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Abstract
Motivation: After the outstanding breakthrough of AlphaFold in predicting protein 3D models, new questions appeared
and remain unanswered. The ensemble nature of proteins, for example, challenges the structural prediction methods
because the models should represent a set of conformers instead of single structures. The evolutionary and structural
features captured by effective deep learning techniques may unveil the information to generate several diverse
conformations from a single sequence. Here we address the performance of AlphaFold2 predictions obtained through
ColabFold under this ensemble paradigm.
Results: Using a curated collection of apo-holo pairs of conformers, we found that AlphaFold2 predicts the holo form of
a protein in ~70% of the cases, being unable to reproduce the observed conformational diversity with the same error for
both conformers. More importantly, we found that AlphaFold2's performance worsens with the increasing conformational
diversity of the studied protein. This impairment is related to the heterogeneity in the degree of conformational diversity
found between different members of the homologous family of the protein under study. Finally, we found that main-chain
flexibility associated with apo-holo pairs of conformers negatively correlates with the predicted local model quality score
plDDT, indicating that plDDT values in a single 3D model could be used to infer local conformational changes linked to
ligand binding transitions.
Availability: Data and code used in this manuscript are publicly available at
https://gitlab.com/sbgunq/publications/af2confdiv-oct2021
Contact: Gustavo Parisi. Email: gusparisi@gmail.com
Supplementary Information: Supplementary data is available at the journal's web site.

1     Introduction
The first ideas to predict protein structures from their sequences came
in the early sixties, after Anfinsen’s experiment showed that the
structure of a protein is encoded in its amino-acid sequence (Anfinsen
et al., 1961). After decades of extensive experimentation and efforts,
the practical demonstration of Anfinsen’s motto came from deep
learning techniques taking advantage of evolutionary information. In
the last year, the computational tool AlphaFold2 (Jumper et al., 2021)
developed by DeepMind, reached an impressive performance in
predicting protein structures with an accuracy similar to experimental
techniques (Kinch et al., 2021; Pearce and Zhang, 2021). AlphaFold2
uses a novel neural network architecture with some attention-based
components to take advantage of the evolutionary information
codified in a multiple sequence alignment. These neural networks
create novel representations of the protein sequence and the
inter-residue relative distances that are iteratively improved. The

output of AlphaFold2 is a set of highly accurate structural models
with accompanying residue-specific estimates of model reliability.

This outstanding achievement is not only conceptual, in the sense
of the advancement of novel deep learning techniques and protein
science, but also practical. It provides the scientific community with a
method for fast, reliable, and cheap determination of structural models
that can be applied at a large scale. Recently, DeepMind and
EMBL-EBI have jointly released the database of AlphaFold2
predictions for the whole human proteome (Tunyasuvunakool et al.,
2021) and other key organisms (https://alphafold.ebi.ac.uk/).
Furthermore, an easy-to-use and fast version of the AlphaFold2
pipeline was introduced by modifying the time-consuming step of
multiple sequence alignments generation with almost identical results
(Mirdita et al., 2021). These exceptional endeavors will soon
contribute to filling the gap between proteomes and structuromes,
triggering the blooming of almost every related biology field
involving both wet-lab practices and computational-based approaches.
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The AlphaFold2 neural network is trained using structures
derived from crystallization and X-ray diffraction experiments. It is
thus expected that the 3D models obtained will reproduce "regular"
PDB structures (Jumper et al., 2021). How much do regular PDB
structures resemble the native state of proteins? It is widely accepted
that protein function relies on a conformational ensemble describing
the native state of proteins (Wei et al., 2016; Boehr et al., 2009; Tsai
et al., 1999; Motlagh et al., 2014) that is not entirely captured in the
PDB (Marino-Buslje et al., 2019). Structural differences between
conformers promote ligand binding (Gunasekaran and Nussinov,
2007), transport (Gora et al., 2013), or catalysis (Gutteridge and
Thornton, 2004; Callender and Dyer, 2015). These differences are
also relevant for signal transduction (Tompa, 2016) and define
metabolic regulation by mechanisms like cooperativity and
allosterism (Motlagh et al., 2014, 2012; Donovan et al., 2016; del Sol
et al., 2009). Conformers in the native ensemble could be identical in
their backbones but differ just in the conformations of some residues,
defining open and close transitions of tunnels (Monzon, Zea,
Fornasari, et al., 2017; Kingsley and Lill, 2015) and/or volume
variations in their cavities (Barletta et al., 2018; Hasenahuer et al.,
2017). Increasing differences involve backbone movements
comprising loops, secondary structural elements rearrangements, and
relative domains movements (Gerstein et al., 1994; Gerstein and
Krebs, 1998; Gu et al., 2015). Extreme cases of conformational
diversity are represented by intrinsically disordered proteins which
lack tertiary structure and form complex ensembles with high ratios of
interchange between conformers (Tompa, 2011).

Given the ensemble nature of proteins we explored the impact of
conformational diversity in the AlphaFold2 performance prediction.
Firstly, we relied on a hand-curated set of proteins with different
extents of experimentally estimated conformational diversity, defined
by an apo conformer and the corresponding holo form bound to a
biologically relevant ligand. We obtained structural models of each
protein in our dataset through the ColabFold implementation of
AlphaFold2 and then studied if AlphaFold2 can reproduce both
known conformers among their resulting top-scoring models. We also
explored how AlphaFold2's performance is affected by the degree of
conformational diversity of the protein under study. Additionally, as
AlphaFold2's predictions heavily rely on evolutionary information, we
used families of homologous proteins with different extents of
conformational diversity among its members to test whether this
heterogeneity affects prediction.

2    Results

2.1 Description of the dataset
We selected 91 proteins (Supplementary Table 1) with different
degrees of conformational diversity expressed as the range of pairwise
global Cα-RMSD between their conformers in the PDB (Figure 1).
All the pairs of conformers for each protein are apo-holo pairs
selected from the CoDNaS database (Monzon et al., 2016) and
bibliography. Manual curation for each protein confirmed that
structural deformations were associated with a given biological
process based on experimental evidence. This step is essential to
ensure that conformational diversity is not associated with artifacts,
misalignments, missing regions, or the presence of flexible ends.
When more than two conformers were known, we selected the
apo-holo pair showing the maximum Cα-RMSD (maxRMSD). Other
considerations were absence of disorder, PDB resolution, absence of
mutations, and sequence differences. We previously observed that
when conformational diversity is derived from experimentally-based
conformers, different ranges of RMSD are obtained between them

depending on the structure determination method (Monzon, Zea,
Fornasari, et al., 2017). Here we considered a continuum of protein
flexibility measured as the RMSD between apo and holo forms as
shown in Figure 1.

2.2 AlphaFold2 does not reproduce conformational
diversity
We have predicted the structure of each protein in the dataset using
ColabFold (AlphaFold2.ipynb - Colaboratory), running AlphaFold2
with MMSeq2 (Mirdita et al., 2021) without the use of templates and
with the option to obtain relaxed models with Amber force fields
(Eastman et al., 2017), gathering the first five top models according to
the average of the plDDT (predicted local Distance Difference Test)
scores (Mariani et al., 2013). Supplementary Figure 1 shows the
distribution of the plDDT scores for all the models. We found that
90% of the models scored higher than 85, reaching 89 if only the best
model for each protein is considered, evidencing the good quality of
the models obtained.

All AlphaFold2 models of each protein in the dataset were
structurally aligned to the experimentally resolved apo and holo
conformations and the RMSD value was calculated for each
alignment. Figure 2A shows the relationships of RMSD values against
the apo and holo forms for all the obtained AlphaFold2 models, while
Figure 2B is limited to the best model for each protein, defined as the
model with the highest plDDT global quality score.

We found that for 67% of the proteins the models are obtained
with the lowest RMSD to the holo form, while only 33% of the
proteins are modeled with lowest RMSD to the apo form instead. In
the larger subset, with proteins modeled closer to the holo form, the
RMSD against the apo form is significantly higher than to the holo
form (right-tailed Wilcoxon signed-rank test p-value = 0.0033). Here
we used the simple rule to decide if a model is better than another by
choosing the model with the lowest RMSD regardless of the RMSDs
being compared. Using different RMSD cutoffs to filter out models of
lower quality (for example, limiting the analysis to models with
RMSD <3 or <4Å) did not introduce significant variations in our
results (see Supplementary Figure 2).

In Figure 3 we plot the distributions of the average RMSD of the
five models of a protein against their apo and holo forms,
discriminating between proteins according to which of both forms
their models resemble the most. For proteins modeled closer to apo,
the average RMSD against their apo form is significantly lower (mean
= 2.58Å) than against their holo form (mean = 4.17Å) (Figure 3, left
panel). On the contrary, for proteins modeled closer to holo, the
average RMSD to the holo form is 1.87Å and climbs to 3.24Å against
the apo form (Figure 3, right panel). We conclude that most of the
proteins are modeled with a bias towards a given conformer. It is then
impossible to estimate the degree of conformational diversity captured
in apo and holo pairs with the same precision that can be estimated for
a single representative conformation of a given protein. As expected,
the error in the estimation of the conformational diversity is highly
correlated with the structural differences between the apo and the holo
forms, with a Pearson correlation coefficient of 0.97 (p-value < 0.001)
between the RMSD of apo-holo pairs and the average RMSD of the
models to the unfavored form (see Supplementary Figure 3).

The preference for a single conformer, whether apo or holo, is not
associated with the AlphaFold2 predictive performance: the median
pIDDT scores for all models that resemble the holo or the apo forms
are 95.47 and 94.08, respectively, or 96.33 and 95.62 using the best
models only (Wilcoxon Rank Sum test, p-value = 0.27). Figure 4
shows three examples that illustrate the model preference for the apo
or the holo form, or its lack of, taken from the results described above.
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Figure 1: Distribution of RMSD between apo-holo pairs. The average of the
distribution is 4.00Å.

Figure 2: Comparison of RMSD values derived from the alignment of each
AlphaFold2 model to the apo (x-axis) and the holo (y-axis) conformations of the
corresponding protein. Panel A shows the distribution of RMSD for all models, while
panel B is limited to the best model per protein according to pIDDT scores.

2.3 AlphaFold2 predictions worsen with increasing
conformational diversity of the protein
Given that AlphaFold models better resemble the holo conformation
of proteins, in this section we study how the conformational diversity
of the protein, measured as the structural difference between apo and
holo forms, affects performance predictions. We found that proteins
are less predictable as the RMSD between their apo and holo form
increases, with a predictive performance (measured as the lowest
RMSD of a model to the apo or holo forms) highly dependent on the
conformational diversity of the protein (Pearson correlation
coefficient = 0.76, p-value <0.001) (Figure 5A). This tendency was
also observed when we studied the correlation of the global plDDT
for the best model with the level of conformational diversity (Pearson
correlation coefficient = -0.65, p-value <0.001) (Figure 5B).

The model error shows low dependency on the protein length
(Pearson correlation coefficient = -0.23, p-value <0.05), and
non-significant correlation with the total number of sequences in the
input alignment (Pearson correlation coefficient = 0.07, p-value =
0.51) or the number of effective sequences per alignment (Pearson
correlation coefficient = -0.03, p-value = 0.74). To study how the error
in the model depends on the type of protein movements between the
apo and holo forms, we classified the pairs in our dataset in two broad
categories (Kempner, 1993): according to the presence of domains
and hinges movements using the DynDom software (Taylor et al.,
2013) and to the presence of flexible loops in just one domain. We
found that the prediction error, measured as the lowest RMSD to apo
or holo, does not depend on the type of movement (Wilcoxon Rank
Sum test, p-value = 0.22), with median values of 0.98Å and 1.6Å for

the domain movements group and the subset of proteins with loop
movements, respectively.

Figure 3: Distribution of the average RMSD between AlphaFold2 models and the apo
or holo forms. The left panel corresponds to the subset of proteins that were modeled
closer to the apo form, while the right panel is limited to proteins modeled towards the
holo form. In each panel, 'to Apo' and 'to Holo' present the distribution of average
RMSD values between all models towards apo and holo forms, respectively.
Significance values are obtained with a Wilcoxon Rank Sum test.

Figure 4: Three different examples of AlphaFold2 models (blue) and experimental
structures (apo, orange; holo, green) among proteins in our dataset. A. Periplasmic
lysine-, arginine-, ornithine-binding protein (LAO) from Salmonella typhimurium (Oh
et al., 1994). The AlphaFold2 model closest to an experimental structure is closer to
the holo (Cα-RMSD = 0.45Å, PDB ID = 1LAH_E) than to the apo form (4.67Å,
2LAO_A). B. Guanylate Kinase from yeast. The best AlphaFold2 model showed a
better match with the apo form (Cα-RMSD = 0.94Å, PDB ID = 1EX6_B) than with
the holo form (3.97Å, 1EX7_A) (Blaszczyk et al., 2001). C. Nucleoside triphosphate
pyrophosphohydrolase from E. coli (Abeygunawardana et al., 1995). A case where the
AlphaFold2 model is different to both the apo (Cα-RMSD = 3.76Å, PDB ID =
1MUT-11_A) and holo (4.05Å, 1PUN-7_A) forms. Proteins are shown as cartoons
while biologically significant ligands are labeled and shown in surface representation.

2.4 Fuzzy evolutionary information could affect
AlphaFold2 prediction
To explain the impairment observed in AlphaFold2 prediction
capacity with increasing protein conformational diversity, we
hypothesized that the evolutionary information in the input multiple
sequence alignment could be fuzzy due to the conformational
diversity heterogeneity in the protein family. Previously we found that
families with highly flexible proteins (Monzon, Zea, Fornasari, et al.,
2017) heavily affect homology modeling due to a noisy relationship
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between sequence and structure divergence (Monzon, Zea,
Marino-Buslje, et al., 2017). Moreover, we have also characterized
that the inter-residue contacts predicted using coevolutionary methods
are the consensus ones, independently of the structural variations
among family members (Zea et al., 2018). Taking into account our
finding that protein dynamical behavior is mostly not conserved in
protein families (Monzon, Zea, Marino-Buslje, et al., 2017), families
that include highly flexible and rigid proteins could have confounding
mixtures of sequence signatures.

Figure 5: Quality prediction of AlphaFold2. Panel A: As conformational diversity
increases between apo and holo forms, the lowest RMSD to any of the forms increases
as well (Pearson correlation 0.76, p-value <0.001). Panel B: Likewise, the global
plDDT scores decrease with larger protein conformational diversity (Pearson
correlation -0.65, p-value <0.001).

To test this hypothesis, we explore families of homologous
proteins with experimentally based conformational diversity. These
families were obtained from the CoDNaS database using a
sequence-based clustering with 40% sequence identity and 70%
coverage. Each of the ~29000 protein entries in CoDNaS has an
associated maximum Cα-RMSD derived from comparing all the
conformers belonging to a given protein. This maxRMSD is taken as
the maximum conformational diversity the protein could have.
Clusters were further classified into homogeneous or heterogeneous
according to the range between the minRMSD and the maxRMSD for
each protein in each family (range < 4Å for homogeneous families, or
heterogeneous otherwise).

Mapping our 91 proteins to these clusters only retrieved 20
proteins distributed in 10 homogeneous and 10 heterogeneous
clusters. For each of these 20 proteins we studied the correlation
between their corresponding error in AlphaFold2 predictions
(estimated again as the lowest RMSD to any experimental conformer)
and the dispersion of the conformational diversity in all proteins from
the same family. We found that the heterogeneous clusters performed
worse than the homogeneous ones (average lowest RMSD values for
hetero and homogeneous families were 2.03Å and 1.31Å,
respectively; Wilcoxon p-value <0.005).

To further test this hypothesis, we repeated the estimation with
175 chosen proteins, one for each of the most populated clusters
described above (23.53 homologous proteins on average per cluster).
For each of these 175 proteins, we ran AlphaFold2 using ColabFold
and estimated the lowest RMSD, comparing the top obtained models
with the corresponding structure of the protein. We observed the same
trend as shown in Figure 6A (average lowest RMSD with mean values
of 1.96Å and 1.54Å for hetero and homogeneous families,
respectively; Wilcoxon p-value < 0.005).

To further explore if the model estimation is affected by
the flexibility of each family, we further classified the clusters in
'flexible' and 'rigid', with a flexible cluster defined with an average
maxRMSD >1.0Å, and a rigid cluster otherwise (Monzon, Zea,
Fornasari, et al., 2017). The same conclusions observed for

heterogeneous and homogeneous families can be derived using this
classification of rigidity (Figure 6B) (average lowest RMSD with
mean values 1.88Å and 1.44Å for flexible and rigid families,
respectively; Wilcoxon p-value < 0.001).

Figure 6: Distribution of model error, estimated as the lowest RMSD to the apo and
holo forms, as a function of the evaluation of the distribution of the conformational
diversity in 175 homologous families. Panel A contains families classified as
heterogeneous or homogeneous using the range of the proteins in each family (range <
4Å for homogeneous families, or heterogeneous otherwise). Panel B contains families
that were classified as flexible or rigid (average maxRMSD >1.0Å for flexible
clusters, and rigid< otherwise).

2.5 High flexibility regions are anti correlated with plDDT
score
We mentioned that structural differences between conformers could
be so tiny as the rotation of the side chains to large movements of
loops and domains. This section studies how more flexible regions
between apo and holo conformations are related to the plDDT score.
Using RMSF to measure protein flexibility between apo and holo
conformers, we studied how this parameter correlates with plDDT.
Taking only the models with the lowest RMSD to apo and holo forms,
we found that the correlation between RMSF and plDDT is -0.44
(Pearson p-value < 0.001). However, the absolute value of this
correlation increased when we used windows of different widths,
reaching a strongest correlation of -0.48 (Pearson p-value < 0.001)
with a window of 15 residues. In Figure 7 we represent these trends as
box plot representations, grouping observations in four intervals of
quality according to their plDDT scores. RMSF captures the
flexibility of the protein per position, as derived from the comparison
between apo and holo conformers. To study how the intrinsic
flexibility of each conformer relates with the plDDT, we used the
profile of the normalized α carbons B-factors obtained by performing
normal mode analysis for the apo form of the protein as described in
Methods. In this way a similar correlation of -0.42 (Pearson p-value
<0.001) was obtained.

Low values of plDDT have been related to the occurrence of
disordered regions (Jumper et al., 2021). However, according to our
results, low-scoring regions could also represent flexible regions
connecting ordered conformers, as observed for most of the proteins
in our dataset.

3    Discussion
AlphaFold's breakthrough in predicting protein 3D models has
certainly changed the way we study the protein structure-function
relationship. Full structuromes of key organisms have been made
available recently, along with easy-to-use utilities to run predictions. It
is also outstanding to note that most of the predictions made are of the
highest quality, mostly comparable with crystallographic resolution.
In this work we have studied how the conformational diversity of the
native state could be available through predictions and how in turn
this key feature of protein biology affects the performance of
predictions.

https://sciwheel.com/work/citation?ids=4164053&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4164053&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5724774&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4164053&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4163024&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4163024&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11380218&pre=&suf=&sa=0


Figure 7: Box plots showing the RMSF between apo and holo forms as a function of
the plDDT score, calculated by site (Panel A, left) or averaged in 15-residue windows
(Panel B, right). plDDT scores are grouped in four intervals of quality (0-50, 50-70,
70-90 and 90-100) as used by the original DeepMind paper. Models were selected
according to their lowest RMSD.

The first purpose is a practical one: Can we consider the top
predicted models as snapshots of the conformational ensemble that
describes the native state of proteins? Unfortunately, we can't. Only 2
out of 91 (~2%) proteins in our dataset showed models resembling the
holo and the apo forms with similar error, measured as the best
RMSD to a given form (Figure 2). For the rest of the proteins, it is not
possible to model both the apo and holo forms simultaneously with
the same low error as when considering a single conformer (Figure 3).
Far from disappointing, this observation was expected since a large
set of redundant protein structures (conformers) would have been
required during the neural network training processes
(Tunyasuvunakool et al., 2021) in order to predict conformational
diversity.

We also found that most of the predictions made resemble and are
mostly indistinguishable from the holo form of the studied protein
(67% of the dataset). This is an exciting result because holo forms of
proteins describe the binding capacity to a substrate or any other
biologically relevant ligand (see Figure 4). Jumper et al. mentioned
that AlphaFold could infer structures when the presence of a ligand is
predictable from the sequence (Jumper et al., 2021). We thought that
this finding could be explained due to a bias in the training process of
AlphaFold2. However, exploring the BioLip database (Yang et al.,
2013) to estimate the relative presence of apo and holo forms in PDB
shows about 64% of apo forms (a similar proportion observed in
CoDNaS, from which our dataset was obtained). We hypothesized
that holo forms could have a higher number of inter-residue contacts
and that these could have influenced the modeling process in
AlphaFold2. However, we did not detect differences in the number of
contacts when comparing holo and apo forms (the median number of
contacts are 3.40 and 3.44 for the apo and holo forms, respectively;
Wilcoxon p-value >0.5) (Supplementary Figure 4). Additionally we
did not detect differences between the radius of gyration in apo and
holo forms (Wilcoxon p-value >0.5, Supplementary Figure 5).
Apparently, differences in the number of directional polar interactions
in contrast to interactions between nonpolar residues can explain
differential flexibility patterns between holo and apo forms (Clark et
al., 2019; Gunasekaran and Nussinov, 2007). At this point, further
work is required to understand this bias fully.

Does conformational diversity affect AlphaFold predictions? This
second purpose of our work was a conceptual one, related to the
capability to recover evolutionary information associated with protein
flexibility and encoded in multiple alignments. We have found that the
AlphaFold prediction capacity worsens with the increasing
conformational diversity of the protein being studied (Figure 5). We
showed that this impairment is related with the heterogeneous
dynamic behaviors in families of homologous proteins. Additionally,
proteins from flexible homologous families are also difficult to predict

(Figure 6). Several works showed that conformational diversity
modulates the evolutionary process imprinting sequence information
with dynamic behavior (Zea et al., 2013; Parisi et al., 2015; Jeon et
al., 2011; Liu and Bahar, 2012; Morcos et al., 2013; Saldaño et al.,
2016). Due to functional divergence, protein families could show
different degrees of conformational diversity, making it difficult to
extract specific sequence information from multiple sequence
alignments for a given conformational motion. After the early and
well-established observation that structures are very well conserved
during evolution, it became evident that this conservation imposes
structural constraints on sequence divergence (Lesk and Chothia,
1980; Chothia and Lesk, 1986; Panchenko et al., 2005; Illergård et al.,
2009; Williams and Lovell, 2009). However, and more recently, we
showed that this sequence-structure relationship becomes fuzzy within
families with significant degrees of conformational diversity
(Monzon, Zea, Marino-Buslje, et al., 2017). Moreover, in protein
families with complex dynamical behavior (i.e., different degrees of
conformational diversity), coevolutionary analysis allowed to infer
inter residue contacts representing the most populated contacts among
the family's different structures, challenging the extraction of
sequence features characterizing specific conformational patterns (Zea
et al., 2018). It is then expected that proteins belonging to families
with heterogeneous flexibility behavior would be difficult to predict
from the evolutionary information used by AlphaFold2 (Figure 6 A
and B). During the revision of this manuscript two reprints suggested
that filtering and/or changing the alignment information could be
useful to predict different conformers using AlphaFold (del Alamo et
al., 2021; Heo and Feig, 2021). Although their approaches were
applied to very few examples, they support that sampling of alignment
information could be a promising resource to predict different
conformations.

Finally, our results suggest that the plDDT score can be used to
scan flexible regions between ordered conformers. It was pointed out
that plDDT could be helpful to predict disordered regions, but we can
speculate that, as there is a continuum in ordered-disordered proteins
(Davey, 2019), there could exist a range of plDDT thresholds to detect
different sorts of protein flexibility. All the proteins in the main
dataset are mostly ordered, with regions of different flexibility and
less than 15% of disordered segments. The trend shown in Figure 7
indicates that plDDT could capture the presence of flexible regions,
defining the conformational plasticity between apo and holo forms.
We think that our results provide useful information to further
improve 3D model prediction using AlphaFold2.

4    Materials and Methods
4.1 Description of the dataset
The set of apo and holo structures was obtained from the database of
Conformational Diversity in the Native State of proteins (CoDNaS)
(Monzon et al., 2016). CoDNaS is a redundant collection of PDB
structures for the same sequence that can be taken as snapshots of
protein dynamism. The conformational diversity for each protein was
estimated as the C⍺-RMSD between apo and holo forms. In order to
obtain a well-curated dataset containing protein motions related to a
given biological activity we followed several specific quality criteria:
(i) Only crystal structures with resolution < 3.9Å were considered; (ii)
structures must not have missing residues; (iii) there must be 100%
sequence identity between the conformers; (iv) structural
deformations between pairs of conformers were associated with a
given biological process based on experimental evidence; (v) no
reported mutations; (vi) no disordered regions; and (vii) visual
inspection was used to confirm an existing conformational diversity
(e.g., movements should not be limited to flexible ends or arise from
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errors in the structural alignment). This allowed us to finally obtain
apo-holo pairs of conformers for a total of 91 protein structures.

4.2 Predictions and comparison of structures
Predicted models for each protein in the dataset were obtained using
ColabFold v1.0 (Mirdita et al., 2021) due to its easy access through
Google Colab Notebooks without a significant decrease in prediction
performance. Runs were performed using no templates, automatic
alignments, Amber energy minimization and num_recycles = 3
(default value). For each run we used the 5 top models derived from
the energy minimization. Each model was structurally compared
between each other and against the correspondent apo and holo
structures. As sequences between conformers and models are
identical, the alignments are straightforward. We then quantified the
structural similarity using the C⍺ Root Mean Square Deviation
(C⍺-RMSD).

4.3 Evolutionary information
We sequentially clustered the CoDNaS database into homologous
families containing sequences with more than 40% sequence identity
and 70% coverage using CD-HIT. Each protein in CoDNaS has an
associated maximum RMSD (maxRMSD) derived from the pairwise
comparison of all its conformers. The maxRMSD is taken as the
extent of the protein conformational diversity. A total of 175
well-populated clusters were taken (>8 proteins per cluster). A
random protein from each cluster was modeled using ColabFold
following the procedure mentioned above. The error of this model
estimation was calculated as the lowest RMSD obtained from the
comparison of any of the top 5 models with the crystallographic
structures of the protein.

4.4 B-factors analysis
Temperature factors or B-factors (Bi) have been obtained performing
normal mode analysis (NMA) using the coarse-grained Elastic
Network Model (Tirion, 1996; Atilgan et al., 2001) that considers the
protein as an elastic network with nodes linked by springs within a
cutoff distance rc. Herein the Cα are taken as nodes, and the value of rc

is varied from 7Å to 15Å for X-ray structures in order to optimize the
correlation between theoretical and experimental B-factors, while rc=
11Å is used for NMR structures. We perform the NMA for the apo
form of the protein on the basis that normal modes obtained with the
apo form of a given protein give a better description of the
conformational change than those obtained with the holo form (Tama
and Sanejouand, 2001) . The normalized B-factor Bi

’ of atom i is
obtained as Bi

’ =(Bi-<B>)/σ(B), being <B> and σ(B) the average and
standard deviation of the B-factor distribution for the corresponding
protein structure, respectively. Each Bi

’ was averaged over the
neighbors of the ith residue within a radius of 7Å.

4.5 Inter residue contacts and Rg analysis
Inter residue contacts have been obtained using the RING 2.0 web
server (Piovesan et al., 2016). Interacting pairs were identified
following the closest contact strategy, i.e., all atoms are included to
measure distances between residue pairs. While every pair of residues
forms multiple interactions, the most energetic interaction per pair
was considered. Interactions were defined distinguishing disulfides,
salt bridges, hydrogen bonds, and aromatic interactions from generic
van-der-Waals contacts. Radii of gyration were calculated using
Pymol (http://pymol.org).

4.6 Motions classification

We have used the DynDom software v1.5 (Taylor et al., 2013) to
classify our dataset into proteins with “domain movements” (two or
more domains presenting hinge movements) and proteins with “loop
movements” (one domain, movements due to loops).

4.7 Apo-holo characterizations
Classification of the 91 proteins in the dataset was done by manual
curation following the bibliography. In parallel, the database of
biological ligands BioLip (Yang et al., 2013) in its most recent
version (October 01, 2021) was used to crosslink all the chains of the
PDB (October 2021, total chains 661494) and CoDNaS v3 (March
2021, total chains 430151). If at least one biological ligand is found
for a chain, it is assigned in the holo category; otherwise, it is
considered as an apo conformer.

Data and code availability
The data and code used in this manuscript are publicly available at
https://gitlab.com/sbgunq/publications/af2confdiv-oct2021.
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