

supermarket within the two hours simulated) and 84

the mean residence time for those agents. These 85

results are presented in Fig. 5. As can be observed, 86

both quantities increase monotonically with the al- 87

lowed occupancy for the studied range of values and 88

the supermarket setup, considering eight checkout 89

desks. Even though the agents purchase the same 90

number of items, the trajectories generated present 91

great variability in residence times. 92

Furthermore, it can be seen that different op- 93

erational models display similar observables. The 94

SFM [12, 13] and PCA [12, 14] models are force- 95

based models that present more limitations in 96

terms of the maximum density they can simulate 97
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Behavioral
State

Going Approaching Picking Leaving Queuing

rmin (m) 0.1 0.1 0.2 0.1 0.1
rmax (m) 0.37 0.35 0.2 0.3 0.12
vd (m/s) 0.7 0.5 0 0.9 0 or 0.5

Table 1: Parameters of the CPM operational model for all the behavioral states.
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Figure 3: Ten random trajectories were chosen for different occupancies. A: N = 14, B: N = 35, C: N = 62,
D: N = 92.
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Figure 4: Density maps averaged over the 2 h simula-
tion time for different occupancies. A: N = 14, B:
N = 35, C: N = 62, D: N = 92.

before forces are balanced (generating deadlocks)1

for the complex scenarios and behavior considered.2

This is why the maximum occupancy studied with3

these models is lower than that simulated with the4

CPM described in section II.5

ii Distance Analysis 6

In this subsection we characterize the distance be- 7

tween agents during simulations with the modified 8

CPM for different allowed capacities. An interest- 9

ing outcome is the distance to the first neighbor for 10

each agent shown in Fig. 6. 11

The probability density function (PDF) of first- 12

neighbor distances (dfn) shows that for lower oc- 13

cupancy of the simulated supermarket, the prob- 14

ability of having the first neighbors further away 15

than dfn ∼ 5 m is greater. On the other hand, 16

higher occupancy values generate higher probabil- 17

ities of having a distance of less than 5 m. In par- 18

ticular, all distributions show a maximum probable 19

value around dfn ∼ 4 m. Moreover, the height of 20

these probability peaks decreases for lower occu- 21

pancy values. 22

Now we take the physical distance threshold of 23

2 m, as discussed in section I, and calculate the 24

related probabilities of agents below this critical 25

social distance. The first observable we calculate 26

is the probability of the first neighbor being closer 27

13000X-6



Papers in Physics, vol. 13, art. 13000X (2021) / D. R. Parisi et al.

0 20 40 60 80 100
Allowed Capacity

0

20

40

60

80

100

120

To
ta

l P
ro

ce
ss

ed
 A

ge
nt

s 
pe

r h
ou

r CPM
PCA
SFM

0 20 40 60 80 100
Allowed Capacity

1400

1600

1800

2000

2200

2400

2600

M
ea

n 
R

es
id

en
ce

 T
im

e 
(s

)

CPM
PCA
SFM
data1
data2
data3

A B

Figure 5: A: Mean residence time of agent as a function of occupation, for three different operational models.
Error bars indicate one standard deviation. B: Number of agents processed per hour for the entire two-hour
simulations, and also for the different operational models.

0 5 10 15 20 25 30
Distance to First Neighbor (m) 

0

0.05

0.1

0.15

0.2

0.25

0.3

PD
F

N=14
N=35
N=62
N=92

Figure 6: Probability density function of first neighbor
distances.

than 2 m (Pfn<2m). In other words, this is the1

probability of having at least one neighboring agent2

within 2 m. This is determined by averaging the3

data recorded every ∆t2 = 0.5 s, from minute 204

to 120 as shown in Eq. (10)5

Pfn<2m =
1

nti

ti=14400∑
ti=2400

nfn2m

N
, (10)

where nti = 12000 = 14400 − 2400 is the data at6

recorded times after 20 min, N is the occupancy7

and nfn2m is the number of particles having a first 8

neighbor at less than 2 m. Note that if two particles 9

i and j are the only particles at less than 2 m, 10

nfn2m = 2. Moreover, when j is the first neighbor 11

of i, i will not necessarily be the first neighbor of j. 12

The above probability (Pfn<2m) only considers 13

whether the first neighbor is closer than 2 m; it does 14

not consider whether there are many occurrences of 15

neighbors at less than 2 m. For this reason we now 16

take into account the probability that a given pair 17

of agents are within 2 m of one another (Ppair<2m) 18

Ppair<2m =
1

nti

ti=14400∑
ti=2400

np2m
[N (N − 1)]/2

, (11)

where np2m is the number of pairs of particles at a 19

distance closer than 2 m and [N (N − 1)]/2 is the 20

total number of possible pairs having N particles 21

in the system. In this case, if only particles i and j 22

are closer than 2 m, np2m = 1 because one pair is 23

counted. 24

In Fig. 7 both probabilities (Pfn<2m and 25

Ppair<2m) are displayed for the modified CPM and 26

also for comparison with the SFM and the PCA 27

model. It can be seen that the probability of hav- 28

ing the nearest neighbor at less than 2 m increases 29

monotonically with the allowed capacity. How- 30

ever, pair probability quickly increases for low oc- 31

cupancy, and after N ∼ 15 remains almost con- 32

stant, indicating that the number of pairs np2m 33
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scaled with N as the number of total possible pairs1

(∼ N2).2

Furthermore, Fig. 7 indicates that different oper-3

ational models display similar macroscopic behav-4

ior in terms of social distance, at least for values5

below or above 2 m.6

The above analysis focused on the occurrence of7

certain distances between simulated agents, but the8

duration of these events was not explicitly consid-9

ered. This will be done in the following subsection.10

iii Duration of Social Distance Events11

Here we study the time that events last when pairs12

of agents are found at less than 2 m (see section I).13

These events occur mainly when agents are select-14

ing products at neighboring product locations or15

when queuing at the supermarket checkout. If two16

particles i and j meet at a given time and then sep-17

arate by more than 2 m, should the same particles18

meet up again at a future time this is considered19

two separate events.20

Considering that: (a) The parameter we choose21

to maintain constant during each simulation is the22

allowed capacity N , and this capacity is reached at23

the beginning of each simulation in a very short24

time compared to other processes, and (b) all25

agents have the same number of items on their list,26

and thus the required time to complete it is similar27

on average, the first group of N agents will go to the28

checkout points at nearly the same time, generat-29

ing high checkout demand and long queues. Follow-30

ing this, the new agents will enter slowly as other31

agents exit the simulation, and thus the described32

behavior will relax. These dynamics lead to more33

queuing agents during the first hour of simulation34

and fewer during the second hour. We therefore an-35

alyze separately the duration of encounters occur-36

ring during the first and the second simulation hour37

in Fig. 8. The different time scales and the number38

of cases in both panels confirm that the first hour39

is dominated by particularly long queues waiting to40

check out, while in the second hour (Fig. 8B) social41

distance events of less than 2 m are dominated by42

the shorter process: product selection.43

Events in the queuing line are long lasting for two44

reasons. First, the particular process at the check-45

out desk takes between 2 and 4 min (rather than46

the 1 to 1.5 min of the picking process). Second, a47

line with nl agents will make the last agents spend48

about nl times tco, which for a few agents, namely 49

nl = 5, could represent 20 min waiting time at a 50

distance of 1.5 m from another agent. 51

This problem of high exposure time between 52

pairs of agents in queuing lines could be avoided 53

if a slower ramp of inflow of agents was adopted at 54

the start of the process, let us say something above 55

the maximum average outflow of the system (eight 56

agents in three minutes, i.e., ∼ 1 agent every 23 s). 57

We did not adopt this in the simulations because 58

it would take too long for simulations to reach the 59

desired occupation N . However, it is clear that 60

the problem noted above at the beginning could be 61

solved in a real operation by allowing a low flow 62

rate of agents at opening time (of about twice the 63

capacity of the checkout). Also, this transient be- 64

havior would represent a problem only at opening 65

time, most of the daily operation being as described 66

in our second simulation hour. 67

Furthermore, Fig. 8 shows that, as expected, 68

fewer social distance events occur when the time 69

thresholds increase. And in all cases, the number 70

of events seems to grow quadratically with N . 71

iv Physical Distance Coefficient 72

Now, looking for a criterion that determines what 73

a reasonable allowed capacity in the ideal super- 74

market would be, we define the physical distance 75

coefficient (δπ(te)) for the threshold distance of 2 76

m, as 77

δπ(te) =
2 Ne(te)

Np
, (12)

where te is the minimum duration of a particular 78

physical distance event (rij ≤ 2 m), Ne(te) is the 79

number of these events that last at least te, and 80

Np is the total number of agents processed by the 81

system in the same period of time in which Ne is 82

computed. Factor 2 is needed to take into account 83

the number of agents in the numerator, since two 84

agents (i and j) participate in each event. 85

This coefficient enables us to compare the num- 86

ber of agents who have participated in physical dis- 87

tance events of duration greater than te with the 88

number who have passed through the system. Thus 89

a value of δπ(te > 2min) = 1 indicates that, on 90

average, each agent has participated in one event 91

involving a physical distance of less than 2 m that 92
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Figure 7: A: Probability of having the first neighbor closer than 2 m (Eq. (10)). B: Probability that a given pair
of agents are within 2 m of one another (Eq. (11)).
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Figure 8: A: Number of events recorded in the first hour of simulations where two agents are at a distance of
less than 2 m for more than te min. B: The same measurement as A but for the second hour of the simulations.
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lasts at least 2 min. If δπ(te > 2min.) < 1, it1

would indicate that only a fraction of the agents2

have participated in such events.3

Having established in section iii that the duration4

of events in the first simulation hour is dominated5

by the checkout line process, we now concentrate6

on looking at the second hour of simulation when7

the impact of these lines is very low and stationary.8

This situation is representative of the daily opera-9

tion of the supermarket; this is shown in Fig. 9,10

which displays the physical distance coefficient as11

a function of occupation for different event duration12

limits te.13

First, we note in Fig. 9A that the curve corre-14

sponding to te > 1 min grows steeply with N.15

This could be related to the fact that the picking16

time ranges between 1 min and 1.5 min and that17

the products are spaced by 1 m, so if two agents aim18

simultaneously for the same product or the first or19

second nearest product, they could generate a 220

m physical event lasting at most 1.5 min, and in21

particular many events lasting more than 1 minute22

would occur. Furthermore, the physical distance23

coefficient seems to follow a linear relation with N24

for this particular time limit te.25

A change of regime can be observed for te > 1.526

min, in which curves are more similar to one an-27

other for the different te presented, and they follow28

a quadratic relation with N . Because the maxi-29

mum picking time is 1.5 min, this is the maximum30

possible overlapping time for two agents selecting31

neighboring (or the same) products. Greater time32

events will arise when more than two agents are33

waiting for neighbouring or the same products, as34

in the case of products near any of the short lines35

for checking out.36

The results presented in Fig. 9B could be used37

as a guide for determining allowed occupancy. If38

based on epidemiological knowledge or criteria, it39

was determined that it would be acceptable for all40

agents to participate once in a 2-m physical event41

lasting at most 1 min, but then the allowed occu-42

pation would be very small, N ∼ 10. Alterna-43

tively, if events up to 1.5 min were accepted, then44

the allowed occupation would be N = 40. In the45

case of te = 2 min, the capacity could rise to46

N = 70. Also, it could be established that even47

for N = 90 the events of the 2-m physical dis-48

tance, lasting more than 3 min, would affect only49

40% of the processed agents.50

Of course, Fig. 9B could be used to find another 51

allowed occupancy if the criterion considered that, 52

for example, only 25% of the agents could partici- 53

pate in the analyzed events. 54

v Theoretical Derivation of δπ 55

In this subsection we theoretically derive the curves 56

by interpolating the simulation data shown in 57

Fig. 9. 58

First we note that there are at least four sources 59

of physical distance events, displaying increasing 60

duration times: 61

• a very short time when two walking agents pass 62

by in an aisle between shelves (∼ 100 s), 63

• a short time when conflicts appear due to lack 64

of space (∼ 101 s), 65

• a longer time when agents are picking products 66

at a neighboring or the same location (∼ 102
67

s), 68

• a very long time when agents are queuing at 69

neighboring positions in a (long) checkout line 70

(∼ 103 s). 71

Because long lines can be avoided by suitable 72

operation parameters, the analysis of δπ in the 73

above section was performed for the second sim- 74

ulated hour when checkout lines are kept to a min- 75

imum. Thus the longer process is related to agents 76

selecting products at neighboring locations and will 77

dominate the dependence of δπ as a function of oc- 78

cupancy . 79

The goal is to compute Eq. (12). We can write 80

the numerator, Ne(te), by taking into account the 81

different time thresholds displayed in Fig. 9. 82

First, we consider the case of events that emerge 83

from the encounter of two agents during a time slot 84

given by the mean picking time t̂p = 75 s. We 85

therefore calculate the average number of pairs of 86

agents that go for the same product and are less 87

than 2 m apart as 88

N2 =
733(

2+mp−1
2

)N (N − 1)

2
, (13)

where mp is the total number of available prod- 89

ucts,
(

2+mp−1
2

)
is the total number of possible ways 90
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Figure 9: A: Physical distance coefficient as a function of supermarket occupation for the second simulation hour.
B: Close up of previous figure showing details near δπ ∼ 1. Solid lines correspond to the theoretical approach
presented in section v.

of arranging two indistinguishable agents between1

the mp products, and 733 is the subset of these ar-2

rangements of two particles at less than 2 m away.3

The second factor corresponds to the total number4

of possible pairs for a given value of N .5

Since the agents do not arrive simultaneously at6

their respective products, we compute the proba-7

bility that the encounter of two agents lasts longer8

than te as9

P2(te) =

∫ t̂p
te

dT2∫ t̂p
0

dT2

= 1− (te/t̂p) , (14)

where the denominator is the integral over the pos-10

sible arrival times T2 of the second agent, and the11

numerator is the integral over the possible arrival12

times that meet t̂p > T2 > te. Note that in this case13

the time te will be limited to between 0 < te ≤ t̂p;14

that is, on average the longest event is limited by15

the mean picking time t̂p. We then obtain the num-16

ber of events Ne(te > 60 s), counting the number17

of time slots t̂p within the observation time T , as18

Ne(te > 60 s) = κ60 N2 P2(60 s) T/t̂p . (15)

In our case T = 3600 s and κ60 is a parameter that19

will be used to fit the model to the data, and could20

be interpreted as a correction considering that si-21

multaneous events can occur during the same time22

slot t̂p, given that this discretization of time is just 23

an approximation. Note that t̂p is the average time 24

that customers spend on the collection of products. 25

If this time increases, customers will be immobile 26

for a longer time. For this reason, increasing t̂p de- 27

creases the number of encounters in a fixed period 28

T . 29

Finally, the denominator of the δπ is the number 30

of processed agents (Np) in the same period of time 31

T . Considering the picking time at each product, 32

the number of products, the time needed to walk 33

between them, and the waiting time at the check- 34

out desk, a rough estimation of time needed for a 35

free agent to complete its product list (tr) would 36

be between 25 and 30 min, as can be seen for low 37

occupation in Fig. 5A. Thus, the number of pro- 38

cessed agents per hour could be approximated as 39

Np ∼ T/tr N ∼ 2 N . However, when occupancy 40

increases, all internal processes become slower and 41

as a consequence the effective proportionality con- 42

stant between Np and N decreases. Considering 43

the result displayed in Fig. 5B, we approximate the 44

proportionality constant by 1.5 and thus 45

Np = 3/2 N. (16)

Therefore, for events lasting more than 60 s we can 46

write 47
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δπ(te > 60 s) =
2 Ne(te > 60 s)

Np

= κ60
4 N2 P2(60 s) T/t̂p

3 N
∝ N, (17)

Therefore, the functional dependence of δπ(60s) on1

N is linear, in accordance with the data shown in2

Fig. 9.3

We then consider the case of events emerging4

from an encounter between three agents. Here, we5

calculate events that last longer than t̂p; this can6

only occur when three agents go together to the7

same product. The corresponding time slot for such8

events is 2 t̂p. In this case, the average number of9

sets of three agents that go for products that are10

less than 2 m apart is11

N3 =
mp(

3+mp−1
3

)N (N − 1) (N − 2)

6
, (18)

where the first factor comes from calculating12

the probability that three indistinguishable agents13

head towards the same product, and the second fac-14

tor corresponds to the total number of sets of three15

agents. Only one pair of agents will have the chance16

to produce an event whose duration is longer than17

t̂p. This pair is made up of the two agents who ar-18

rived last, and the probability that the encounter19

of these agents lasts longer than te is20

P3(te) =

∫ t̂p
te−t̂p

∫ T2

te−t̂p dT3dT2∫ t̂p
0

∫ T2

0
dT3dT2

=
(
2−

(
te/t̂p

))2
, (19)

with t̂p ≤ te ≤ 2 t̂p. Note that the arrival time of21

the second agent T2 conditions the possible arrival22

time of the third T3. Thus it is possible to calculate23

the number of events Ne(te > 90 s) and Ne(te >24

120 s) as25

Ne(te > 90 s) = κ90 N3 P3(90 s) T/2t̂p , (20)

Ne(te > 120 s) = κ120 N3 P3(120 s) T/2t̂p . (21)

In these cases the δπ for events lasting longer than26

90 and 120 s can be expressed as27

δπ(te > 90 s) = 2
Ne(te > 90 s)

Np

= κ90
4 N3 P3(90 s) T/2t̂p

3 N

∝ N2, and (22)

δπ(te > 120 s) = 2
Ne(te > 120 s)

Np

= κ120
4 N3 P3(120 s) T/2t̂p

3 N

∝ N2. (23)

Because sets of three particles are considered in 28

Eq. (18), for 90 s and 120 s δπ grows with N2, 29

also according to the simulated data displayed in 30

Fig. 9. 31

Finally, we repeat our analysis for the case of 32

events originated by an encounter between four 33

agents. We focus on events that last longer than 34

2 t̂p; that is, events where the four agents go to- 35

gether to the same product. Again, the pair of 36

agents who arrived last will have the chance to pro- 37

duce such an event. The average number of sets of 38

four agents is 39

N4 =
mp(

4+mp−1
4

)N (N − 1) (N − 2) (N − 3)

24
,

(24)

and the probability that the encounter between the 40

latest agents lasts longer than te is 41

P4(te) =

∫ t̂p
te−2t̂p

∫ T2

te−2t̂p

∫ T3

te−2t̂p
dT4dT3dT2∫ t̂p

0

∫ T2

0

∫ T3

0
dT4dT3dT2

=
(
3−

(
te/t̂p

))3
, (25)

with 2 t̂p ≤ te ≤ 3 t̂p. The calculation for the 42

number of events Ne(te > 180 s) is 43

Ne(te > 180 s) = κ180 N4 P4(180 s) T/3t̂p , (26)

and the δπ for events lasting longer than 180 s is 44

expressed as 45

13000X-12



Papers in Physics, vol. 13, art. 13000X (2021) / D. R. Parisi et al.

δπ(te > 180 s) = 2
Ne(te > 180 s)

Np

= κ180
4 N4 P4(180 s) T/3t̂p

3 N

∝ N3. (27)

Also, in this case the functionality dependence of1

δπ(180 s) seems to be in accordance with simulation2

results (Fig. 9). The scale laws for δπ(te) are deter-3

mined by the dominant encounter of agents; that4

is, the encounter that involves the lowest number of5

agents (which is the most probable event) and lasts6

longer than te. In fact, for the regime of te > 907

s and te > 120 s, we find the same scaling law,8

and this is because in these regimes the dominant9

encounter is that of three agents.10

We calibrate these simulation data with Eqs. 17,11

22, 23, and 27 by fitting the values of κ, and hence12

κ60 = 1.3, κ90 = 1.7, κ120 = 2.4, κ180 = 1.5. The13

solid lines shown in Fig. 9 stand for these results.14

The values obtained for κ are reasonable in terms15

of interpretation of the fitting parameter proposed16

above, and indicate that our analysis is correct in17

terms of computing and the approximated value for18

the δπ coefficient independently of the simulations,19

at least for the simple and idealized system studied.20

V Conclusions21

In this work we investigate and characterize so-22

cial distancing in an everyday pedestrian system by23

simulating the dynamics of an ideal supermarket.24

Many sources of complexity were successfully taken25

into account with a multilevel model, which enables26

us to simulate not only translation but also more27

complex behaviors such as waiting times when se-28

lecting particular products and queuing at checkout29

points.30

The main process that keeps pedestrians close31

to one another is the queuing lines for checkout.32

Therefore advice for the operation would be to keep33

these lines as short as possible either by increasing34

the number of checkout points or by decreasing oc-35

cupancy.36

At values greater than 2 m, different operational37

models display similar macroscopic observables re-38

garding social distance, indicating that the results39

are robust with respect to microscopic collision40

avoidance resolution, and also suggesting that the 41

simulated paths of the particles are more influenced 42

by the geometry, shopping list, and time-consuming 43

process than by the particular avoidance mecha- 44

nism. However, first-order models such as the CPM 45

presented in Ref. [10] and section II.iii seem more 46

suitable for simulation of highly populated scenar- 47

ios with complex behavioral agents. 48

Taking a physical distance threshold of 2 m, the 49

probabilities and duration of such events are stud- 50

ied. The physical distance coefficient (δπ) is defined 51

as an indicator of the fraction of the population 52

passing through the system that is involved in one 53

or many of these events lasting at least a certain 54

time threshold te. We put forward a theoretical 55

analysis that satisfactorily fits the simulation data. 56

It is important to note that applying this analy- 57

sis requires an estimate of the number of agents 58

processed per unit of time. In this work we use a 59

relationship found from numerical simulations that 60

can in the future be calibrated by empirical data or 61

new models. 62

The same analysis can be carried out for a dif- 63

ferent set of parameters and for other pedestrian 64

facilities such as other specific supermarkets or dif- 65

ferent systems (transport, entertainment, etc.). Of 66

course, existing facilities can be monitored with 67

measurement methods [6] providing high-quality 68

trajectory data. This kind of data could also be 69

interpreted in terms of the analysis performed in 70

the present work. 71

The analysis presented takes into account only 72

the duration of a given physical distance. As stated 73

in the introduction, this is only a partial aspect of 74

the contagion problem, and thus it must be inte- 75

grated with other disciplines. For example, if a 76

physical distance, a time threshold, and the frac- 77

tion of the population that could be exposed to 78

these conditions were determined, then maximum 79

occupancy could be estimated using the observables 80

defined in this work. 81
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