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DEVS simulation of continuous and
hybrid systems
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Abstract
In this paper, we introduce a novel parallelization technique for Discrete Event System Specification (DEVS) simulation
of continuous and hybrid systems. Here, like in most parallel discrete event simulation methodologies, the models are
first split into several sub-models which are than concurrently simulated on different processors. In order to avoid the
cost of the global synchronization of all processes, the simulation time of each sub-model is locally synchronized in a
real-time fashion with a scaled version of physical time, which implicitly synchronizes all sub-models. The new methodol-
ogy, coined Scaled Real-Time Synchronization (SRTS), does not ensure a perfect synchronization in its implementation.
However, under certain conditions, the synchronization error introduced only provokes bounded numerical errors in
the simulation results. SRTS uses the same physical time-scaling parameter throughout the entire simulation. We also
developed an adaptive version of the methodology (Adaptive-SRTS) where this parameter automatically evolves during
the simulation according to the workload. We implemented the SRTS and Adaptive-SRTS techniques in PowerDEVS , a
DEVS simulation tool, under a real-time operating system called the Real-Time Application Interface (RTAI) . We tested
their performance by simulating three large-scale models, obtaining in all cases a considerable speedup.
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1 Introduction

Computer simulation has become a crucial tool for studying,

developing, and evaluating mathematical models of systems

of different domains (physics, economics, biology, etc.).

Continuous systems are usually represented by sets of

differential equations. Since most differential equations

lack analytical solutions, they must be discretized to simu-

late the continuous systems they represent. To this end,

most numerical integration methods approximate the dif-

ferential equations by discretizing the time variable trans-

forming them into sets of difference equations. 1

Some recently developed numerical methods, however,

are based on state discretization. These methods, called

Quantized State Systems (QSS)1 transform the originally

continuous systems into discrete event systems that can be

represented by the Discrete Event System Specification

(DEVS) formalism.2 The usage of QSS algorithms then

allows the DEVS formalism to represent and to simulate

continuous and hybrid systems. DEVS models can be eas-

ily simulated, but when the models are large, the computa-

tional requirements become critical and parallelization

techniques must be employed.

Parallel Discrete Event Simulation (PDES) is a tech-

nique that can be used for the simulation of large DEVS

models in multi-core or cluster environments. In PDES,

the model is first split into several sub-systems called

physical processes . Then, the processes are simulated con-

currently on different logical processors (LPs).

Compared with simulating a large model in a sequential

manner , PDES reduces the computational cost but it intro-

duces a new problem related to the need of synchroniza-

tion between processes. Synchronization between different

LPs is required since each process needs to know the

results of other processes in order to correctly simulate its

own sub-system. If the LPs are not correctly synchronized,

the simulation may receive events out of order (with time-
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stamps lower than the actual simulation time), which can

lead to an incorrect result. This is called a causality

constraint.

There are many approaches to overcome this problem.

One of the earliest was the CMB algorithm proposed by

Chandy, Misra, and Bryant.3–5 CMB implements a conser-

vative synchronization where none of the LPs advances its

simulation time until it is safe. A different approach is that

proposed by Jefferson,6 where an optimistic synchroniza-

tion mechanism is introduced relaxing the causality con-

straint. The LPs are allowed to advance their simulation

time as fast as they can, and proper actions are taken when

inconsistencies are detected. Finally, a technique called

NOTIME7 explores the effects of not synchronizing the

processes at all.

In this article, we present a novel PDES technique, spe-

cialized for DEVS approximations of continuous and hybrid

system, called Scaled Real-Time Synchronization (SRTS).

The basic idea is to synchronize each LP’s simulation time

with a scaled version of the physical time or wall-clock time.

As all LPs are synchronized with the physical time, they are

indirectly synchronized against each other.

As our approach is intended for continuous and hybrid

systems, events represent continuous trajectories. Thus,

synchronization errors provoke numerical errors. Provided

that the errors are bounded, they do not invalidate the final

results, hence we can relax the causality constraints.

While in SRTS the user must provide the real-time

scaling factor as a simulation parameter, we also devel-

oped an Adaptive-SRTS (ASRTS) algorithm where the

scaling factor is adjusted dynamically depending on the

system workload.

We have implemented SRTS and ASRTS in

PowerDEVS,8 a general-purpose open-source DEVS simu-

lator. PowerDEVS8 implements the complete family of

QSS methods on which this work is based.1,19–13 As we

need a precise synchronization with physical time in order

to achieve a precise synchronization between the pro-

cesses, the implementation runs under a real-time operat-

ing system called the Real-Time Application Interface

(RTAI).14

This article is organized as follows. Section 2 intro-

duces the main concepts used in the rest of the paper, and

Section 3 describes some related work in the field. Then

Sections 4 and 5 introduce and describe the SRTS and

ASRTS algorithms, the main contributions of this article.

Finally, Section 6 shows some application examples, and

Section 7 concludes the article and discusses some lines of

future work.

2 Background

In this section, we introduce a few basic concepts and

ideas that will be used in the article . We first describe the

DEVS formalism and the QSS methods, a family of

numerical integration methods for continuous and hybrid

system simulation. Then, we describe the RTAI real-time

operating system and the DEVS simulation tool called

PowerDEVS. Finally, we provide a brief introduction to

parallel architectures.

2.1 DEVS

DEVS stands for Discrete EVent System specification, a

formalism introduced originally by Bernard P Zeigler.15

A DEVS model processes an input event trajectory and,

according to that trajectory and its own initial conditions,

provokes an output event trajectory.

An atomic DEVS model is defined by the following

structure:

M = (X , Y , S, δint, δext, λ, ta)

where:

• X is the set of input event values, i.e. the set of all

possible values that an input event can adopt;
• Y is the set of output event values;
• S is the set of state values;
• δint, δext, λ and ta are functions that define the sys-

tem dynamics.

Each possible state s (s∈ S) has an associated time

advance computed by the time advance function ta(s)

(ta(s) : S →<þ0 ). The time advance is a non-negative real

number specifying how long the system remains in a given

state in the absence of input events.

Thus, if the state adopts the value s1 at time t1, ta(s1)

units of time later (i.e. at time t1 + ta(s1)) the system

undergoes an internal transition, changing its state from s1

to s2. The new state is calculated as s2 = δint(s1). Function

δint (δint : S → S) is called the internal transition function.

When the state transitions from s1 to s2, an output event

is produced with value y1 = λ(s1). Function λ (λ : S → Y )

is called the output function. In this way, the functions ta,

δint, and λ define the autonomous behavior of a DEVS

model.

When an input event arrives, the state changes instanta-

neously. The new state value depends not only on the

input event value but also on the previous state value and

the elapsed time since the last transition. If the system

entered state s2 at time t2 and then an input event arrives

at time t2 + e with value x1, the new state is calculated as

s3 = δext(s2, e, x1) (note that ta(s2)> e). In this case, we

say that the system performs an external transition.

Function δext (δext : S ×<þ0 ×X → S) is called the external

transition function. No output event is produced during an

external transition.
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The formalism presented is also called classic DEVS to

distinguish it from parallel DEVS,2 which consists of an

extension of the classic DEVS formalism designed to

improve the handling of simultaneous events.

Atomic DEVS models can be coupled. DEVS theory

guarantees that the coupling of atomic DEVS models

defines new DEVS models (i.e.DEVS is closed under cou-

pling) and, thus, complex systems can be represented by

DEVS in a hierarchical way.2

Coupling in DEVS is usually represented through the

use of input and output ports. With these ports, the cou-

pling of DEVS models becomes a simple block-diagram

construction. Figure 1 shows a coupled DEVS model N

that results from coupling models Ma and Mb.

According to the closure property, the model N can

itself be interpreted as an atomic DEVS and can be

coupled with other atomic or coupled models.

2.2 Quantized state systems

A continuous time system can be written as a set of ordi-

nary differential equations (ODEs):

_x(t)= f(x(t), u(t)) ð1Þ

where x∈<n is the state vector and u∈<m is a vector of

known input functions.

The mathematical model (1) can be simulated using a

numerical integration method. While conventional integra-

tion algorithms are based on time discretization, a new

family of numerical methods was developed based on state

quantization.1 The new algorithms, called QSS methods,

approximate ODEs like that of Equation (1) by DEVS

models.

Formally, the first-order accurate QSS method (QSS1)

approximates Equation (1) by

_x(t)= f(q(t), v(t)) ð2Þ

where each pair of variables qj and xj are related by a hys-

teretic quantization function.

The presence of a hysteretic quantization function relat-

ing qj(t) and xj(t) implies that qj(t) follows a piecewise

constant trajectory that only changes when the difference

with xj(t) becomes equal to a parameter �qj, called quan-

tum. The variables qj are called quantized variables. They

can be viewed as piecewise constant approximations of

the corresponding state variables xj. Similarly, the compo-

nents of v(t) are piecewise constant approximations of the

corresponding components of u(t).

Since the components qj(t) and vj(t) follow piecewise

constant trajectories, it results that the state derivatives

_xj(t) also follow piecewise constant trajectories. Then, the

state variables xj(t) have piecewise linear evolutions.

Each component of Equation (2) can be thought of as

the coupling of two elementary sub-systems, a static one,

_xj(t)= fj(q1, . . . , qn, v1, . . . , vm) ð3Þ

and a dynamical one

qj(t)=Qj(xj( · ))=Qj

ð
_xj(τ)dτ

� �
ð4Þ

where Qj is the hysteretic quantization function (it is not a

function of the instantaneous value xj(t), but a functional

of the trajectory xj( · )).

Since the components vj(t), qj(t), and _xj(t) are piecewise

constant, both sub-systems have piecewise constant input

and output trajectories that can be represented by

sequences of events. Then, subsystems (3) and (4) define a

relation between their input and output sequences of

events. Consequently, equivalent DEVS models can be

found for these systems, called static functions and quan-

tized integrators, respectively.1 The piecewise constant

input trajectories vj(t) can be also represented by sequences

of events, and source DEVS models that generate them

can be easily obtained.

Then, the QSS approximation (2) can be exactly simu-

lated by a DEVS model consisting of the coupling of n

quantized integrators, n static functions, and m signal

sources. The resulting coupled DEVS model looks identi-

cal to the block diagram representation of the original sys-

tem of Equation (1), as Figure 2 shows.

Based on the idea of QSS1, a second-order accurate

method was developed replacing the piecewise constant

approximations by piecewise linear ones. The method,

called QSS2, can be implemented using DEVS in the same

way as QSS1. However, the trajectories are now piecewise

linear instead of piecewise constant. Thus, the events carry

two numbers that indicate the initial value and the slope of

each segment. Also, the static functions and quantized

integrators are modified with respect to those of QSS so

that they can take into account the slopes.

Following the idea of QSS2, the third-order accurate

QSS3 method16 uses piecewise parabolic trajectories. The

family of QSS methods has been further augmented with

methods for stiff and marginally stable systems (Backward

QSS [BQSS] and Centered QSS [CQSS] of first order,13

Ma
Mb

N

Figure 1. Coupled DEVS model.
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and Linearly Implicit stiff QSS methods of orders 1 and 2

[LIQSS1 and LIQSS2]11).

2.3 RTAI

RTAI is a real-time operating system (RTOS) that sup-

ports several architectures (i386, PowerPC, ARM). RTAI

is an extension of the Linux kernel to support real-time

tasks to run concurrently with Linux processes. In order to

enable real-time simulation, RTAI employs a method that

was first used in RT-Linux.17

The Linux kernel is not by itself a RTOS. It does not

provide real-time services, and in some parts of the kernel,

interrupts are disabled as a method of synchronization (to

update internal structures in an atomic way). The periods

of time when interrupts are disabled lead to a scenario

where the response time of the system is unknown and

time deadlines may therefore be missed.

To avoid this problem, RTAI inserts an abstraction

layer underneath the Linux kernel. In this way, Linux

never disables the real hardware interrupts. The Linux ker-

nel is run on top of another micro-kernel (RTAI + Adeos;

Adeos18,19 is the abstraction layer used in RTAI, Adeos

implements the concept of an interrupt domain, see http://

home.gna.org/adeos/) as user processes. All hardware

interrupts are captured by this micro-kernel and are for-

warded to Linux (if Linux has interrupts enabled).

Another problem running real-time tasks under Linux

is that the Linux scheduler can take control of the proces-

sor from any running process without restrictions. This is

unacceptable in a real-time system. Thus, in RTAI, all

real-time tasks are run in the micro-kernel without any

supervision by Linux. Moreover, these processes are not

seen by the Linux scheduler.

Real-time tasks are managed by the RTAI scheduler.

There are two different kinds of processes, Linux processes

and RTAI processes. RTAI processes cannot make use of

Linux services (such as the File system) and vice versa. To

avoid this problem, RTAI offers various IPC mechanisms

(Pipes, Mailboxes, Shared Memory, etc.).

RTAI provides the user with basic services to imple-

ment real-time systems:

Deterministic interrupt response time: An interrupt is

an external event to the system. The response time to this

event varies from one computer to another, but RTAI guar-

antees an upper limit (on each computer), which is neces-

sary to communicate with external hardware, for example

a data acquisition board.

Inter-process communication (IPC): RTAI supports a

number of different methods of IPC, such as semaphores,

pipes, mailboxes, and shared memory. These IPC mechan-

isms can be used for the communication between processes

running in real time and normal Linux processes.

High-accuracy timers: When developing real-time

systems, the time handling accuracy is very important.

RTAI offers clocks and timers with nanosecond

(1:0× 10�9 s) precision. On i386 architectures, these

timers use the processor time stamp; therefore, they are

very precise.

Interrupt handling: RTAI allows the user to capture

hardware interrupts and treat them with custom user hand-

lers. Normal operating systems (such as Linux, Windows)

hide hardware interrupts from the user, making the devel-

opment of communication with external hardware more

cumbersome (one needs to write a kernel driver).

Multiprocessor support: RTAI supports also multi-

processor architectures enabling the user to run simultane-

ously different real-time tasks on separate processors.

\tex{$x_1$} \tex{$q_1$
\tex{$f_1(\cdot)$}

\tex{$x_n$} \tex{$q_n$
\tex{$f_n(\cdot)$}

\tex{$q_1$}

\tex{$q_1$}

\tex{$q_n$}

\tex{$q_n$}

\tex{$v(t)$}

\tex{$v(t)$}

\tex{$HQI$}

\tex{$HQI$}

\tex{$F_1$}

\tex{$F_n$}

Figure 2. Coupled DEVS model of a QSS approximation.
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2.4 PowerDEVS and real time

PowerDEVS8 is a general-purpose tool for DEVS simula-

tion. It consists of two main modules: the graphic inter-

face that allows the user to describe DEVS models in a

block-diagram fashion, and the simulation engine that

simulates the models.

In order to simulate a model, PowerDEVS first trans-

lates it into a C++ description and compiles it together

with the simulation engine. In spite of being usable as a

general-purpose DEVS simulator, PowerDEVS was pri-

marily designed to simulate continuous and hybrid systems

through the use of QSS methods. The standard distribution

comes with a comprehensive library of atomic models for

hybrid system simulation based on these methods. Users

can add new atomic models by defining the dynamics of

the DEVS model in C++.

PowerDEVS can be run under RTAI synchronizing the

simulation with the physical (wall-clock) time obtaining an

accuracy of the order of 1 μs.8

2.5 Parallelization platforms

Parallel computing is a form of computation, in which

many calculations are simultaneously carried out on sepa-

rate processors. Large problems can usually be divided

into smaller ones that can then be solved concurrently.

There are different levels of parallelism: instruction

level, data level, task level, etc. They differ in many

aspects, such as shared or distributed memory, single or

multiple processors, the type of communication mechan-

ism they employ, such as message passing, or shared

memory, etc.

We shall focus on task-level parallelism, where each

LP runs a different piece of code with different data, i.e.

according to Flynn’s taxonomy,20 we operate on multiple

instructions and multiple data (MIMD) streams.

In particular, we shall work with a multi-core architec-

ture21 as this offers many desirable features for our imple-

mentation, such as shared and unified memory, local

communication (on chip), and a generic instruction set.

There exist also other architectures, such as the Message

Passing Interface (MPI)22 and general-purpose computing

on graphics processing units (GPGPU),23 but they both

have their drawbacks. MPI is a message-passing protocol.

This protocol is particularly well suited for clusters.

GPGPU does not fit our purposes well, since the architec-

ture lacks shared memory, the code executed on each pro-

cessor must be identical, synchronization is very expensive,

and the instruction set is not as generic as for a PC.

3 Related work

In this section, we review previous work and similar

developments.

3.1 Parallel discrete event simulation

Since the beginning of the 1980s, much research has been

published on algorithms for synchronizing parallel simula-

tion of discrete event systems.

One of the first approaches to the problem was pro-

posed by Chandy, Misra, and Bryant.3–5 They suggested a

conservative distributed algorithm, whereby processes

communicate only by message passing without shared

memory and with a centralized coordinator.

The synchronization is achieved by enforcing the cor-

rect order of all messages, making all LPs wait until it is

safe to produce the next event. By safe we mean that the

LP producing the next event is certain that it will never

receive a message with an earlier time-stamp than its own

logical simulation time.

The authors prove formally the correctness of the algo-

rithm and show that no deadlock can occur by the use of

null messages. The memory consumption of the algorithm

is fixed as it does not require state saving at all. Chandy

and Misra24 also proposed an alternative scheme that

avoids the use of null messages and allows deadlocks to

happen, which are then broken.

The major drawback of this approach is that the amount

of actual parallel computing done is greatly diminished by

the mechanism used to enforce the causality constraint. By

including lookahead and structure analysis, the efficiency

of the algorithm can be improved, but the achievable

speedup is highly dependent on the model.

Another solution was proposed by Jefferson6 who intro-

duced an optimistic synchronization method for parallel

simulation, called Time Warp. Each LP carries its own

logical time and advances as if there were no need for syn-

chronization at all. If an event with a smaller time-stamp

than the simulation time is received (a straggler event), the

LP rolls back to a previously saved state where it is safe to

receive that event. It also un-sends (by using anti-mes-

sages) all events that were sent out in the rollback period.

This involves saving state values in each LP for possible

rollbacks and, thus, the memory requirements are larger

than for other algorithms.

Both the state saving and the anti-message scheme (that

may produce a cascade of rollbacks) are computationally

expensive and, consequently, many extensions and addi-

tions have been proposed to the original algorithm to avoid

rollbacks and reduce the number of state savings required.

A complete review of these extensions can be found in an

article by Liu.25

More recently, an algorithm called NOTIME7 was pro-

posed where the simulation is performed without any syn-

chronization. Using this approach, the different LPs simulate

their physical processes as fast as they can. Straggler events

are allowed and accepted as correct. This introduces some

error in the simulation since the logical time in the different

LPs will vary from one processor to another.
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While this approach exploits the parallelism optimally

well, the technique can produce incorrect results. Yet it

may be an acceptable technique in situations where a user

is willing to trade simulation accuracy for simulation

speed.

The correctness of the results depends indirectly on

how the work load is balanced across different LPs. If the

work load is unevenly distributed, some LPs will run

faster, while those with a heavier workload will run more

slowly.

Tang et al. studied an optimistic PDES using reverse

computations applied to partial differential equation prob-

lems obtaining linear speedup for up to four processors.26

Similar studies have been reported that applied PDES algo-

rithms to the simulation of physical systems, such as an

article by Bauer and Page27 (based on a paper by Nutaro28)

concluding that for certain kinds of problems optimistic

PDES is not suitable if not accompanied by dynamic load

balancing.

Results have also been reported concerning the distrib-

uted real-time simulation of systems other than differential

equations systems. Adelantado et al.29 present a real-time

capable HLA middleware and a formal model for its vali-

dation. As we shall see, Adelantado et al.’s technique is

related to our work as it also uses a local wall clock to

synchronize different federates. On the other hand, he

assumes in his formal model that each federate executes

periodically with a known worst-case execution time. This

assumption does not hold for our types of applications

since the execution time of each federate is often not

known in advance and may vary during the simulation.

3.2 Parallel and real-time DEVS simulation

Many articles address the problem of simulating DEVS

models in parallel using any of the aforementioned

approaches. Jafer and Wainer30 present CCD+ + , a con-

servative DEVS and Cell-DEVS simulator, and they com-

pare this approach with an optimistic one. Kim et al.31

present a Time Warp-based methodology for distributed

DEVS simulation. A mixed approach combining conserva-

tive and optimistic strategies that is able to optimally

exploit the lookahead is investigated by Praehofer and

Reisinger.32 Liu33 explores a light version of the Time

Warp mechanism for a DEVS (and Cell-DEVS) simulator

on the Cell processor. He introduces the Lightweight Time

Warp (LTW) and Multicore Accelerated DEVS System

(MADS) as means to overcome Time Warp bottlenecks

and to hide the complexity of multicore programming

from the general user.

Finally Hong et al.34 proposed an extension to the

DEVS formalism, called Real-Time DEVS (RTDEVS), for

modeling real-time systems. The main idea of RTDEVS is

to fill time advances with executable activities and to spe-

cify time bounds required for each activity. They also

implemented a DEVS executive (or DEVS simulator) that

synchronizes the wall clock with the simulation time. As

shall be discussed (Section 5.3), their technique is also

related to our work.

3.3 Parallel simulation of QSS approximations of
continuous systems

Some previous results have also been reported concerning

the parallelization of simulations of DEVS models result-

ing from the application of QSS algorithms to continuous

systems.

Nutaro35 investigated an implementation of the QSS1

algorithm on a parallel DEVS simulator. The author stud-

ied the use of the Time Warp approach and concluded that

it is unsuited for simulating large continuous systems. By

using a (first-order accurate) QSS, he simulated a sod

shock tube problem achieving a speedup that increased to

a maximum factor of three when using up to six proces-

sors, but quickly decreased when using more processors.

Another implementation of QSS on a multi-processor

architecture has been investigated by Maggio et al.36 This

implementation was realized using CUDA (a GPGPU lan-

guage). Unfortunately as was already mentioned earlier in

this article, graphical processing units (GPUs) offer a lim-

ited instruction set, and synchronization tasks are very

expensive. Moreover, GPUs follow a single instruction

multiple data (SIMD) stream under Flynn’s taxonomy,20

where all processors execute the same code in parallel,

which significantly reduces the performance when the

code has diverging branches.

These issues limit the classes of applications were

GPUs can be efficiently used. In the example analyzed in

the cited reference, a speedup of up to a factor of 7.2 has

been reported for a system with 64 states using 64

processors.

4 Scaled Real-Time Synchronization

In this section, we present the SRTS technique for PDES

synchronization.

4.1 Basic idea

As mentioned already, several different PDES techniques

have been proposed in the literature that are based on

either conservative, optimistic, or unsynchronized

algorithms.

DEVS models resulting of the application of QSS meth-

ods to large-scale continuous systems have particular

features:

1. Each event originates at a quantized integrator and

is instantaneously transmitted to other quantized

6 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)



integrators through the static functions depending

on the corresponding state variable.

2. The events received by quantized integrators

change their future evolution, but they do not pro-

voke instantaneous output events.

3. Different quantized integrators provoke output

events at different times.

4. Each event represents a section of a piecewise

polynomial function.

On the one hand, the second feature implies that synchro-

nization is usually necessary and that techniques such as

NOTIME can rarely be used.

On the other hand, if the synchronization is strict so

that it respects the ordering of all events, there will be very

few calculations performed in parallel. The reason for this

assertion is simple. Each time an integrator provokes an

event, the event is transmitted to a few static functions,

and through them to a few quantized integrators.

A conservative algorithm will not allow any other LP to

advance the simulation time until those computations have

been completed. Consequently, almost nothing is gained

by parallelization.

An optimistic algorithm will allow the simulation time

of other LPs to advance, but as soon as the effect of an

event is propagated to them, a rollback mechanism will

need to take place. Rollback in a large continuous system

is impractical, as this will consume a large amount of

memory and time and, furthermore, it is difficult to assess

in advance, how much time is going to be used up by the

rollback.

To overcome these difficulties, we propose a technique,

in which we perform a non-strict synchronization.

Recalling that events represent sections of polynomials,

errors in the synchronization imply a bounded numerical

error in the trajectories transmitted from one process to

another.

As with other PDES techniques, SRTS divides the over-

all model into sub-models representing physical processes,

and each of these processes is simulated on a different

LP.

In order to avoid the inter-process synchronization over-

head, instead of synchronizing the simulation time between

all LPs, we synchronize in SRTS the simulation time of

each LP with the physical (wall-clock) time.

The only communication between different LPs takes

place when events are transmitted from one LP to another.

These events are transmitted using RTAI’s mailbox IPC

mechanism.14

Each LP synchronizes with the wall clock in the fol-

lowing way. If the next event in the LP is scheduled to

occur after τ units of simulation time, the LP waits until

the wall clock advances by τ=r units of physical time. We

call r the real-time scaling factor. It is a parameter that

must be chosen according to the speed, at which the sys-

tem can be simulated.

Once the waiting period is completed, the LP computes

the output event and recomputes the state. When the out-

put event needs to be propagated to sub-models belonging

to different LPs, a time-stamped message containing the

event is sent to the corresponding mailboxes.

During the waiting period, each LP checks for messages

arriving at its mailboxes. Whenever a message arrives, the

LP processes the event making use of the time-stamp,

recomputes the state, and, if the recomputed next event is

scheduled after the current time, it waits again.

In Figure 3, a time diagram is shown where two LPs

are synchronized using SRTS. Initially both LPs are wait-

ing. At logical simulation time t1 (scaled wall time t1=r),

LP A computes its next event. This computation takes �1

Figure 3. Time diagram of the SRTS technique
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units of wall time. Then LP A waits until t2 is reached (at

t2=r of scaled wall time) when it emits its output event, i.e.

makes an internal transition, and then goes back to wait.

This event is propagated to LP B that computes its external

transition processing the received event (consuming �2

units of wall time), schedules its next event to occur at t3,

and goes back to wait. This cycle is repeated until the final

(logical) time is reached.

Implementing this scheme in an abstract simulator,

there can be no straggler events; the only problem that

could arise concerns simultaneous events in different LPs,

but they have no consequences when simulating a QSS

approximation. In a real implementation, however, strag-

gler events can appear, since neither the synchronization

nor the communication methods are perfect, and also the

computation of each event consumes some time.

Yet, as was mentioned before, bounded synchronization

errors in the context of QSS simulation provoke in most

cases only bounded numerical errors in the trajectories

transmitted between LPs.

4.2 SRTS technique

As with other PDES techniques, SRTS requires that the

model first be split into as many physical processes as

there are different LPs to be used. In this article, we shall

not discuss any methodology for efficiently partitioning a

model, but many publications can be consulted that

address this issue.37–40

We consider that each LP holds a coupled DEVS sub-

model, and those sub-models are coupled through input

and output ports modeling the interactions between the

sub-systems. Figure 4 shows the coupling structure of a

model M divided into four sub-models simulated on four

different LPs.

4.2.1 Simulation startup. A sequential DEVS simulation

invokes first an initialization routine that sets the initial

state of the model, the parameters, etc. Then, the simula-

tion starts.

In SRTS, after each sub-model has been initialized, all

simulation threads must start at the same wall-clock time

in order to ensure synchronization between different LPs.

To accomplish a simultaneous startup, a barrier is used.

All simulation threads are launched and the ith thread starts

in the following way:

1. Set the shared memory variable flag½i�= true.

2. Wait until flag½j�= true for all j 6¼ i.

3. Measure the initial wall-clock time (t0½i�) of the

LP.

4. Start the simulation routine.

The initial wall-clock time is then used to compute the

physical time from the beginning of the simulation, by

subtracting it from the measured wall-clock time.

4.2.2 Simulation algorithm. The SRTS simulation algorithm

can be described as follows:

1. Compute the time of next event tn of the sub-

model.

Figure 4. Coupling structure of SRTS.
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2. If tn > tf (final simulation time), then set tn : = tf .

3. Wait until the scaled physical time reaches the

simulation time (i.e. tp=r = tn) or until a message

arrives.

4. If a message arrives, go to step 10.

5. If tn = tf end of simulation.

6. Advance the simulation time to t : = tn.

7. Compute and propagate the output event inside

the sub-model (external transition).

8. If the event propagates to other sub-models, send

messages to the corresponding LPs.

9. Recompute the state of the model causing the

event (internal transition) and return to step 1.

10. Advance the simulation time t to the value con-

tained in the message time-stamp.

11. Propagate the event inside the sub-model (exter-

nal transition) and return to step 1.

This algorithm works well provided that every LP sends

and receives the messages at the correct time. To send a

message at the correct time, a LP must finish the corre-

sponding calculations before that time, i.e. it should not be

in overrun. We shall discuss this issue next.

4.2.3 Overrun policy. Overrun situations can be minimized

by setting a sufficiently small value for the real-time factor

r. However, we want r to be as big as possible in order to

simulate fast. Also, even choosing a very small value for r,

real operating systems have latency, and overrun situations

occur often.

When a LP is in overrun, it continues simulating with-

out checking for input events. The reason is that input

events arriving are in the future with respect to the logical

time of the LP in overrun. Thus, it is better to process

arriving messages only after the overrun situation has

finished.

4.2.4 Message handling. As mentioned earlier, events sent

to sub-models belonging to different LPs are transmitted

through time-stamped messages. It can happen that a sub-

model is in overrun or busy computing state transitions

while a message is sent to it. If it does not finish its job

before a new message arrives, we face two options. We

can queue the messages until the LP is able to process

them, or we can discard some of the messages.

While in the context of general DEVS models queueing

the messages seems the most reasonable choice, we recall

that SRTS is intended to simulate continuous systems

where events represent changes in trajectories.

If at time t the LP finishes its job and realizes that there

are two input messages in the same mailbox waiting to be

processed, one corresponding to time t1 and the other to

time t2 with t1 < t2 < t, it serves no purpose to process the

older message. It is already late, and the change in the

trajectory it represented has been ignored. However, it

makes sense to process the change in t2 that contains more

recent information about the trajectory.

For this reason, each sub-model in SRTS uses one mail-

box for each input port (i.e. one mailbox per input trajec-

tory), and each mailbox has capacity 1. No matter if the LP

was able to read it or not, each message at the mailbox is

overridden by the arrival of a new message.

4.3 SRTS and numerical errors in QSS methods

The use of SRTS implies that messages sent between LPs

may be received at incorrect times. Since LPs do not check

for input messages when they are in overrun, they will not

receive messages with time-stamps greater than the logical

time. In other words, they never receive messages from the

future. Synchronization errors always imply that messages

arrive late.

Let us suppose that we use SRTS with two processors

to simulate a QSS approximation of a high-order system:

_x(t)= f(q(t), v(t))

To this end, we split the system as follows:

_xa(t) = fa(qa(t), qb(t), v(t))

_xb(t) = fb(qa(t), qb(t), v(t))

where

x= ½xa xb�T; q= ½qa qb�
T; f = ½fa fb�T:

The delay introduced by the SRTS mechanism implies that

qa is received with a delay by the LP that computes xb,

and vice versa. Thus, the QSS approximation takes the

form

_xa(t) = fa(qa(t), qb(t � τb(t)), v(t))

_xb(t) = fb(qa(t � τa(t)), qb(t), v(t))

where τa(t) and τb(t) are the communication delays

between the LPs (including latency and overrun effects,

and delays affected by the real-time scaling factor).

We shall discuss later some implementation issues that

ensure that the delays are bounded. Depending on some

features of the original ODE (input-to-state stability prop-

erties12), the presence of bounded delays will only provoke

a numerical error that will be superposed to that introduced

by the QSS approximation itself. Although this analysis

can be easily extended to systems with N LPs, we do not

intend to perform a formal study of stability and numerical

error bounds related to the usage of SRTS in this article. It

is, however, worth mentioning that the numerical error

introduced by SRTS is minimized when latency and over-

run are minimized.
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4.4 Implementation of SRTS on PowerDEVS -RTAI

We implemented the SRTS algorithm in PowerDEVS on a

multicore architecture. We chose PowerDEVS because it

implements the whole family of QSS methods and can run

under a RTOS (RTAI). The usage of a RTOS is crucial for

SRTS since, as explained before, the delay introduced by

the latency must be bounded and minimized.

The PDES version of PowerDEVS generates a simula-

tion executable that performs the following steps:

• It initializes the PowerDEVS model (see Section

2.4).
• It starts the RTAI real-time system, initializing the

real-time clocks and a main real-time task.
• For each LP, it creates and sets up as many mail-

boxes as there are input ports.
• It starts one real-time thread per physical process.

It then forks these threads with the simulation loop.

An index parameter allows each thread to know,

which physical processes it corresponds to.
• It waits for all real-time threads to finish and then

exits while un-allocating all mailboxes and threads.

We have developed a live-CD from where one can try out

(or install) PowerDEVS -RTAI on any i386 processor.

4.4.1 Synchronization and CPU allocation. We implemented

all synchronization tasks by a busy-waiting strategy, wast-

ing CPU cycles without releasing the processor until the

waiting time ends or a new message arrives. Although this

strategy wastes computing power, it offers a more accurate

synchronization. A busy-waiting strategy under RTAI does

not allow any other task to use the processor that is run-

ning the thread. In this way, the latency is minimized.

However, with this strategy, each processor can only run

one thread, which limits the number of processes that can

run in parallel.

RTAI also gives the user the ability to select the proces-

sor to run a given thread, i.e. we can allocate one thread

per processor. As a consequence, we can divide the model

into as many sub-models representing physical processes

as there are processors available. On our hardware, we can

allocate up to 12 LPs (as hyper-threading technology

divides each core processor into two virtual processors).

4.4.2 Latency and overrun. In the absence of latency and

neglecting the processing time for messages, transitions,

and other calculations, the algorithm described earlier in

this section correctly simulates the overall model.

However, in a real implementation, we cannot avoid some

latency, and sometimes calculations take longer than the

physical time allowed, and the simulation then enters an

overrun situation.

For example, if the physical processor needs 1 wall-

clock second to simulate 1 second of logical time, we can-

not use a real-time scaling factor greater than 1. If we do

that, the thread will never be able to catch up with the

scaled wall-clock time. While this type of overrun situa-

tion can be avoided by using a sufficiently small real-time

scaling factor, one event generated by a quantized integra-

tor in a QSS method usually triggers many simultaneous

events through the static functions. Whereas the first event

will be correctly synchronized, the remaining events will

be invariably in overrun.

Latency also introduces some error in the synchroniza-

tion, which affects the communication mechanism. If an

event scheduled for t1 is sent out at time t1 +�t, the other

threads will receive it with a time delay of �t. If during

that delay period the other threads computed an event, an

error appears that affects the global result.

The hardware platform we use under RTAI exhibits an

average latency that ranges from 150 to 500 ns, with a

maximum value of around 10 μs. These values limit the

maximum real-time factor that we may use. For instance,

if we use a real-time factor of 1000, a latency of 10 μs is

translated to 10 ms of maximum simulation time error in

events transmitted between different LPs. If that simulation

time error provokes an unacceptable simulation error, then

we would be enforced to use a smaller real-time factor.

5 Adaptive real-time scaling

The main drawback of SRTS is that the real-time scaling

factor r must be chosen by the user. Unless the user per-

forms some previous trial and error experiments, he would

be hard-pressed to know a priori which value to assign to

the real-time scaling factor. Another problem is that r

remains constant during the entire simulation. In many

cases, the simulation workload changes with time, and it

makes sense to adapt r according to the actual workload.

In this section, we introduce an adaptive version of SRTS,

called ASRTS, where the real-time scaling factor is auto-

matically adapted to optimize the efficiency of the

simulation.

5.1 Basic idea

ASRTS attempts to automatically change the real-time

scaling factor to minimize the time that processors spend

waiting but without provoking overrun situations. In this

way, ASRTS improves the overall efficiency by lowering

the simulation time.

The idea behind ASRTS is rather simple. It is identical

to SRTS, except that it periodically changes the real-time

scaling factor. ASRTS cuts the simulation time into sam-

pling periods of equal duration. During each such period,

each LP measures the total time that it spends waiting. At

the end of the period, one of the threads collects the
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accumulated waiting times of all LPs and determines their

minimum (i.e. the waiting time of the process that had the

heaviest workload). Using that information, it computes

the ratio between the smallest accumulated waiting time

and the length of the sampling period. If the minimum

waiting ratio w is greater than a prescribed desired waiting

ratio w0 (we use values around 10%), the algorithm is

allowed to increase the real-time scaling factor and simu-

late faster. Otherwise, the algorithm decreases r. In this

way, ASRTS tries to keep the minimum waiting ratio

around the desired waiting ratio w0.

Changes in the real-time scaling factor are done syn-

chronously, that is, all LPs change their value of r at the

same time (logically and physically) and to the same value,

since the scaling factor affects directly the implicit syn-

chronization among the entire group of LPs. Once r has

been changed, the LPs continue with the simulation using

the SRTS algorithm until the next sampling period has

ended.

5.2 ASRTS algorithm

As mentioned above, ASRTS is identical to SRTS but

includes periodic checkpoints (with a sampling period of

�T ), when the scaling factor r may be changed. During

each sampling, ASRTS gathers statistics about the work-

load and the time spent waiting by each LP. When they

reach the next checkpoint, the LPs stop simulating and

wait until the new real-time scaling factor has been com-

puted. This computation is done by a thread coordinator

(thread 0), while the remaining threads wait in a synchro-

nizing barrier that holds them until the new scaling factor

has been computed. At the end of each sampling period,

after each LP computed its accumulated waiting time Twi
,

the coordinator computes the new real-time scaling factor

as follows:

1. It finds the minimum waiting ratio

w=
min

i
fTwi

, σg
�T

,

where σ is a value lower but close to 1 to avoid divi-

sion by zero. In a real implementation not all of the Twi

can be 1 because of overheads.

2. It computes the optimal real-time scaling factor r̂

for the desired waiting ratio w0 as

r̂ = r
1� w0

1� w
: ð5Þ

3. If r̂ < r, it computes the new real-time scaling fac-

tor as r : = r̂, slowing down the speed of the

simulation.

4. Otherwise if r̂ ≥ r, it computes the new real-time

scaling factor as

r : = λr + (1� λ)r̂, ð6Þ

which smoothly increases the simulation speed accord-

ing to the discrete eigenvalue λ. (Note that Equation

(6) is a difference equation with λ as eigenvalue.)

The ASRTS algorithm has three tuning parameters: the

sampling period �T , the desired waiting ratio w0, and the

discrete eigenvalue λ. We discuss the most suitable values

of these parameters later in this section. ASRTS makes use

of Equation (5) that computes the real-time scaling factor

r̂, for which a waiting ratio w0 is obtained. This expression

is derived below.

5.2.1 Optimal real-time scaling factor. As mentioned above,

ASRTS attempts to drive the minimum waiting ratio w to

the desired waiting ratio w0 by adjusting the real-time scal-

ing factor r. Suppose that during a sampling period �T the

LP with the maximum workload had a waiting ratio w

while the real-time scaling factor was r. Thus, during that

period, it spent computing a total of

Tc =�T � w ·�T = (1� w) ·�T

units of time, and the simulation time advanced by r ·�T

units of time.

Thus, in order to advance r ·�T units of simulation

time, the LP needed Tc units of physical time. We can

define the workload as follows

W ¼� physical time

simulation time
= Tc

r ·�T
= 1� w

r
:

If we assume that the workload changes slowly, we can

expect that, in the next sampling period, it will remain

almost unchanged. If we use the appropriate scaling real-

time factor r̂ in the new sampling period, we shall obtain

the desired waiting ratio w0 and, then,

W = 1� w

r
= 1� w0

r̂

from which we obtain Equation (5).

5.2.2 Parameter selection. In order to properly set the values

of the method parameters of ASRTS, we may consider the

following points.

• The sampling period �T should be large compared

with the physical time required by the re-

synchronization routine and also compared with the

time necessary to compute several events. In this

way, the time spent in the synchronization routine
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is negligible, and every sampling occurs after sev-

eral events were computed so that workload statis-

tics make sense. However, �T must be small

enough so that the real-time scaling factor is chan-

ged several times during the simulation to be able

to react to workload changes in a timely fashion.

In the PowerDEVS implementation, we used

�T = 100 ms. In our platform, the synchronization

routine takes from 10 to 100 μs, and we are inter-

ested in simulations that take at least several sec-

onds (otherwise parallelization might not be

necessary). Thus, a period of �T = 100 ms is a rea-

sonable choice for most cases.
• The desired waiting ratio w0 should be greater than

0 and less than 1. We want simulations to run fast,

minimizing the waiting time, so a small value of

w0 should be chosen. However, if w0 is very close

to 0, several types of overrun situations can occur

that may cause large numerical errors.

In the PowerDEVS implementation, we normally

use w0 = 0:15, which means that the real-time scal-

ing factor is adjusted such that the LP with the hea-

viest workload wastes approximately 15% of the

time in a waiting routine.
• The discrete eigenvalue λ (with 0<λ< 1) deter-

mines how fast the real-time scaling factor r

increases its value to reach the optimal value r̂

according to Equation (6). When λ is close to 0 the

adaptation is fast. When it is close to 1, the adapta-

tion is slow and smooth. In the presence of fast

changes in the workload, a slow adaptation prevents

the real-time scaling factor from assuming very

large values that might cause frequent overruns.

For this reason, we normally choose λ= 0:9. With

this value, the real-time scaling factor reaches 80%

of its final value after 10 periods (i.e. 1 second in

our implementation).

5.3 Relation with other approaches

The present work can be seen as a combination of two pre-

viously formulated ideas of the PDES and DEVS worlds.

First, it is related to the RTDEVS executive34 since simu-

lations run synchronized with the wall clock, although in

our case, a scaled version of the wall clock. However, the

RTDEVS formalism is not used for model description,

and regular DEVS is used instead. In our case, the time-

consuming activities are, in fact, the computation of the

output events and the busy waiting associated with syn-

chronizing them.

SRTS and ASRTS are also related to the NOTIME

technique7 since the causality constraint may be violated.

Violations of the causality constraint are, however, mini-

mized by the introduction of busy waiting associated with

the synchronization of the LPs with the wall clock. These

waiting periods act as an artificial load that help balance

the workload among LPs, thus they implicitly solve the

unbalancing problem of NOTIME.

6 Applications and examples

In this section, we present some simulation results. We

simulated three separate large-scale systems using QSS

methods, first in a sequential way and then using SRTS

and ASRTS techniques.

All examples were run using an Intel i7 970, six-core

machine with hyper-threading.41 RTAI’s test suite reports

416 ns average and 18,000 ns maximum latencies on this

setup. In all examples, each simulation was repeated 10

times, and the results did not exhibit any noticeable

change.

6.1 Power control of an air conditioner population

This example, taken from Perfumo et al.,42 is a model to

study the dynamics and control of the power consumption

of a population of air conditioners (ACs).

We consider here a large population of ACs used to

control the temperature of different rooms. The tempera-

ture of the ith room θi(t) follows the equation

dθi(t)

dt
= � 1

Ci ·Ri

½θi(t)� θa +Ri ·Pi ·mi(t)+wi(t)�, ð7Þ

where Ri and Ci are parameters representing the thermal

resistance and capacity of the ith room, respectively. Here

Pi is the power of the ith air conditioner when it is in its

on state, θa is the ambient temperature, and wi(t) is a noise

term representing thermal disturbances.

Variable mi(t) is the state of the ith air conditioner,

which takes a value of 1 when the unit is in its on state,

and 0 otherwise. It follows the hysteretic on–off control

law:

mi(t
þ)=

0 if θi(t)≤ θr(t)� 0:5 and mi(t)= 1

1 if θi(t)≤ θr(t)+ 0:5 and mi(t)= 0

mi(t) otherwise

8<
:

ð8Þ

where θr(t) is the reference temperature that is calculated

by a global control system.

The power consumption of the entire AC population is

computed as

P(t)=
XN

i= 1

mi(t) ·Pi

and a global control system regulates it, so it follows a

desired power profile Pr(t). In order to accomplish this, a
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proportional integral (PI) control law is used to compute

the reference temperature:

θr(t)=KP · ½Pr(t)� P(t)�+KI ·
Z t

τ= 0

½Pr(τ)� P(τ)�dτ

where KP and KI are the parameters of the PI controller.

In this example, we chose N = 2400 air conditioner

units, and the set of parameters given in the article.42 Thus,

we are dealing with a fairly large hybrid system consisting

of a set of 2401 differential equations, with 2400 zero-

crossing conditions.

We first simulated the system using the QSS3 method

with a quantization of �Qrel = 10�3 and �Qmin = 10�6 in

a sequential fashion. Figure 5 plots the average power con-

sumption P(t)=Pmax.

The final simulation time was tf = 3000 s, and the

sequential simulation consumed 58 s of physical time.

We then divided the system into 12 sub-systems with

200 ACs in each sub-model. The first sub-model also

included the PI controller. We then used the SRTS tech-

nique with different real-time scaling factors. We started

with a scaling factor of r = 200, which consumes

tf z=r = 3000=200= 50 s of physical time. We obtained

decent results using scaling factors of up to r = 950, which

takes tf =r = 3000=950= 3:16 s. For each scaling factor,

we compared the simulation results with those of the

sequential simulation and measured the relative root mean

square (RMS) error.

Here and in the following examples, the RMS error is

computed as follows:

RMS= mean(x� x̂)2

mean(x)

where x is the sequential result and x̂ is the parallel result.

Figure 6 plots the measured error in function of the

real-time scaling factor.

In this example, using r = 950, SRTS was more than 18

times faster than the sequential simulation without introdu-

cing unacceptably large numerical errors.

However for r > 500, we observed that the LPs were

most of the time in overrun. Yet, in this case, the overrun

situation does not affect the numerical error in major ways.

Then we simulated the system using ASRTS with para-

meters �T = 100 ms, w0 = 0:15, and λ= 0:9. The ASRTS

simulation took 6.6 s, reaching a maximum real-time scal-

ing factor of r = 480. In consequence, ASRTS was almost

9 times faster than the sequential simulation using 12 pro-

cessors. The real-time scaling factor reached was close to

the limit, at which large overruns are observed.

We repeated the simulation with ASRTS for different

values of λ. Figure 7 shows the way in which ASRTS

adapts the scaling real-time factor during each simulation

run.

We notice that r converges very slowly to the optimal

scaling factor for large values of λ (close to 0.99).

Consequently the simulation is slow. On the other hand, r

converges quickly for small values of λ (around 0.8) but

needs to reduce its value frequently. A reduction in the

real-time scaling factor indicates that some LP waited less

than the desired waiting ratio w0, which is unsafe as this

might indicate overrun. A value of λ≈ 0:9 provides a
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good compromise between fast adaptation and overrun

avoidance.

We then repeated the ASRTS simulation while varying

the number of processors, splitting the model into two,

four, six, and eight sub-models. Figure 8 shows the simu-

lation speedup obtained for these cases.

We can observe a close to linear increase in the simula-

tion speedup with the number of processors.

0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 200  300  400  500  600  700  800  900  1000

R
el

at
iv

e 
R

M
S

 e
rr

or

Scale factor (x)

RMS error

Figure 6. SRTS: error versus real-time scaling factor, AC example

 300

 320

 340

 360

 380

 400

 420

 440

 460

 480

 500

0  10  20  30  40  50  60  70  80  90

S
ca

le
 F

ac
to

r 
(x

)

Period

λ=0.85
λ=0.90
λ=0.95
λ=0.99

Figure 7. ASRTS: real-time scaling factor adaptation for different values of l, AC example

14 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)



6.2 Logical inverter chain

A logical inverter performs a logical operation on a signal.

When the signal assumes a high level, it outputs a low

level, and vice versa.

Logical inverters are implemented by electrical circuits.

They exhibit a non-ideal response since the rise and fall

time of the signal output is limited by physical characteris-

tics, and the correct output level is not immediately

obtained, i.e. it is delayed.

An inverter chain is a concatenation of several inver-

ters, where the output of each inverter acts as the input to

the next one. Making use of the aforementioned physical

limitations, inverter chains can be used to obtain delayed

signals. We consider here a chain of m inverters according

to the model given in Savcenco and Mattheij,43 which is

characterized by the following equations:

_ω1(t)=Uop � ω1(t)� Ug uin(t), ω1(t)ð Þ
_ωj(t)=Uop � ωj(t)� Ug ωj�1(t), ωj(t)

� �
,

j= 2, 3, . . . ,m

8<
: ð9Þ

where

g(u, v)= max (u� Uthres, 0)ð Þ2 � max u� v� Uthres, 0ð Þð Þ2:
ð10Þ

We used the set of parameters given in the article: U= 100

(which results in a very stiff system), Uthres = 1, and

Uop = 5. The initial conditions are, as in the given refer-

ence, ωj = 6:247× 10�3 for odd values of j and ωj = 5 for

even values of j. The input is a periodic trapezoid signal,

with parameters Vup = 5 V, Vlow = 0 V, Tdown = 10,

Tup = 5, Trise = 5, and Tfall = 2.

In this case, we considered a system of m= 504 inver-

ters, so we have a set of 504 differential equations with

1008 discontinuity conditions due to the ‘max’ functions

in Equation (10).

As in the previous example, we first simulated the sys-

tem in a sequential fashion using the stiff LIQSS3 solver,

which has been added to PowerDEVS after publication of

Migoni and Kofman.11 The resulting voltage at the last

inverter is shown in Figure 9.

We then divided the system into 12 sub-models with 42

inverters each and simulated with SRTS and different real-

time scaling factors. This time around, we obtained decent

results for up to r ≈ 35.

Figure 10 shows the error in function of the real-time

scaling factor used. The RMS error looks large because it

is mainly due to a small time shift in the output voltage

wave. As the wave shows abrupt changes, a small time

shift can cause a large RMS error.

We then applied the ASRTS algorithm and, using 12

processors, the simulation was almost 4.5 times faster than

the sequential one.

In this example, the workload is not evenly distributed

over the system. As the wave travels, it provokes a high

workload at the processor that computes the states that are

switching. In contrast, processors that compute states that

do not change show a very low workload. Consequently

in this case, neither SRTS nor ASRTS can exploit paralle-

lization as efficiently as in the previous example.

However, the results are still good.
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Figure 8. ASRTS: speedup versus number of processors, AC example.
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We then repeated the simulations using ASRTS while

varying the number of processors. Figure 11 shows the

speedup obtained in each case.

Once again, the simulation speed increases almost line-

arly with the number of processors in use.

6.3 LC transmission line

The following system of equations represents a lumped

model of a lossless transmission line, formed by 600 sec-

tions of LC circuits with parameters L=C = 1:
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Figure 9. Voltage on the last inverter (sequential simulation result).
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Figure 10. SRTS: error versus real-time scaling factor, inverter chain example.
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_φ1(t) = u0(t)� u1(t)

_u1(t) =φ1(t)� φ2(t)

..

.

_φj(t) = uj�1(t)� uj(t)

_uj(t) =φj(t)� φj+ 1(t)

..

.

_φn(t) = un�1(t)� un(t)

_un(t) =φn(t):

ð11Þ

We consider a sinusoidal input signal:

u0(t)= sin (ωt) ð12Þ

with w0 = 0:13 Hz. We also set zero initial conditions

ui =φi = 0, i= 1, . . . , n. This is a marginally stable sys-

tem, of order 1200 as there are two state variables per

segment.

As in the previous examples, we first simulated the sys-

tem in a sequential fashion using the QSS3 solver. Figure

12 shows the resulting voltage at the end of the transmis-

sion line u600(t).

Then we divided the system into 12 sub-models with 50

segments each and simulated it using SRTS with different

values of the real-time scaling factor. Figure 13 shows the

RMS error as a function of the real-time scaling factor.

This time around, we obtained good results for r < 400.

For larger values of the real-time scaling factor, the results

soon become numerically unstable. This is not surprising

as the addition of delays in marginally stable systems tends

to cause instability.

We then simulated the system using ASRTS. With 12

processors, ASRTS managed to accelerate the simulation

so it ran more than 5.5 times faster than the sequential

simulation.

As in the previous example, the workload is not evenly

distributed while the wave travels from the input to the

output, which limits the advantages of parallelization.

We then used ASRTS with a varying number of proces-

sors, obtaining again an almost linear relationship between

the number of processors in use and a speedup as shown in

Figure 14.

7 Conclusions and future work

We have introduced SRTS and ASRTS, two new tech-

niques for parallel DEVS of continuous and hybrid

systems.

The techniques are based on the idea of synchronizing

each LP simulation time with a scaled version of the phys-

ical time. As all LPs are synchronized with the physical

time, they are indirectly synchronized also against each

other. This indirect synchronization permits running each

process independently of the remaining processes, avoid-

ing the overhead imposed by inter-process synchronization

and coordination.

We implemented these new techniques in PowerDEVS

using the RTOS RTAI. The RTOS was needed to ensure a

precise synchronization, to properly perform the CPU allo-

cation, and for avoiding that the OS (Linux) takes control

of the processor while the thread is running.
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We tested these new techniques with three application

examples and studied their performance and limitations.

Using 12 processors, we found a major improvement on

the simulation speed. In the examples analyzed, ASRTS

simulated from 4.5 to 9 times faster than the sequential

simulation. The non-adaptive SRTS is able to simulate

even slightly faster but requires prior experimentation to

determine the most suitable real-time scaling factor to use.

We have also analyzed the additional numerical error

introduced by the techniques. We found that, provided that
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Figure 12. Voltage on last LC segment (sequential simulation result).
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the real-time scaling factor r remains small enough to

avoid frequent overruns, the error remains bounded.

Moreover, ASRTS adjusts r in order to avoid overruns so

the error introduced is kept small.

This work opens up several lines of research to be con-

sidered in the future. A few of them are listed below:

• In the present work, we manually split the model

trying to obtain a well-balanced division. It is inter-

esting to investigate an automatic way to split the

model and also to study techniques to dynamically

re-balance the workload among the available pro-

cessors.

We are currently working on an extension to the

DEVS formalism, called vectorial DEVS, that will

simplify this task.
• A fall-back mechanism for overrun situations is

also a desirable feature. By implementing a roll-

back mechanism when a large overrun is found, we

could bound the errors introduced.

To this end, we could use the ASRTS checkpoints

as rollback stages. In this way, we would only

need to save the state of the system at the

last checkpoint consuming a bounded and con-

stant amount of memory. Also, we can know

exactly how much time we waste at each roll-

back: �T .
• We have developed the implementation on a multi-

core system running a RTOS. A very important

issue is to study how these algorithms scale with a

greater number of processors or in a cluster

environment. To this end, several problems have to

be solved first, such as the clock synchronization

among different nodes or CPUs, the communication

between nodes (in the current multicore approach it

is implemented using shared memory), and the

CPU allocation.
• We will work on a formal analysis of how the

delays in the communication affect the numerical

results, following the approach outlined in Section

4.3. The idea is to represent the effects of the delays

as bounded perturbations and to analyze the per-

turbed systems to ensure numerical stability and

error boundedness.
• We can also investigate new heuristics for the

ASRTS. So far, we have only included the time

spent waiting as a measurement of how the simula-

tion is doing but including overrun statistics or

delay data might result in an improved

performance.
• Although we developed these new techniques for

discrete event simulation of continuous systems, it

may be interesting to study their usage also with

other numerical integration methods for continuous

and hybrid systems (particularly with multi-rate

algorithms). Also, it is worth considering the study

of SRTS and ASRTS in more general applications

of discrete event simulation.

The complete code of the SRTS and ASRTS implementa-

tion in PowerDEVS can be found and downloaded from

the real-time branch of the SVN.44
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