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Abstract
The use of anaesthesia is a fundamental tool in the investigation of consciousness. Anesthesia procedures allow to inves-
tigate different states of consciousness from sedation to deep anesthesia within controlled scenarios. In this study we use 
information quantifiers to measure the complexity of electrocorticogram recordings in monkeys. We apply these metrics 
to compare different stages of general anesthesia for evaluating consciousness in several anesthesia protocols. We find that 
the complexity of brain activity can be used as a correlate of consciousness. For two of the anaesthetics used, propofol and 
medetomidine, we find that the anaesthetised state is accompanied by a reduction in the complexity of brain activity. On the 
other hand we observe that use of ketamine produces an increase in complexity measurements. We relate this observation 
with increase activity within certain brain regions associated with the ketamine used doses. Our measurements indicate that 
complexity of brain activity is a good indicator for a general evaluation of different levels of consciousness awareness, both 
in anesthetized and non anesthetizes states.
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Introduction

The last few decades have witnessed significant advances 
in our understanding of the neural basis of consciousness, 
as new technological developments in brain imaging and 
electrophysiological methods allow for a precise spatio-
temporal sampling of neural activity. Senior et al. (2006). 

Fundamental for this field is the idea that some features of 
brain activity correlate with different states of conscious-
ness. The search for such features is crucial as it endows the 
field of consciousness with an empirical, falsifiable tool to 
quantify the elusive nature of subjective experience. Tononi 
and Edelman in their seminar paper suggest that one of these 
features may be complexity Tononi and Edelman (1998). 
Therefore, it is a common practice in consciousness research 
to investigate altered states of consciousness (e. g., coma, 
deep sleep stages, vegetative states or epileptic seizures), as 
the corresponding activity during such states largely differs 
from normal brain activity.

Anaesthesia is one of the most important brain states 
investigated in the framework of conscious studies, as it 
allows for a partial or total suppression of consciousness 
in a safe, controlled way. Indeed, unconsciousness is one 
of the features of general anaesthesia. It can be indirectly 
assessed by integrating different information such as clinical  
unresponsiveness (absence of movement or autonomic acti-
vation) or patient EEG. Different administration protocols 
lead to different depths in anaesthesia that could in principle 
correspondo differences in brain dynamics. However there 
is no single measurement (except for the lack of brain elec-
trical activity) by which anaesthesiologist can objectively 
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asses that a patient under general anaesthesia is unconscious. 
Among these method we have Perturbational complex-
ity index (PCI), Spectral exponent Colombo et al. (2019), 
Biespectral Index Todd (1998).

Quantifiers based on information theory have proven to 
be effective in distinguishing between different brain states, 
such as sleep stages Nicolaou and Georgiou (2011), Bandt 
(2017), Kuo and Liang (2011) and in the detection of epilep- 
tic seizures Mateos et al. (2014), Mammone and Morabito 
(2011). These quantifiers do not require a large amount 
of signal pre-processing (in some cases they can be even 
directly applied to the raw signal) making them faster to 
implement in real time Zanin et al. (2012). These types of 
indices had also been used to characterise brain states in 
the domain of psychiatric and neurodegenerative diseases 
research Mateos et al. (2014), Mammone and Morabito 
(2011), Shumbayawonda et al. (2018). Within the particular 
field of anaesthetics research, measures such as Permutation 
Entropy Keller et al. (2017) have been used to quantify the 
effect of sevoflurane on EEG signals, obtaining better results 
than classical measures such as the Bispectral Index (BIS) 
Todd (1998), Li et al. (2008, 2010). Lempel-Ziv complex-
ity has been used to study EEG signals in patients under the 
effects of propofol Zhang et al. (2001). Another study com-
pares different entropic measures in patients under anaes-
thesia induced by GABAergic agents Liang et al. (2015).

In this work we used Electrocortical (ECoG) signals data-
sets provided by the Artificial Intelligence Laboratory of the  
University of Riken. The database consists of record- 
ings from four macaques under the effects of four different 
anaesthetics schemes: propofol, ketamine, medetomidine 
and medetomidine-ketamine. The recorded brain activity 
was acquired within a controlled anaesthetic environment, 
providing accurate data sets which allows us for a precise 
analysis of the different possible states of consciousness.

As it is known, not all anaesthetics act similarly on the 
physiology of the central nervous system (CNS), so it is 
to be expected that EoCG signals have different dynamics 
depending on the drug used. Therefore, claiming that a sin-
gle quantifier is optimal for studying states of consciousness 
for all anaesthetics could be wrong. To address this problem, 
we propose to analyse EoCG signals with three different 
information measures, which focus on studying unique char-
acteristics of the signals. The first measure was the Shan-
non Entropy, which is a global quantifier of the system’s 
uncertainty. The second quantifier is Lempel-Ziv Complex-
ity, which measures the information redundancy within the 
signal. The third was Fisher’s Information, which evaluates 
the local information contained in the signal. Each of these 
quantifiers focus on specific characteristics of the signal 
stream. The values of each quantifier were compared in each 
state of consciousness, and results were analysed through 
Complexity-Entropy planes in order to obtain supplementary 

information from the system. Also, we studied the distribu-
tion of information values over the cerebral cortex, and brain 
local variations according to different dynamical states. 
Results showed that two of the three quantifiers allow for 
the distinction of different states of consciousness. Signifi-
cant differences were found between measurements for dif-
ferent anaesthetics schemes. Finally, it was observed that 
brain dynamics measurements from recovery states were 
significantly different from the baseline states.

Methods

Data

The data used in this study were taken from the open access 
database Neurotycho anesthesia and sleep task from the 
Artificial Intelligence Laboratory at Riken University Neu. 
The database consists of electrocorticographic (EoCG) sig-
nals recorded from the left hemisphere of four monkeys. 
The experiments consisted of measuring the electrophysi-
ological activity of the monkeys in five different states of 
consciousness i) awake open eyes (AOE), ii) awake close 
eyes (ACE) iii) anaesthetised (AN) iv) recovery close eyes 
(RCE) v) recovery open eyes (ROE). For the anaesthetised 
states four different anaesthetics were used, ketamine (KT), 
medetomidine (MD), propofol (PF) and a combination of 
ketamine and medetomidine (KTMD), all information about 
the anaesthetics applied to each monkey and the number of 
trials performed can be found in Table 1. The protocol of 
the experiments, the doses of the drugs used and informa-
tion on data acquisition is extensively detailed on the web 
page http://​neuro​tycho.​org/​anest​hesia-​and-​sleep-​task. and in  
Yanagawa et al. (2013a). Data was acquired using 128-channel  
EoCG equipment with 1 KHz sampling frequency. Elec-
trodes were placed on the left hemisphere of the monkeys, 
with 5 mm inter-electrode distance continuously covering 
the frontal, parietal, temporal and occipital lobes (Fig. 1A). 
Two of the four monkeys have electrodes on the medial side. 
The original signals had a duration of 5 to 20 minutes for 
each state. The data were downsampled from 1 KHz to 250 

Table 1   Type of anaesthesia and number of trials applied to each 
monkey. Each trial was conducted on different days

Monkey Anesthesia administered (number of trials)

Ketamin Propofol Medetomidine Medetomidine 
+ Ketamine

M1 2 2 2 2
M2 2 2 2 3
M3 - - - 3
M4 - - - 3
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Hz and preprocessed by applying a passband filter between 
0.5 and 100 Hz and a notch filter at 50 Hz. The signal was 
cut in epochs 5s length, cleaned of artefacts visually and the 
whole signal was reconstructed again. From this signal, 5 
minutes were taken. The first and last minutes of each state 
were discarded to be sure that the monkey was in the state 
and not in a transition. Finally, the signals to be analysed 
remained the same length of 3 min. In addition, with a view 
to a possible real-time analysis and robustness of the meas-
urements, the signals were analysed with a non-overlapping 
running windows of 5 sec. Figure 1B shows an example of 
the signals obtained after preprocessing.

If we think about real time applications of these meas-
urements, it is necessary to analyse the signals for short 
time, that is why we analysed the above signals using a 
non-overlapin running window of 5 sec (see Fig. 1 of the 
supplementary material). The results were similar to those 
obtained in the full signal analysis showing the robustness 
of the measurements.

Time Series Discretization using Ordinal Pattern 
Approach

As a pre-processing step, a discretization of the time series 
is performed. The study and characterisation of time series 
X(t) by recourse to information theory tools assume that 
the underlying probability distribution function (PDF) is 
given a priory. In the literature there are many methods 
to quantify continuous time series, such as binarization, 
histograms or wavelet, among others. However, an effec-
tive method that emerges naturally is the one introduced by 
Bandt and Pompe in 2002 called permutation vectors Bandt 
and Pompe (2002). This method is based on the relative 
values of the neighbours belonging to the series, so it takes 
into account the time structure or causality of the process 
that generated the sequence. To understand this idea, let us 
consider a real-valued discrete-time series X(t) = {xt ∈ ℝ} , 
and let D ≥ 2 and � ≥ 1 be two integers. They will be called 
the embedding dimension and the time delay, respectively. 

Fig. 1   A) Electrodes distribution over the brain for the four monkeys 
(M1 - M4) analysed in this work. B) Example of 2 sec recording of 
EoCG signals, belonging to a frontal channel of monkey 1 (M1). 
The signals correspond to the states: awake open eyes (AOE), awake 

close eyes (ACE), anaesthetised under kethamine (KT), kethamine + 
medetomidine (KTMD), medetomidine (MD), propofol (PF), recov-
ery close eyes (RCE) and recovery open eyes (ROE)
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From the original time series, we introduce a D-dimensional 
vector �(D,�)

t :

The vector �(D,�)
t  preserves the dynamical properties of the 

full dynamical system depending on the order conditions 
specified by D and � . The components of the phase space 
trajectory �(D,�)

t  are sorted in ascending order. Then, we can 
define a permutation vector, �(D,�)

t  , with components given 
by the original position of the sorted values in ascending 
order. Each one of these vectors represents a pattern (or 
motif) with D! possible patterns. To clarify, let us show how 
all this works with an example. Suppose we have a con-
tinuous series such as X(t) = {0.42, 1.6, 6.3, 0.15, 2.2} and 
take the parameters D = 3 and � = 1 . The embedding vectors 
�

(D,�)
t  are in this case defined as �(3,1)

1
= (0.42, 1.6, 6.3) ; 

�
(3,1)

2
= (1.6, 6.3, 0.15) ;  �

(3,1)

3
= (6.3, 0.15, 2.2) ,  and 

the respective permutation vectors are �(3,1)

1
= (0, 1, 2) , 

�
(3,1)

2
= (1, 2, 0) and �(3,1)

3
= (2, 0, 1).

Regarding the selection of the parameters, Bandt and 
Pompe Bandt and Pompe (2002) suggested working with 
3 ≤ D ≤ 6 and specifically considering an embedding delay 
� = 1 . Nevertheless, other values of � could provide addi-
tional information. It has been recently shown that this 
parameter is strongly related to the intrinsic time scales of 
the system under analysis Zunino et al. (2010), Soriano et al. 
(2011), Zunino et al. (2012).

Information Quantifiers

In this work we used three information quantifiers to charac-
terise brain dynamics on the basis of ECoG recordings: Per-
mutation Shannon Entropy (PE) Bandt and Pompe (2002), 
Permutation Lempel-Ziv complexity (PLZC) Zozor et al. 
(2014) and Fisher Information (FI) Fisher (1922). Beyond 
the myriad of information measures in the literature, we par-
ticularly chose these three quantifiers due to the fact that in 
principle each one can extract different features of the ECoG 
signals. In the following sections we give a brief description 
of each of them.

 Permutation Shannon Entropy

Permutation Shannon entropy (PE) measures the uncertainty 
degree of a system. When the probability distribution of the 
system states is uniform (random signals) entropy tends to 
be maximal, while for purely deterministic signals such as 
periodic systems entropy is very small. Its a global measure 
of information, in the sense that it quantifies the information 
about the whole time series under consideration.

Given a time series X(t) ≡ {xt; t = 1,… ,N} , with N 
the number of observations, the Shannon’s logarithmic 

(1)
�

(D,�)
t → (xt−(D−1)� ,… , xt−� , xt) with t ≥ (D − 1)� .

information measure (Shannon entropy) Shannon and 
Weaver (1998) of the associated probability distribution 
function (PDF), P ≡ {pi; i = 1,… ,M} with 

∑M

i=1
pi = 1 , 

and M the number of possible states is defined as:

When there is total certainty that the system is in the 
state i the probability pi = 1 and this functional is equal to 
zero. In contrast, when the probability distribution is uni-
form, Pu ≡ {pi = 1∕M;∀i = 1,⋯ ,M} , knowledge about the 
system is minimum (all the states have the same probability) 
and the entropy reach its maximum.

Bandt and Pompe defined Permutation Entropy as Shan-
non entropy applied to the distribution of ordinal patterns 
Bandt and Pompe (2002). Given the series of ordinal pat-
terns W = {Π1,… ,Πt} , obtained from the time series X  and 
pΠ
j
= P(Πj) , with j = 1,… ,D! the probability of occurrence 

of the pattern Πj , the normalised permutation entropy is 
defined as:

 Lempel–Ziv Complexity

To estimate the complexity of a time series X(t) we use 
Lempel–Ziv complexity (LZC) Lempel and Ziv (1976), 
which is based on Kolmogorov complexity. The Kolmogo-
rov complexity of a sequence of symbols is the minimal 
size of the computer program that can produce it as an 
output Cover and Thomas (2006). Lempel-Ziv complex-
ity is obtained as follows. A sequence of symbols X(t) is 
parsed into a number W of words by considering any sub-
sequence that has not yet been encountered as a new word. 
The Lempel–Ziv complexity cLZ is the minimum number 
of words W required to reconstruct the information con-
tained in the original time series. For example, the sequence 
100110111001010001011 can be parsed in 7 words: 
1 ⋅ 0 ⋅ 01 ⋅ 101 ⋅ 1100 ⋅ 1010 ⋅ 001011 , giving a complexity 
cLZ = 7 . An easy way to apply the Lempel–Ziv algorithm 
can be found in Kaspar and Schuster (1987). The LZC can 
be normalized based in the length N of the discrete sequence 
and the alphabet length ( � ) as:

.
Although Lempel and Ziv developed the complexity for 

binary sequences, it can be used for any finite alphabet. 
Based on this, Zozor et al. (2014) applied LZC on signals 

(2)S[P] = −

M
∑

i=1

pi log(pi) .

(3)H[P] =
−
∑D!

j=1
pΠ
j
log(pΠ

j
)

log(D!)

CLZ =
cLZ[log�N]

N
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quantified by ordinal patterns, this method has the name of 
Permutation Lempel–Ziv complexity(PLZC).

Fisher Information

Shannon entropy S is a global information measure. To take 
into account local changes, it is customary use the Fisher 
information F  Fisher (1922), Frieden (2004) define as:

Because of the presence of a gradient operator in this 
equation, Fisher information is sensitive to local (differential) 
changes. It constitutes a measure of the curvature of the dis-
tribution f(x), so is sensitive to small, localised perturbations.

In order to compute the Fisher information of discrete 
time series, we adhere here to the proposal of Dehesa and 
coworkers Sánchez-Moreno et al. (2009) and define it for the 
discrete probability distribution P ≡ {pi; i = 1,… ,M} as:

A system that has a very few possible outcomes has a very 
narrow PDF. The Shannon entropy of this probability dis-
tribution is close to zero (minimal uncertainty) whereas its 
Fisher information is maximal (very large curvature of the 
PDF). On the other hand, when the possible outcomes of the 
system have equal probability the PDF is a very flat curve. In 
this case, the Shannon entropy of the PDF is large whereas 
its Fisher information is close to zero. In other words, Fisher 
information and the Shannon entropy are inversely related 
Pennini and Plastino (2005).

Comparison of Different States of Consciousness

We compared the information/complexity values obtained 
for each state of consciousness. The complexity/entropy 
measures were applied over the permutation sequences of 
EoCG signals obtained by the method explained in sec-
tion 2.2 We did this for each of the anaesthetic schemes 
applied (Fig. 2). The bar groups represent the anaesthesia 
applied –ketamine (KT), medetomidine (MD), propofol 
(PF), ketamine-medetomidine (KTMD)– and each individ-
ual bar is the state value –awake open eyes (AOE), awake 
close eyes (ACE), anaesthetised (AN), recovery close eyes 
(RCE), recovery open eyes (ROE). Mean values and errors 
were calculated over all channels of all monkeys. A sta-
tistical study was performed using a linear mixed model 
(ANOVA). The same letters in the figures represent states 
with no significant differences.

(4)F [ f ] = ∫
⏐ ∇f (x) ⏐2

f (x)
dx

(5)F = 4

M−1
�

i=1

(
√

pi+1 −
√

pi)
2 .

Figure  2 A1/A2 corresponds with the permutation 
entropy (PE) and permutation Lempel Ziv complexity 
(PLZC) analysis. These measures can differentiate between 
AOE, ACE and anaesthetised states AN however, cannot 
discriminate between recovery states RCE and ROE. In 
all cases awake monkeys have higher entropy/complexity 
in open eyes than close eyes. For the anaesthesia states 
we see that ketamine shows markedly higher values of 
PE and PLZC relative to the baseline state. Ketamine + 
medetomidine have similar values to AOE but higher than 
ACE. Medetomidine has the lowest entropy/complexity 
values of all anaesthetics and is markedly different from 
the baseline. Propofol has a similar behaviour to medeto-
midine with decreasing values relative to the baseline. 
The recovery states for both open eyes (RCE) and closed 
eyes (ROE) have values that exceed both the baseline and 
anaesthetised states in all cases. No significant differences 
in entropy or complexity are found between the RCE and 
ROE states. Seeing Fig. 2A3 we can conclude that Fisher 
information does not distinguish differences between any 
states.

As mentioned, the signal was analysed using non-overlapping 
running windows of 5 sec on the 3 min pre-processed signals, 
with a view to a possible real-time application. The results  
were similar to those obtained with the full signal (see Fig. 1 
Supplemental Material), showing the robustness of the measure-
ments used.

Generally, permutation entropy and Lempel–Ziv com-
plexity are the only measures that can distinguish between 
awake open and closed eyes awake states. For all types of 
anaesthesia the recovery values overcomes the baseline val-
ues. None of the quantifiers can differentiate between close-
dand open eyes recovery states. An important point is that 
the permutation entropy and Lempel–Ziv complexity values 
are significantly different for the four types of anaesthesia. 
Fisher’s information values cannot differentiate between any 
of the states, except for MD between awake and recovering 
when using medetomidine.

A different way to analyse these results is through the use 
of complexity-entropy planes. They allow access to relevant 
information that is not possible to reach through the separate 
study of these quantifiers. These planes can be used to obtain 
information that is not possible by analysing the signals sep-
arately. It also allows a better visualisation of the results. In 
the literature there are different types of complexity-entropy 
planes Martin et al. (2006), Rosso et al. (2007), Mateos et al. 
(2017), in this work we focus on the Permutation Lempel-
Ziv complexity vs. permutation entropy plane ( LZ × PE ) 
Mateos et al. (2020). This plane has been used to distinguish 
between chaotic and random signals Mateos et al. (2020), 
to analyse electrophysiological signals in altered states of 
consciousness Mateos et al. (2018) and to characterise sleep 
states Mateos et al. (2021).

1045Neuroinformatics (2022) 20:1041–1054
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Figure 2B shows the values of the EoCG belonging to 
the awake (open eyes) and anaesthetised (KT, KTMD, MD 
and PF) states in the Lempel–Ziv complexity–permutation 
entropy plane. The results show that ketamine has higher 
complexity and entropy values than in the awake condition. 
On the other hand, there is a marked decrease in entropy 
and complexity values for the case of propofol and medeto-
midine. Ketamine-medetomidine does not show significant 
changes with respect to the awake state. The entropy and 
complexity values correspond to anaesthetised states moving 
in areas that are above or below the awake state depending 
on the anaesthesia. This finding shows that each anaesthesia 
produces different changes in brain dynamics.

Differences between Brain Dynamics 
before and after Anaesthetic

In Figure 3 we see that for two of the three quantifiers the 
recovery and baseline values are different. Because of this, 
a more in-depth study was carried out. We calculated the 
difference between the recovery and awake values. This was 
done for both eyes closed and eyes open (ROE-AOE and 
RCE-ACE). In all cases, a statistical study was performed 
using a paired t-test. Figure 3A shows the difference between 
the complexity/entropy values belonging to recovery and 
awake open eyes over all the anaesthetics applied. All anaes-
thetics show significant differences for permutation entropy 

Fig. 2   Complexity/information measures for the different states 
of consciousness: awake open and close eyes (AOE, ACE), anaes-
thetised (AN), recovery open and close eyes (RCE, ROE). The 
anaesthetics used were: ketanime (KT), ketanime - medetomidine 
(KTMD), medetomidine (MD) and propofol (PF). A1) represent 

Permutation entropy analysis, A2), Lempel-Ziv complexity and A3) 
Fisher information. The bars and errors represent the mean value and 
standard deviation over all channels and all monkeys. The same let-
ters correspond to states with no significant differences. B) Analysis 
of ECoG signals using Complexity-Entropy plane

1046 Neuroinformatics (2022) 20:1041–1054
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and Lempel–Ziv complexity, but not for Fisher information. 
Permutation entropy and Lempel–Ziv complexity values 
are higher for the recovery case compared to the baseline. 
Ketamine presents the highest and propofol the smallest dif-
ferences between states. Figure 3B shows the difference in 
complexity/entropy values between the awake and recovery 
colsed eyes states for each anaesthetic. As in the case of  
open eyes, permutation entropy and Lempel–Ziv complex- 
ity differences between states are significant. Ketamine– 
Medetomidine, have similar values than ketamine and 
medetomidine alone, while propofol has a lower value. These 
results show that although the monkeys state is reported as 
’recovered’ from the effects of anaesthesia, in fact the mon-
key has not reached its initial basal state. This fact shows 
the importance of information quantifiers for assessing states 
of consciousness as they can measure relevant information 
which cannot be acquired by visual analysis.

Analysis Per Channel

An important aspect to study is the distribution of com-
plexity/information values over the brain in each state of 

consciousness. To this end, an analysis was carried out for 
each channel separately. We study monkey No. 1 because 
it is the only one in which the four anaesthetics were 
applied. For this analysis the ordinal pattern parameters 
used were D = 5 and � = 1.

Figure 4 shows the distribution of permutation entropy 
values for awake and anaesthetised states. In the awake 
state there is a distribution of high entropy values over the 
frontal-central and temporal areas, and medium values in 
parietal and occipital areas. Permutation entropy values 
decrease globally in ketamine–medetomidine, particularly 
in the frontal and medial areas where entropy decreased 
significantly. For ketamine the entropy values increased 
above the awake values, especially in the fronto-temporal, 
central and medial areas. Medetomidine low decreas values 
in the frontal and central area and and higer decreas values 
in the occipital area. Propofol presents a global decreased in 
entropy compared to awake states, especially in the tempo-
ral, prefrontal and central areas (anterior electrodes). Similar  
results were obtained by PLZC (see supplemental material).  
Fisher’s data showed no significant changes between car-
casses or anaesthetics (see supplemental material).

A

B

Fig. 3   A) Difference between the complexity brain dynamics during recovery open eyes and awake open eyes B) Similar study for the recovery 
closed eyes and awake closed eyes
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Discussion

In this study we investigate conscious awareness in anaes-
thetised monkeys. We find that brain dynamics, as recorded 
by electrocorticography, depends on the stage of conscious-
ness and on the type of anaesthetics used. Four types of 
anaesthetics schemes were used (ketamine, medetomidine, 
propofol and a mixture of ketamine and medetomidine) and 
three main stages of consciousness awareness investigated 
(the animal can either be awake, anaesthetised or recover-
ing from anaesthetics; we further investigated the effect of 
having the eyes closed or opened).

To understand how brain dynamics correlates with 
the level of conscious awareness we used three measures 
of signal complexity: permutation entropy, Lempel–Ziv 
complexity and Fisher information. Taken together, these 
measures cover a large spectrum of signal’s features, 
allowing for a thorough characterisation of brain dynam-
ics. However, even if such measures are very different, 
they are not independent. Indeed, we found that permuta-
tion entropy and Lempel–Ziv complexity are directly pro-
portional so they can be used equivalently as quantifiers 
of the brain dynamics investigated (see Fig. 2B). This is in  
accordance with previous work, that shows that for the type  
of electrophysiological signals investigated in the current 
work, that is, very noisy signals, entropy and complexity  
tent to be equivalent Zozor et al. (2014). This means that 

patterns of temporal dynamics do not add more informa-
tion about the signal than what is already present in the his- 
togram of the signal. Furthermore, it can be also inferred 
from our results that Fisher information measures are 
inversely related to both permutation entropy and Lempel– 
Ziv complexity (see Fig. 2A3). This is because Fisher 
information is a local quantifier of the signal whereas per-
mutation entropy and Lempel–Ziv complexity are global 
quantifiers. As we discuss in more detail in the meth-
ods section, global and local (differential) measures are 
inversely related. In other words, our results suggest there 
are strong correlations between measures of brain activity 
for the three information theory metrics used. We can con-
clude that in the dynamic range used, electrophysiological 
signals can be completely characterised by any of them. 
So, in the following, we discuss our results in terms of per-
mutation entropy alone, and we refer to it as “complexity”.

We found significant differences in the complexity of 
brain activity between different anaesthetics schemes. The 
general result is the following: medetomidine and propo-
fol decrease the complexity of brain activity but ketamine 
doesn’t. More specifically (see Fig. 2A1): 1) Under the effect 
of anaesthesia, the complexity of brain activity is the lowest 
in the anaesthetised state than in any other state investigated, 
both for medetomidine and propofol. 2) This is not true when 
ketamine is used (alone or accompanied by medetomidine). 
If ketamine is used alone, the anaesthetised state has more 

Fig. 4   Permutation entropy 
analysis for each of the 125 
channels belonging to Monkey 
1 for the states awake (AOE) 
and anaesthetised (KTMD, KT, 
MD,PF). The ordinal pattern 
parameters used for the analysis 
were D = 5 and � = 1
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complexity than the initial, awake state. By mixing ketamine 
with medetomidine, this effect is diminished.

Physiological, this can be explained in terms of the spe-
cific action of these anaesthetics. In the case of propofol, 
it works by binding to GABAA receptors, triggering wide-
spread inhibition of neuronal activity. At low doses, propofol  
induces states of amnesia, sedation, atonia, whereas at higher  
doses it induces anaesthesia Khan et al. (2014), Hemmings 
et al. (2019). Experimental evidence suggests propofol inhib- 
its the ability of the brain to maintain high levels of dynami-
cal complexity, resulting in a low-entropy state insufficient 
for supporting conscious awareness Schartner et al. (2015), 
Sarasso et al. (2015). This finding supports previous research 
which shows a decrease in Lempel-Ziv complexity and  
permutation entropy values under the effects of this anaes-
thetic in scalp EEG studies Hudetz et al. (2016), Ferenets 
et al. (2007), Xu et al. (2004). Many study shows slow 
rhythms ( < 4 Hz) are a ubiquitous feature of general anes-
thesia, being readily induced in humans by propofol Gugino 
et al. (2001), Murphy et al. (2011), Lewis et al. (2012), Purdon  
et al. (2013). As humans are induced into a state of general 
anesthesia via propofol, the normal alpha rhythm (8 - 13 
Hz) in the occipital cortex disappears and a frontal alpha 
rhythm emerges. This spatial shift in alpha activity is called 
anteriorization Mukamel et al. (2014), Feshchenko et al. 
(2004). However, recent studies show that similar behaviour 
occurs for the delta bands Brake et al. (2021). In addition 
to the above, it has been shown that the appearance of spa-
tially coherent frontal alpha oscillations. In addition studies 
discovered a coupling between the phase of low-frequency 
activity ( 0.1-2 Hz) and the amplitude of alpha rhythms (8 
-14 Hz) in scalp EEG recordings during propofol general 
anesthesia Mukamel et al. (2011), Purdon et al. (2013). Sim-
ilarly Purdon et. al showed the low-frequencies phases are 
modulated by alpha amplitude under the effect of propofol 
Purdon et al. (2013). The slow waves increment and the cou-
pled with the modulation of alpha waves over low frequency 
waves, can result in electrophysiological signals becoming 
more periodic and therefore less complex or entropic. This 
can be clearly seen in Fig. 4 where the entropy values cor-
responding to Propofol decrease markedly especially in the 
frontal area.

The action of medetomidine is similar to that of propo-
fol. This drug is a racemic mixture of two optical stere-
oisomers: dexmedetomidine (the active enantiomer) and 
levomedetomidine. It produces sympatholysis, sedation, 
and antinociceptive effects. It acts nonselectively on vari-
ous subtypes of membrane-bound G protein-coupled �
2-adrenoceptors. Intracellular pathways include inhibition 
of adenylate cyclase and modulation of calcium and potas-
sium ion channels. This drug produces a decrease in activity 
of the projections of the locus coeruleus to the ventrolateral 
preoptic nucleus. This is an essential component of the onset 

of the stage of sleep non-rapid eye movement (NREM). This 
could be an explanation why the medetomidine values are 
located in the same zone of the complexity-entropy plane 
as those observed for subjects in the NREM state Mateos 
et al. (2021). Our finding seems to be consistent with an 
fMRI study from subjects under different anaesthetics which 
showed that medetomidine had significantly lower entropy 
values than other anaesthetics Grandjean et  al. (2014). 
Studies suggest that under resting state, EEG power shows 
a depression of inter-hemispheric EEG coherence in the 
gamma band at higher medetomidine dosage. These studies 
show that medetomidine does not suppress neural activity 
but dissociates connectivity in the somatosensory cortex 
Nasrallah et al. (2012, 2014). However, electrophysiologi-
cal studies with metodomidine are fewer in number com-
pared to those with propofol or ketamine. However, being 
an anaesthetic similar in nature to propofol, we can hypoth-
esise that the effects on neuronal dynamics could be similar 
(but not the same). Therefore, entropy and complexity val-
ues decrease in the anaesthetised state with medetomidine, 
similar to what occurs with propofol. However, we have to 
take into account that when studying topological informa-
tion, brain areas do not respond in the same way to the two 
anaesthetics. Contrary to propofol and medetomidine, brain 
activity under ketamine administration shows higher values 
of complexity in comparison with awake states. This result 
may be explained by the fact that ketamine acts primarily 
as an antagonist of glutamaterigic N-methyl-D-aspartate 
receptor (NMDA) Khan et al. (2014), Zanos et al. (2018), 
causing widespread, light central nervous system stimulation 
and a state typically referred to as ”dissociative anesthesia” 
Domino et al. (1965), Krystal et al. (1994).

Unlike propofol, which reduces consciousness even at low 
doses, ketamine often produces complex conscious experi-
ences, including hallucinations, out-of-body experiences, 
and dream-like, immersive experiences Zanos et al. (2018). 
Ketanime’s blockade of NMDA is thought to dis-inhibit cor-
tical neurons, causing widespread, uncoordinated excitatory 
activity Zanos et al. (2018), Schartner et al. (2017). This 
may result in an increase in the entropy of brain activity 
without abolishing consciousness, artificially expanding (or 
at least altering) the state-space repertoire. This decorre-
lated signal activity, made ketamine values move towards 
an area where the signals with higher randomness reside in 
the entropy-complexity planes Rosso et al. (2007), Mateos 
et al. (2020). The hypothesis in which the dynamic state of 
higher-than-normal entropy might correspond to a psyche-
delic or hallucinatory state of consciousness has become 
known as the Entropic Brain Hypothesis Carhart-Harris 
and Friston (2019), Carhart-Harris et al. (2014). Moreover, 
these results are consistent with other studies showing that 
Lempel-Ziv complexity and entropy increase under effect 
of ketamine Schartner et al. (2017), Liu et al. (2018), Zhang 
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et al. (2001). In other electrophysiological studies, ketamine 
affects sensory gating and alters the oscillatory character-
istics of neuronal signals in a complex manner Lazarewicz 
et al. (2010). Study in human Magnetoencephalography 
(MEG) determined that ketamine increased beta amplitudes, 
decreased peak gamma frequency in visual cortex and sig-
nificantly amplified gamma-band amplitudes in motor and 
visual cortices Shaw et al. (2015). Gamma-band oscillations 
alterations also appear in the acute state after administra-
tion of NMDAR antagonists to healthy humans Kocsis et al. 
(2013), Hong et al. (2010), Rivolta et al. (2012). An intracra-
nial study in Rats shows spontaneous high-frequency oscilla-
tions (140 - 180 Hz) present in local field potentials recorded 
from the Nucleus Acumbens Hunt et al. (2006). Similarly, in 
ships with chronically-implanted subdural electrodes, Keta-
mine induces alternating bursts of theta-gamma oscillations 
that correlate with the dissociative state Nicol and Morton 
(2020). This increase in high frequency band oscillations 
could be one of the causes of the increased entropy/signal 
complexity in the Ketamine anaesthetised state. Adding 
to this connectivity studies in ketamine shows the disrup-
tion of cortical network connectivity Muthukumaraswamy 
et al. (2015), Bonhomme et al. (2016), Krzemiński et al. 
(2017), Scheidegger et al. (2012). However, there is another 
effect that can be added to the previous one due to the use 
of this drug, the disruption of cortical network connectivity 
Muthukumaraswamy et al. (2015), Bonhomme et al. (2016), 
Krzemiński et al. (2017), Scheidegger et al. (2012). This dis-
connection between brain areas would result in electrophysi-
ological signals with more random characteristics givins as 
a result a greater entropy and complexity.

Although sedation, analgesia and sympatholysis are pro-
duced during the administration of medetomidine, this drug 
must be used as a coadjuvant as it does not reach satisfactory 
anaesthetic conditions by itself. Association with opioids 
or ketamine is recommended in veterinary practice. Drug 
combination as adjuvants is used to reach pharmacologic 
effects by increasing efficacy and potency of individual 
drugs. There is also, as a consequence, a reduction in total 
doses and side effects. The use of a lower dose of both anaes-
thetics may be the reason why when a mixture of ketamine 
and medetomidine is used, the values of complexity are least 
variable in relation with the awake state (Fig. 2A1).

It is important to highlight that although different anaes-
thetic drugs have similar observable clinical effects, the 
exact mechanisms of action and neurodynamic effects of 
these are still unknown Franks (2006). Indeed, some medica-
tions tend to act on specific receptors while others do so on 
various types of receptors whereas receptors have different 
affinity for different drugs, even in the case of receptors from 
the same structure family. Furthermore, the action of anaes-
thetics is further complicated by their dependence on drug 
concentration. Indeed, drugs that act on different receptors 

usually do so in an overlapping way. At low concentrations 
they bind and activate only high affinity receptors. As drug 
concentrations are increased, a mass effect generates the 
binding and activation of receptors with less affinity. It has 
been proposed that many anaesthetic drugs can also act in 
a nonspecific and generalised way in the nervous system. 
They may do this by modifying the solubility of plasma 
membranes and its components and even by modifying the 
dynamics of Brownian movements of molecules that inter-
vene in the exocytosis of synaptic vesicles. These effects 
may alter the precision of global electrochemical signaling 
Bademosi et al. (2018), Hantal et al. (2019). Increasing con-
centrations of a drug which generates networks activation at 
low doses may generate a global depressant effect at high 
concentrations Brown et al. (2011).

Our study indicates that the only information quantifier 
that allows distinguishing between eyes opened or closed in 
awake states is permutation entropy. This is in agreement 
with recent work Quintero-Quiroz et al. (2018), in which it 
was possible to detect changes of states between eyes open 
and eyes closed in human scalp electroencephalography 
using permutation entropy or in similar studies using Lem-
pel Ziv complexity Ibáñez-Molina et al. (2015). This differ-
ence in complexity is to be expected due to the appearance 
of alpha waves in AEC Berger (1929). These waves cause 
the signal to become more periodic (less number of different 
patterns are required) resulting in a decrease in complexity. 
This result is interesting because other measures of complex-
ity based on information integration are not able to differen-
tiate between these two states Casali et al. (2013). However, 
this measure present some limitation, none of the quantifiers 
used were able to differentiate between the brain activity of 
monkeys with eyes opened or closed during the recovery 
state. Furthermore, the open eyes recovery state had larger 
complexity than any other state for all the anaesthetics used. 
We consider that this result is important for the evaluation of 
anaesthetics effects in the medical setting, since it shows that 
visual inspection of raw signals is not always an accurate 
tool. This observation leads us to propose that an analysis 
of states of consciousness based on more reliable quantifiers 
would be useful in clinical practice. Our hypothesis is that 
recovery values return to baseline values after a sufficiently 
long time. Unfortunately we do not have extensive recording 
time to be able to corroborate this fact. Moreover, if such 
records were available, it would be interesting to study the 
average time it takes for each anaesthetic scheme to finish 
its neural dynamic effect completely. However, it must be 
taken into account that once drug administration has been 
interrupted, their uncoupling from receptors and sites of 
action is usually variable according to their physicochemical 
characteristics that determine their distribution and elimina-
tion mechanisms. This implies that the effects in different 
places can disappear in a differential way Kim et al. (2018), 
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Kushikata and Hirota (2014), Cascella et al. (2018). Fur-
thermore, the activation or inhibition of specific receptors at 
different sites can generate both a reduction or an increase in 
the activity of underlying networks. For example, a drug that 
inhibits an inhibitory network can result in increased activity 
in a specific region of the nervous system.

The analysis per channel showed that the variation of 
complexity/entropy values under the effects of anaesthetics 
occurs over the entire brain surface. However, there are areas 
which are more sensitive to changes depending on the drugs 
used. The general trend is that ketamine induces an increase 
in complexity in frontal and fronto-parietal areas whereas 
propofol and medetomidine produce a whole-brain decrease 
in complexity. This is consistent with the idea that different 
drugs exert their effects on diverse sites of action distrib-
uted in a heterogeneous way among the nervous system’s 
structures Varnäs et al. (2021), Saba et al. (2015). However, 
other studies on propofol show a decrease in the integration 
of information over occipital areas Luppi et al. (2019), Hahn 
et al. (2021). This difference in results may be due to the 
fact that the metrics used to measure differences between 
states of consciousness measure different characteristics of 
the system Sarasso et al. (2021).

Fisher information was not an efficient quantifier for dis-
tinguishing states of consciousness. This may be because 
changes in the ECoG dynamics are global –changes occur 
throughout the signal and not in localised segments, because 
Fisher information is a local quantifier, it is not able to detect 
the variations at a general level. However, these changes 
are detectable using global quantifiers such as permutation 
entropy or Lempel–Ziv complexity.

Among the limitations of this work we can mention the 
lack of knowledge about the subjective experiences of mon-
keys under the effects of ketamine. As explained above, the 
perception of reality seems to be altered and depends on the 
doses applied. We extrapolate results from reports described 
in humans Krystal et al. (1994), Zanos et al. (2018), but we 
recognise that there are limitations when comparing them 
with these types of animals. Another limitation is the limited 
number of monkeys (four) and the fact that they all received 
different anaesthetic regimens. Given the unavailability of 
such data sets, a small sample size was unavoidable. How-
ever, we hope to generalise these results in future work, in 
order to provide more powerful statistics.

In a recent study Sarasso et al. (2021) reviews more 
than 200 papers on complexity measures applied to the 
study of states of consciousness, classifying these meas-
ures into four groups: i) topological differentiation, ii) 
temporal differentiation, iii) metastability and ii) criticality 
and perturbation. The measures applied in this work would 
fall into the second group which capture brain differen-
tiation but not brain integration. Particularly, with this 

database, different studies have been carried out focused 
on the analysis of the integration of brain information 
such as, for example, with networks generated by spec-
tral Granger causality Yanagawa et al. (2013b), applying 
integrate information theory (IIT) Oizumi et al. (2016), 
Kitazono et al. (2018), using long-range correlation in dif-
ferent frequency bands Krzemiński et al. (2017), applying 
Topological data analysis Varley et al. (2020) or study of 
criticality Toker et al. (2021). However, beyond the valu-
able information that these studies provide for the under-
standing of brain dynamics, they are difficult to apply in 
real time, since they require having the information of the 
complete signals or the computation time is high. That is 
why we decided to apply information measures that are 
robust to noise, fast to compute and do not require a large 
amount of data.

Finally, a few words on the importance of the tech-
niques used in this work for medical applications. The 
search for simple and direct quantifiers of brain activity 
characterising different depths of anaesthesia is funda-
mental for consciousness research but also crucial and in 
the medical setting. In particular, they serve as a guide to  
surgeons to evaluate the effectiveness of anaesthetics dur-
ing surgical interventions. Currently, there are different 
indexes of anaesthesia depth commercially available (such 
as Fourier Transform Loomis et al. (1937), Bicoherence 
Todd (1998), Evoke potentials Hansson et al. (1998), Burst 
Suppression Ratio Jensen et al. (2004) or Approximate 
Entropy Bruhn et al. (2000)) that can be computed from 
electroencephalografic (EEG) recordings. The main draw-
back of these measures is that they often require great 
computational power and expensive equipment (consider, 
for example, the EEG anaesthesia monitor M-entropy, the 
BIS VISTA™ Monitoring System or Narcotrend EEG 
monitor, among others). For this reason, the search for new 
types of brain quantifiers of conscious awareness, such as 
those proposed by us, based on faster algorithms driven by 
open source development, is crucial in the field of anaes-
thesiology. Furthermore, we showed that electroencepha-
lography data allow for a discrimination in brain dynamics 
under different anaesthetics drugs regimes, so it can be 
useful for assessing depth of anaesthesia and for decision 
making scenarios in the medical setting. Measuring the 
complexity of brain activity have potential applications in 
anaesthesiology such as patient safety, quality improve-
ment and performance analysis. Benefits could arise from 
a pharmacoeconomic perspective as these quantifiers may 
help professionals for efficient drug delivery strategies. 
This could result in cost reductions. Furthermore, we 
believe that these techniques could feed machine learning 
algorithms in order to develop and improve closed loop 
systems for automatic anaesthetic drug delivery.
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Conclusion

We have found that the complexity of brain activity cor-
relates with conscious awareness. This is in agreement 
with other accounts that associate consciousness with brain 
dynamics, and in particular to the information content or 
complexity of neural activity and networks. Our results show 
that low complexity in brain dynamics is associated with 
the action of anaesthetics such as propofol and medetomi-
dine, that inhibit neural activity. We also find that this is not 
the case for ketamine, for which the anaesthetic increase 
the complexity of brain activity. This results supports the 
idea that the anaesthetic action of ketamine is different than 
other drugs, as this drug increases, rather than decrease, neu-
ral activation, and is associated to hallucination and other 
altered states of consciousness.
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