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Abstract
In this paper we introduce new classes of numerical ordinary differential equation (ODE) solvers that base their internal
discretization method on state quantization instead of time slicing. These solvers have been coined quantized state
system (QSS) simulators. The primary result of the research described in this article is a first-order accurate QSS-based
stiff system solver, called the backward QSS (BQSS). The numerical properties of this new algorithm are discussed, and it
is shown that this algorithm exhibits properties that make it a potentially attractive alternative to the classical numerical
ODE solvers. Some simulation examples illustrate the advantages of this method. As a collateral result, a first-order
accurate QSS-based solver designed for solving marginally stable systems is briefly outlined as well. This new method,
called the centered QSS (CQSS), is successfully applied to a challenging benchmark problem describing a high-order
system that is simultaneously stiff and marginally stable. However, the primary emphasis of this article is on the BQSS
method, that is, on a stiff system solver based on state quantization.
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1. Introduction

Practically all of today’s commonly used numerical
ordinary differential equation (ODE) solvers are
based on similar principles. They all perform some
kind of (either equidistant or non-equidistant) time slic-
ing, they construct an interpolation polynomial that
passes through a number of previously computed
state and derivative values, and finally, they then use
that interpolation polynomial to estimate the value of
the state vector at the next discrete-time instant,
xkþ1 ¼ xðtkþ1Þ.

Different ODE solvers vary in their approximation
orders, that is, in the number of past pieces of informa-
tion that they use in the construction of the interpola-
tion polynomial, they differ in the pieces of information
that they use in constructing the interpolation polyno-
mial, they also differ in their method of time slicing,
that is, how often they compute new state values, and
finally, whereas some algorithms are explicit in nature,
that is, make use of past and current information only,

others are implicit, that is, make use of the derivative
value at the next time instant, _xðtkþ1Þ, as well.

Yet, all of these algorithms, be they linear or non-
linear methods, single-step or multi-step techniques,
explicit or implicit approaches, attempt to answer the
same question:

Given current and past state and derivative informa-

tion, which values shall the state variables assume at

the next discrete-time instant?
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In this paper, we shall describe a set of numerical
ODE solvers that are based on a totally different
discretization method. Rather than making use of
the concept of time slicing to reduce a continuous-
time problem to a (in some way equivalent)
discrete-time problem that can be solved on a digital
computer using an algorithm, these methods
employ the concept of state quantization for the same
purpose.

Hence these methods attempt to provide an answer
to a succinctly different question:

Given that the current value of a state variable, x, is Qi,

where Qi denotes one of an ordered increasing set of

discrete values that the state variable may assume,

when is the earliest time instant at which this state var-

iable shall reach either the next higher or the next lower

discrete level, Qi�1?

This concept, first proposed by Zeigler and Kim1

and Zeigler and Lee,2 constitutes the basis of a new
class of numerical ODE solvers, namely the quantized
state system (QSS) solvers.3 These algorithms have
some striking properties in common.

1. QSS algorithms are intrinsically variable-step tech-
niques. They adjust the time instant at which the
state variable is re-evaluated to the speed of change
of that state variable.

2. QSS methods are naturally asynchronous, that is,
different state variables update their state values sep-
arately and independently of each other at different
instants of time.

3. QSS techniques are guaranteed to retain numerical
stability. They automatically adjust the frequency at
which future state values are being computed to
meet the numerical stability requirements.4 The
quantization process can be treated as a bounded
perturbation on the original ODE. Thus, non-
linear stability can be easily studied making use of
Lyapunov functions.3 The approach is related to
that established by Dahlquist for analyzing the
non-linear stability of conventional numerical
solvers.5,6

4. QSS solvers offer a global rather than local
error bound, that is, numerical solutions obtained
by QSS algorithms are guaranteed to never differ
from the analytical solution by an amount larger
than a computable finite value, at least when dealing
with linear time-invariant analytically stable
systems.4

5. The QSS approach allows the definition of explicit
solvers that are nevertheless stiffly stable,7 something
that classical numerical ODE solvers can never do,
as this paper shall demonstrate.

6. QSS algorithms offer intrinsically dense output, a
feature that is particularly important for asynchro-
nous methods.8

7. QSS solvers are excellent at root solving, that is, at
simulating across heavily discontinuous models, as
they occur frequently in engineering. Due to their
dense output feature, their built-in root-solving
method is explicit and does not require any itera-
tion.9 More precisely, QSS methods provide low-
order polynomial trajectories, the roots of which
can be found in a straightforward manner. Thus,
the time of the zero crossings can be calculated
before they occur, and the corresponding state
events can be scheduled and treated as simple time
events.

8. QSS algorithms are good candidates for real-time
simulation, because they can be easily implemented
on parallel computer architectures (due to their
asynchronous nature),10 because they can detect
and locate discontinuities using explicit methods,
and finally, because they allow one to minimize the
communication bandwidth between separate agents
dealing with different subsystems,11 as a state change
in any state variable gets communicated asynchro-
nously to its neighbors and to its neighbors only by a
single bit (sending a ‘1’ means the state increases its
discrete value to the next higher level; sending a ‘0’
means the state decreases its value to the next lower
level; not sending anything means the state remains
at the same level as before).

For all of those reasons, it is well worthwhile
considering the paradigm shift that QSS methods
call for.

Many practical dynamical systems encountered in
either science or engineering are stiff, that is, exhibit
Jacobians with eigenvalues that are spread out along
the negative real axis of the complex plane. Using tra-
ditional methods of time slicing for the numerical sim-
ulation of such systems, it results that implicit methods
must be used, as all explicit methods invariably restrict
the step size in order to guarantee numerical stability.
More precisely, algorithms must be employed whose
stability domains loop in the right-half complex
plane. Some implicit methods exhibit such stability
domains, whereas all explicit methods invariably show
stability domains that loop in the left-half complex
plane.8

Another case that calls for implicit methods is that
of marginally stable systems. In these systems, the
Jacobians have eigenvalues located near the imaginary
axis.

The open literature on time slicing methods for stiff
and marginally stable systems contains hundreds of
algorithms that provide different features and
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advantages.8,12,13 However, all of them are invariantly
implicit and need iterations at each step.

Implicit methods exhibit a serious drawback. They
are not useful for real-time simulations, as the resulting
Newton iteration cannot be guaranteed to converge
within a fixed interval of real time. Hence the simula-
tion of stiff systems in real time poses a hard problem,
for which no good solutions have been found in
the past.

Whereas a number of papers have already been writ-
ten about QSS methods in general (non-stiff QSS sol-
vers of the orders of one to four have been developed
and have been reported in other publications3,4,8,14–16),
this paper is the first to deal with the issues of stiffness
and marginal stability. It introduces two new QSS algo-
rithms: the backward QSS (BQSS), a stiff first-order
ODE solver based on QSS technology, and the centered
QSS (CQSS), another first-order QSS solver designed
for solving marginally stable systems.

Second- and third-order accurate stiff solvers based
on state quantization have been recently completed,25

and higher-order geometric QSS solvers are currently
under development.

2. Quantization-based integration

This section introduces the QSS method and explains
the difficulties it has in dealing with stiff ODE systems.

2.1. QSS method

Given the system

_xðtÞ ¼ f xðtÞ, uðtÞð Þ ð1Þ

where x 2 Rn is the state vector, and uðtÞ 2 Rm repre-
sents a known set of input trajectories, the QSS meth-
ods approximates it by

_xðtÞ ¼ fðqðtÞ, uðtÞÞ ð2Þ

In this last system, q is the vector of quantized var-
iables, whose components are related with those of the
state vector x according to the following hysteretic
quantization function:

qj ðtÞ ¼
qj ðt�Þ þ DQj if xj ðt�Þ � qj ðtÞ � DQj

qj ðt�Þ � DQj if qj ðt�Þ � xj ðtÞ � ej
qj ðt�Þ otherwise

8<
:

DQj is called quantum and ej is the hysteresis width.
The quantum DQj is a given parameter that plays a

role analogous to that of the step size h in conventional
numerical integration methods.

The hysteresis width is usually chosen equal to the
quantum, as this choice reduces oscillations without
increasing the error.8 Under this condition, qj ðtÞ fol-
lows a piecewise constant trajectory that only changes
when it differs from xj by DQj. After each change,
qj ðtÞ ¼ xj ðtÞ.

Using the fact that qðtÞ is piecewise constant and
provided that the input uðtÞ is also piecewise constant,
it can be seen that xðtÞ is piecewise linear.3

Consequently, the numerical solution of Equation (2)
is straightforward.

Notice also that xðtÞ provides a piecewise linear
dense output for the state. Thus, the instants of time
at which the trajectories cross a given threshold can be
computed analytically. Due to this fact and due to the
asynchronous nature of the method, the QSS can effi-
ciently handle discontinuities on the right-hand side of
Equation (1).9

Second- and third-order accurate QSS methods are
similar to the first-order algorithm, but they exhibit
quadratic and cubic state trajectories, respectively.
Although the root-solving problem in these cases car-
ries a higher computational cost, the cost is still negli-
gible in comparison with conventional iterative
solutions.

2.2. QSSs and stiff systems

The system

_x1ðtÞ ¼ 0:01 x2ðtÞ
_x2ðtÞ ¼ �100 x1ðtÞ � 100 x2ðtÞ þ 2020

ð3Þ

has eigenvalues l1 � �0:01 and l2 � �99:99, which
indicates that the system is stiff.

The QSS method approximates this system as

_x1ðtÞ ¼ 0:01 q2ðtÞ
_x2ðtÞ ¼ �100 q1ðtÞ � 100 q2ðtÞ þ 2020

ð4Þ

Considering initial conditions x1ð0Þ ¼ 0, x2ð0Þ ¼ 20
together with the quanta DQ1 ¼ DQ2 ¼ 1, the QSS
numerical ODE solver performs the following steps.

. At t¼ 0, we set q1ð0Þ ¼ 0 and q2ð0Þ ¼ 20. Then,
_x1ð0Þ ¼ 0:2 and _x2ð0Þ ¼ 20. This situation remains
unchanged until jqi � xij ¼ DQi ¼ 1.

. The next change in q1 is thus scheduled at
t ¼ 1=0:2 ¼ 5, whereas the next change in q2 is
scheduled at t ¼ 1=20 ¼ 0:05.

. Hence a new step is performed at t ¼ 0:05. After this
step, it results that q1ð0:05Þ ¼ 0, q2ð0:05Þ ¼ 21,
x1ð0:05Þ ¼ 0:01, x2ð0:05Þ ¼ 21. The derivatives are
_x1ð0:05Þ ¼ 0:21 and _x2ð0:05Þ ¼ �80.
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. The next change in q1 is rescheduled to occur at
0:05þ ð1� 0:01Þ=0:21 ¼ 4:764, whereas the next
change in q2 is scheduled at 0:05þ 1=80 ¼ 0:0625.
Hence, the next step is performed at t ¼ 0:0625.

. At t ¼ 0:0625, it results that q1ð0:0625Þ ¼ 0,
q2ð0:0625Þ ¼ x2ð0:0625Þ ¼ 20, x1ð0:0625Þ � 0:0126,
and the derivatives coincide with those found at
time t ¼ 0:

. This behavior is cyclicly repeated until a change in q1
occurs. That change occurs at t � 4:95, after 158
changes in q2 oscillating back and forth between 20
and 21.

. The simulation continues in the same way.

Figures 1 and 2 show the evolution of q1ðtÞ and q2ðtÞ
across 500 units of simulated time.

The fast oscillations of q2 provoke a total of 15,995
transitions in that variable, whereas q1 only changes 21
times. Consequently, the total number of steps needed
to complete the simulation is greater than 16,000, that
is, the number of simulation steps is of the same order
of magnitude as the 25,000 steps that would be needed
by the Forward Euler method for maintaining numer-
ical stability.

Evidently, the QSS method is unable to efficiently
solve system (3).

The QSS, as well as other explicit schemes, can solve
some very particular stiff problems in an efficient way.
For instance, if we change the constant value 2020 to
2000 in Equation (3), the number of steps is reduced to
only 42. Another explicit method similar to the QSS
was reported to exhibit good performance in some
stiff combustion models.18

Yet, none of these methods can offer a decent per-
formance in a general case. Only implicit methods can
efficiently handle general stiff systems.

3. Backward quantized state system

3.1. Basic Idea

The efficient solution of stiff systems requires using
implicit methods that evaluate the state derivatives at
future instants of time.

This idea, when applied to QSS methods, would
imply that the components of qðtÞ in (2) are quantized
versions of future values of xðtÞ. In other words, given
xiðtÞ, qiðtÞ should be a quantized value in the neighbor-
hood of xiðtÞ, such that xiðtÞ evolves towards qiðtÞ.

For the introductory example (3) using the same ini-
tial conditions and quantization as before, this idea
would yield the following simulation.

At t ¼ 0, we can choose either q2ð0Þ ¼ 19 or
q2ð0Þ ¼ 21 depending on the sign of _x2ð0Þ. In both
cases, it results that _x1ð0Þ4 0 and the future quantized
value of x1 is q1ð0Þ ¼ 1.

If we choose q2ð0Þ ¼ 21, it results that
_x2ð0Þ ¼ �180\0, and consequently, x2 does not
evolve towards q2. On the other hand, choosing
q2ð0Þ ¼ 19 implies that _x2ð0Þ ¼ 204 0, and once
again, x2 does not evolve towards q2.

Hence it is not possible to choose q2 such that x2
moves towards q2.

However, the fact that the sign of _x2 changes taking
q2 ¼ 19 and q2 ¼ 21 implies that there must exist a
point, q̂2, in between those two values, for which
_x2 ¼ 0.

In this case, we set arbitrarily q2 ¼ 21, but we let
_x2 ¼ 0, as if q2 had adopted the (unknown) value q̂2.

We could have chosen q2 ¼ 19 instead. We would
have received another approximation in this way, butFigure 2. Quantized state system simulation (detail).

Figure 1. Quantized state system simulation.
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both approximations remain bounded, as shall be
shown in due course.

The next change in q1 is thus scheduled at
t ¼ 1=0:21 � 4:762, whereas the next change in q2 is
scheduled at t ¼ 1.

Hence the next step is evaluated at t ¼ 4:762. Here, it
results that x1 ¼ 1 and x2 ¼ 20. Then, q1ð4:762Þ ¼ 2
(because _x1 4 0). We evaluate again _x2 for q2 ¼ 19
and q2 ¼ 21. Now the value is negative in both cases.
Thus, the correct value is q2ð4:762Þ ¼ 19 since in that
way, x2 moves towards q2.

With these new values of q1 and q2, it results that
_x1 ¼ 0:19 and _x2 ¼ �80. The next change in q1 is then
scheduled at t ¼ 4:762þ 1=0:19 ¼ 10:025, whereas the
next change in q2 is scheduled at
t ¼ 4:762þ 1=80 ¼ 4:774. Thus, the next step is per-
formed at t ¼ 4:774, when x2 reaches q2.

The calculations continue in the same way. The algo-
rithm is similar to that of the QSS. The difference is that
we try to choose qi such that xi evolves towards qi.
When this is not possible, this means that there must
exist a point near xi, for which _xi ¼ 0. In that case, we
enforce that condition but, instead of calculating that
point, we keep the previous value of qi.

Figure 3 shows the result of this simulation that took
21 changes in q1 and 22 changes in q2. For t ¼ 354:24,
the algorithm reaches a stable situation where the
changes in both variables are scheduled at t ¼ 1.

This is the basic idea that defines the BQSS method.
For each state variable xi, we use two quantization
functions, one from above and the other from below
xi. Then, qi takes its value equal to one or the other
function according to the sign of the derivative _xi.

In the case analyzed, this idea worked very well. The
algorithm solved the stiff system (3) using 43 steps only,

which equals the performance of any implicit method
(although the error might be quite large as a first-order
approximation is being used).

However as already known from the explicit QSS
methods, the use of quantization without hysteresis
may provoke infinitely fast oscillations.3,8 For instance,
using the same idea as before with the system

_x1ðtÞ ¼ 0:5 x1 þ x2ðtÞ
_x2ðtÞ ¼ �x1ðtÞ þ 0:5 x2ðtÞ

ð5Þ

with DQi ¼ 1 and initial conditions x1ð0Þ ¼ 0:1,
x2ð0Þ ¼ �0:01, we obtain a solution, where the changes
in q1 and q2 occur faster and faster, and the oscillation
frequency goes to infinity.

The solution to this problem, just like in the case of
the explicit QSS methods, is to add hysteresis to the
upper and lower quantization functions.

3.2. BQSS definition

Given the system (1), the BQSS method approximates it
by

_xðtÞ ¼ fðqðtÞ, uðtÞÞ þ Df ð6Þ

where the components of q are chosen from the set

qj ðtÞ 2 q
j
ðtÞ, qj ðtÞ

n o
ð7Þ

with

q
j
ðtÞ ¼

q
j
ðt�Þ � DQj

if xj ðtÞ � q
j
ðt�Þ � 0

q
j
ðt�Þ þ DQj

if xj ðtÞ � q
j
ðt�Þ � ej þ DQj

q
j
ðt�Þ otherwise

8>>>>>><
>>>>>>:

ð8Þ

qj ðtÞ ¼

qj ðt�Þ þ DQj

if qj ðt�Þ � xj ðtÞ � 0
qj ðt�Þ � DQj

if qj ðt�Þ � xj ðtÞ � ej þ DQj

qj ðt�Þ otherwise

8>>>><
>>>>:

ð9Þ

In other words, qj ðtÞ is chosen from a set of two
values denoting a lower and an upper bound. These
bounds by themselves are being calculated from their
own previous values.

We furthermore choose qj ðtÞ such that xj ðtÞ
approaches qj ðtÞ:

fj ðqðtÞ, uðtÞÞ � ðqj ðtÞ � xj ðtÞÞ4 0 ð10ÞFigure 3. Backward quantized state system simulation.
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and if either none or both of the two possible values
q
j
ðtÞ and qj ðtÞ satisfy the condition (10), then there

must exist a vector q̂
ð j ÞðtÞ, such that fj ðq̂ð j ÞðtÞ, uðtÞÞ ¼ 0:

9q̂ð j ÞðtÞj fj ðq̂ð j ÞðtÞ, uðtÞÞ ¼ 0 ð11Þ

where each component of the vector q̂
ð j ÞðtÞ satisfies

jxiðtÞ � q̂
ð j Þ
i ðtÞj\DQi þ ei ð12Þ

Finally, we choose the increments:

Dfj ¼
0, if fj ðqðtÞ, uðtÞÞ � ðqj � xj Þ4 0
�fj ðqðtÞ, uðtÞÞ, otherwise

�
ð13Þ

that is, the increments are either zero, if a unique con-
sistent evolution has been found, or alternatively, the
increments are chosen such that the corresponding
derivatives are set to zero.

Like in the QSS, DQj is called the quantum, and ej is
the hysteresis width. Contrary to the QSS, it is here
convenient to choose smaller values of ej\DQj. The
reason is that for such values of ej, the two hysteresis
loops from above and from below do not intersect.
Also contrary to the QSS, the oscillation frequency of
the BQSS does not grow linearly with decreasing values
of ej. In the current implementation, the BQSS sets
ej ¼ 0:01 � DQj.

Notice that the definition of qj is implicit. Moreover, it
can yield more than one solution. However, we know that
qj ðtÞ can only assume one of two values: q

j
ðtÞ or qj ðtÞ.

At first glance, we may think that all combinations
of possible values qj for all components must be evalu-
ated in order to find a correct vector q.

However, it shall be shown that this is not necessary
and that q can in fact be obtained explicitly.

3.3. Explicit calculation of q

The main difference between the BQSS and the QSS is
the way in which q is obtained from x, as Equations
(10) and (11) imply that the values of the different com-
ponents are interrelated.

In the QSS, changes in qj are produced when xj differs
from qj by DQj. In the BQSS, changes are provoked when
xj reaches qj. In addition, a change in qj may provoke
changes in other quantized variables due to Equations
(10) and (11). In addition, changes in some component
of u can produce changes in some quantized variables.

Thus, events might be provoked either by changes in
the inputs or because a state variable reached the cor-
responding quantized variable. After any of those
changes, the main difficulty seems to be finding a
consistent set of values for q that satisfy Equations
(7)–(12).

We shall introduce an algorithm to obtain – in a
simple and explicit way – a value of the q vector that
satisfies the aforementioned equations.

In the algorithm, D¼ { . . . ,i, . . . } is the set of
sub-indices of the functions fi already evaluated.
Similarly, A is the set of sub-indices of the qi that are
going to change their values. Both sets are initially
empty.

Algorithm 1.

1.a. If an input changes (uj ðtÞ 6¼ uj ðt�Þ):
>the sub-indices of the functions fi that depend on uj
are included in the set D.

>For each i 2D:

- define ~qðiÞ¼̂qðt�Þ;
- if fið~qðiÞ, uðtÞÞ � ð~qðiÞ � xiÞ\0;

. include i in A;

. Define

qiðtÞ¼̂
qiðtÞ if fið~qðiÞ, uðtÞÞ4 0

q
i
ðtÞ if fið~qðiÞ, uðtÞÞ\0

(
ð14Þ

- Otherwise, qiðtÞ¼̂qiðt�Þ.
1.b. If xi reaches qi:

>include i in A and D;

>define ~qðiÞ¼̂qðt�Þ;
>calculate qiðtÞ according to Equation (14).

2. While A 6¼ f:

>let j be the smallest element of A;

>define B as the set of sub-indices i 62D so that fi
depends on qj.

>For each i 2B:
- define ~qðiÞ according to

~q
ðiÞ
k ¼

qkðtÞ if k 2 D
qkðt�Þ if k 62 D

�
ð15Þ

- if fið~qðiÞ, uðtÞÞ � ð~qðiÞi � xiÞ\0;

. include i in A;

. calculate qiðtÞ according to Equation (14);

- otherwise, qiðtÞ¼̂qiðt�Þ;
>add the elements of B to the set D and remove j

from A.

3. For every i 62D, leave qiðtÞ ¼ qiðt�Þ.

This algorithm always finds a value for q. We shall
prove below that it satisfies the definition provided in
Section 3.2. Notice that the sub-indices can be included
in set D only once. Thus, every component of function f

is being evaluated at most once.

Theorem 1.

Consider the BQSS approximation of Equation (6) and

suppose that xðtÞ and qðt�Þ are known, and they satisfy
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Equations (7)–(12). Suppose further that either

uiðtÞ 6¼ uiðt�Þ or xiðtÞ ¼ qiðt�Þ for some sub-index i.

Then, Algorithm 1 always finds a value of qðtÞ that
satisfies Equations (7)–(12).

Proof. For every i 2D, we define ~q
ðiÞ¼̂qðt�Þ.

We shall prove that an arbitrary component qj ðtÞ satis-
fies Equations (7)–(12).

Note that the only values that qj ðtÞ can take are qj ðt�Þ,
q
j
ðtÞ and qj ðtÞ. In the latter two cases, Equations (7) is

automatically satisfied.

In the first case, when qj ðtÞ ¼ qj ðt�Þ, it can be seen that

q
j
ðtÞ ¼ q

j
ðt�Þ and qj ðtÞ ¼ qj ðt�Þ. Otherwise, xj ðtÞ

would have reached its quantized variable qj ðt�Þ and
we would not have assigned qj ðtÞ ¼ qj ðt�Þ (item 1.b.).

This ensures that Equations (7) is always satisfied.

To prove that Equations (10)–(12) are satisfied, we

must show that if fj ðqðtÞ, uðtÞÞ � ðqj ðtÞ � xj ðtÞÞ � 0

then 9q̂ð j Þ such that fj ðq̂ð j Þ, uðtÞÞ ¼ 0 and the compo-

nents of q̂ satisfy (12).

Notice that if qj ðtÞ 6¼ qj ðt�Þ, the new value is calculated

according to Equation (14). Thus taking into account

Equations (8) and (9), it will be true that

fj ð~qð j Þ, uðtÞÞ � ðqj ðtÞ � xj ðtÞÞ � 0 ð16Þ

On the other hand if we set qj ðtÞ ¼ qj ðt�Þ, it is because
Equations (16) is satisfied. Consequently, Equations

(16) is always satisfied.

Taking this equation into account, if

fj ðqðtÞ, uðtÞÞ � ðqj ðtÞ � xj ðtÞÞ � 0, then

fj ð~qð j ÞðtÞ, uðtÞÞ � fj ðqðtÞ, uðtÞÞ � 0

and from the mean value theorem, there exists q̂
ð j Þ

between ~qð j ÞðtÞ and qðtÞ such that fj ðq̂ð j Þ, uÞ ¼ 0.

Equations (8) and (9) ensure that

jqi � xij � DQi þ ei ; jqi � xij � DQi þ ei ð17Þ
The components ~q

ð j Þ
i can only adopt the values qiðtÞ,

q
i
ðtÞ, or xiðtÞ (item 1.b). Then

j~qð j Þi � xiðtÞj � DQi þ ei
jqi � xiðtÞj � DQi þ ei

ð18Þ

From this equation and since q̂
ð j Þ
i is between qiðtÞ and

~q
ð j Þ
i ðtÞ, it results that

jq̂ð j Þi � xiðtÞj � DQi þ ei ð19Þ

which concludes the proof

4. Theoretical properties of the
backward quantized state system

This section studies fundamental properties of the
BQSS method. We first show that the BQSS method
performs a finite number of steps within any finite

interval of time. Then, we analyze the stability and
global error bound properties.

4.1. Legitimacy of the BQSS

The following theorem ensures that the BQSS method
cannot exhibit oscillatory behavior with a frequency
approaching infinity, that is, the algorithm always per-
forms a finite number of steps within any finite interval
of time. An algorithm that satisfies this property is
called legitimate.

Theorem 2.

Suppose that function f in Equation (1) is bounded in a

domain D	Du, where D 
 Rn, Du 
 Rm and assume

that the trajectory uðtÞ 2 Du is piecewise constant.

Then,

1. Any solution xðtÞ of Equation (6) is continuous while

qðtÞ remains in D.

2. The trajectory qðtÞ is piecewise constant while it

remains in D.

Proof. The proof of 1. is straightforward since, accord-

ing to Equation (6), the derivative of x is bounded.

Concerning 2., it is clear that every component qj can

only assume values of the form k � DQj. However to

prove that q is piecewise constant, it is necessary to

ensure that it only experiences a finite number of

changes in any finite interval of time.

Let ðt1, t2Þ be an arbitrary interval of time in which qðtÞ
remains in D. We shall prove that, within this interval,

qðtÞ undergoes a finite number of changes.

The assumptions of the theorem ensure that fðq, uÞ
is bounded and, taking into account Equations (6)

and (13), positive constants mj exist such that, for

t 2 ðt1, t2Þ

j _xj ðtÞj � mj; for j ¼ 1, . . . , n:

Let tc 2 ðt1, t2Þ and suppose that qj ðt�c Þ 6¼ qj ðtþc Þ.
According to Equation (9), this situation cannot be

repeated until jxj ðtÞ � xj ðtcÞj � ej. Thus, the minimum

time interval between two discontinuities in qj ðtÞ is

tj ¼
ej
mj

Then, calling nj the number of changes of qj ðtÞ in the

interval ðt1, t2Þ, it results that

nj � ðt2 � t1Þ
mj

ej

It can be easily seen that q
j
will perform a maximum

number of changes bounded by the same expression.

Since uðtÞ is piecewise constant, it will perform a finite

number of changes nu in the interval ðt1, t2Þ.

Migoni et al. 393



The definition of qj ensures that it can only take the

values qj ðtÞ or qj ðtÞ. In addition, it can only change if

these variables change or if there is a change in some

other quantized or input variable (qiðtÞ or uiðtÞ) such
that the restrictions of Equations (10) and (11) hold. In

conclusion, changes in qj ðtÞ are linked to changes in

some qiðtÞ, q
i
ðtÞ or uiðtÞ. Thus, the total number of

changes will be equal to or less than the sum of all

the changes in those variables, that is,

nj � nu þ 2ðt2 � t1Þ
Xn
i¼1

mi

ei

which is a finite number.

4.2. Perturbed representation

Stability and error bound properties of QSS methods
can be analyzed considering that Equation (2) can be
viewed as a perturbed version of the original system of
Equation (1), where the perturbations are bounded by
the quantization in use. We shall see that something
similar occurs with the BQSS.

Each component of Equation (6) can be written as

_xiðtÞ ¼ fiðqðtÞ, uðtÞÞ þ Dfi ð20Þ

Defining

q
� ðiÞðtÞ ¼ qðtÞ if Dfi ¼ 0

q̂
ðiÞðtÞ otherwise

�

and using Equations (10)–(13), Equation (20) can be
rewritten as

_xi ¼ fiðq
� ðiÞðtÞ, uðtÞÞ ð21Þ

Defining DxðiÞðtÞ¼̂ q
� ðiÞ � xðtÞ and replacing it in

Equation (21), it results that

_xiðtÞ ¼ fiðxðtÞ þ DxðiÞðtÞ, uðtÞÞ ð22Þ

where

jDxðiÞj ðtÞj � DQj þ ej ð23Þ

because from Equations (7)–(9) it results that

jqj ðtÞ � xj ðtÞj � DQj þ ej

and from Equation (12) we have that

jq̂ðiÞj ðtÞ � xj ðtÞj � DQj þ ej

4.3. Stability and global error bound

In the linear time-invariant case, Equation (1) can be
written as

_xðtÞ ¼ A xðtÞ þ BuðtÞ ð24Þ

and the BQSS approximation is

_xðtÞ ¼ AqðtÞ þ BuðtÞ þ DfðtÞ ð25Þ

For a stable system of this type, the following theo-
rem shows the existence of a global error bound.*

Theorem 3.

Assume that matrix A is Hurwitz.** Let fðtÞ be the

solution of Equation (24) with initial condition fð0Þ,
and let ~fðtÞ be a solution of Equation (25) with the

same initial condition. Let eðtÞ¼̂fðtÞ � ~fðtÞ. Then for

all t � 0, it results that

jeðtÞj � jVj � jReðLÞ�1V�1j � jAj � ðDQþ eÞ ð26Þ

where L ¼ V�1AV is the spectral decomposition of A,

and DQ and e are the quantization and hysteresis width

vectors in Equation (25).***

Proof. According to Equation (22), the ith component

of Equation (25) can be rewritten as

_xiðtÞ ¼ AiðxðtÞ þ DxðiÞðtÞÞ þ Bi uðtÞ

Defining diðtÞ¼̂Ai DxðiÞðtÞ, we can write

_xiðtÞ ¼ Ai xðtÞ þ di þ Bi uðtÞ ð27Þ

From Equation (23) and the definition of di it results

that

jdiðtÞj � jAij � ðDQþ eÞ ð28Þ

*The definitions and main theoretical properties of the QSS methods
hold for both the linear and non-linear cases. However, the uncon-
ditional practical stability and error bound only apply to linear time-
invariant systems.4,8 In the BQSS, the situation is the same. All defini-
tions and properties hold for both linear and non-linear systems,
except for the unconditional practical stability and error bound.
**A square matrix is called Hurwitz when all its eigenvalues have a
negative real part. A system such as that of Equation (24) is analyt-
ically stable if matrix A is Hurwitz.
***The symbol ‘�’ denotes here a componentwise relationship
between two vectors. Similarly, ‘j � j’ denotes the matrix or vector of
componentwise computed absolute values of the matrix or vector
elements.
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Resuming vector notation, Equation (27) can be writ-

ten as

_xðtÞ ¼ A xðtÞ þ B uðtÞ þ dðtÞ ð29Þ
with

jdðtÞj � jAj � ðDQþ eÞ ð30Þ

Replacing xðtÞ in Equation (24) by fðtÞ and in

Equation (29) by ~fðtÞ and subtracting the two equa-

tions from each other, we obtain

_eðtÞ ¼ A eðtÞ þ dðtÞ ð31Þ

with eð0Þ ¼ 0.

When A is Hurwitz and diagonalizable, Theorem 3 of

Kofman19 establishes the validity of Equation (26)

from Equations (30) and (31). The same result can be

derived for the non-diagonalizable case from Theorem

3.3 of Kofman et al.20

Corollary 1 If matrix A is Hurwitz, the BQSS numerical

approximation gives ultimately bounded results, that is,

it ensures practical stability.

Corollary 2 The global error bound has a linear depen-

dence on the quantization.

5. Towards F-stability****

The second-order linear time-invariant system

_x1ðtÞ ¼ a x1ðtÞ þ vx2ðtÞ
_x2ðtÞ ¼ �vx1ðtÞ þ a x2ðtÞ

ð32Þ

has conjugate complex eigenvalues l1,2 ¼ a� iv. It is
asymptotically stable for a\0, marginally stable for
a ¼ 0, and unstable for a4 0.

Figure 4 shows the result of simulating this system
using the QSS1 and BQSS with the parameter values
v ¼ 1, a ¼ 0 (a marginally stable case) and initial states
x1 ¼ 4, x2 ¼ 0.

Both methods give qualitatively wrong results, as
they are not F-stable.

Both the QSS1 and BQSS integrate an approximate
system of the form

_x1ðtÞ ¼ a ðx1ðtÞ þ Dx1ðtÞÞ þ v ðx2ðtÞ þ Dx2ðtÞÞ þ Df1

_x2ðtÞ ¼ �v ðx1ðtÞ þ Dx1ðtÞÞ þ a ðx2ðtÞ þ Dx2ðtÞÞ þ Df2

ð33Þ

The perturbation terms Dxj are bounded according to

jDxj j � DQj þ ej\2DQj ð34Þ

The quantities Dfj are normally zero, except in the
BQSS, where they can adopt a value that brings the
derivative to zero. According to the definition, Df1
can be non-zero only when

a q̂1ðtÞ þ v q̂2ðtÞ ¼ 0 ð35Þ

with

jq̂i � xij � DQi þ ei\2DQi, ð36Þ

In this case

�Df1 ¼ aðx1 þ Dx1Þ þ vðx2 þ Dx2Þ

From the last equation and Equation (35), we can
write

Df1 ¼ aðq̂1 � x1 � Dx1Þ þ vðq̂2 � x2 � Dx2Þ

Then, using Equations (34) and (36), we obtain

jDf1j\4jajDQ1 þ 4jvjDQ2 ð37Þ

A similar analysis concludes that

jDf2j\4jvjDQ1 þ 4jajDQ2 ð38Þ

We shall analyze the stability of (33) using the
Lyapunov candidate function

VðxÞ¼̂ 1

2
x21 þ x22
� �

: ð39Þ

with the time derivative

_VðxÞ ¼ aðx21 þ x22Þ þ x1ðaDx1 þ vDx2 þ Df1Þ
þ x2ðaDx2 � vDx1 þ Df2Þ

Figure 4. First order QSS (QSS1) and backward quantized
state system (BQSS) simulations of a marginally stable system.

****F-stable numerical ODE solvers are defined as to have their
border of stability coincide with the imaginary axis of the complex
l�h plane [Cellier and Kofman]. F-stability has also been referred to
as precise A-stability in some references.17
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Thus,

a _VðxÞ ¼ a2 x21 þ x22
� �

þ x1a aDx1 þ vDx2 þ Df1ð Þ
þ x2a aDx2 � vDx1 þ Df2ð Þ
� a2 xk k2�5jaj � xk k jaj þ jvjð Þ DQ1 þ DQ2ð Þ:

Then, provided that a 6¼ 0 and

xk k4 5 1þ w

a

��� ���� �
DQ1 þ DQ2ð Þ ð40Þ

it results that a _VðxÞ4 0.

When a\0, _VðxÞ is negative on all level surfaces
where Equation (40) holds. Then, both methods, the
QSS1 and BQSS, give practically stable results. This
is, the solutions approach a bounded region around
the origin.

Similarly when a4 0, _VðxÞ is positive on the same
level surfaces, and the Euclidean norm of x grows
monotonically, provided that the initial condition satis-
fies (40).

Thus, both methods are numerically stable for eigen-
values in the open left-half plane and unstable for
eigenvalues in the open right-half plane.

Let us now analyze the case a ¼ 0, that is, when the
eigenvalues are located on the imaginary axis. In this
case, it can be seen that Dfi ¼ 0 in the BQSS whenever
PxP4 2DQ1 þ 2DQ2. The reason is that the derivative
of x1 only depends on the sign of q2, and the derivative
of x2 only depends on the sign of q1. In this way, we can
always find q1 and q2 in the direction of the correspond-
ing derivatives.

Then, for xk k large enough, it results that

_VðxÞ ¼ x1vDx2 � x2vDx1 ð41Þ

Using (33) to substitute the terms x1v and x2v we
obtain

_VðxÞ ¼ ð� _x2 � vDx1ÞDx2 � ð _x1 þ vDx1ÞDx1
¼ � _x1Dx1 � _x2Dx2

In the BQSS, the definition ensures that _xiDxi � 0.
Moreover, the situation _xiDxi ¼ 0 is only possible when
_xi ¼ 0. Thus, the simulation of marginally stable sys-
tems using the BQSS will produce practically stable
results as V (and hence xk k) decreases with time.

For the QSS1, we need to evaluate V between two
instants of time:

VðtbÞ � VðtaÞ ¼
Z tb

ta

_VðxÞdt ¼
Z tb

ta

ð� _x1Dx1 � _x2Dx2Þdt

¼̂ � DV1 � DV2

Let us call t1, t2, . . . , tm the instants of time in the
interval ðta, tbÞ where x1 reaches quantization levels.
The first term DV1 can be expressed as

DV1 ¼
Z t1

ta

_x1Dx1dtþ
Xm�1
k¼1

Z tkþ1

tk

_x1Dx1dtþ
Z tb

tm

_x1Dx1dt

Since Dx1 ¼ q1 � x1 and q1ðtÞ remains constant
between tk and tkþ1, we can calculateZ tkþ1

tk

_x1ðq1ðtkÞ � x1ðtÞÞdt ¼
Z x1ðtkþ1Þ

x1ðtkÞ
ðq1ðtkÞ � x1Þdx1

If tk and tkþ1 are instants of time, at which x1 crosses
the same quantization value, the integral is 0.
Otherwise, x1ðtkþ1Þ � x1ðtkÞ ¼ �DQ1 andZ tkþ1

tk

_x1Dx1ðtÞdt ¼ q1ðtkÞ x1ðtkþ1Þ � x1ðtkÞð Þ

� 1

2
x1ðtkþ1Þ2 � x1ðtkÞ2
� �

¼ ðx1ðtkþ1Þ � x1ðtkÞÞ

	 q1ðtkÞ �
x1ðtkþ1Þ þ x1ðtkÞ

2

� 	

In the QSS1, we have q1ðtkÞ ¼ x1ðtkÞ, and the inte-
gral evaluates to �DQ2

1=2. Hence the QSS1 subtracts
this constant value from DV1 between successive steps,
except when x1 changes its direction. A similar analysis
concludes that DV2 decreases by �DQ2

2=2 between suc-
cessive steps in x2. In conclusion, V grows over time,
and we obtain an unstable result.

In order to achieve F-stability, we require that the
integral in the last equation becomes zero. This can be
achieved by modifying the QSS method such that
qiðtkÞ ¼ 0:5ðxiðtkþ1Þ þ xiðtkÞÞ, that is, by taking the
mean value between the QSS1 and BQSS values for q.

This very simple idea defines a new method that shall
be called the CQSS method. Figure 5 shows the simu-
lation of the marginally stable system of Equation (32)
using CQSS.

6. Examples

The new BQSS and CQSS methods were programmed
in PowerDEVS, a discrete event system (DEVS) simu-
lation engine that has already implemented the QSSi
family of numerical integration methods.21 In this sec-
tion, we report the simulation results of four examples
of increasing complexity.

6.1. Linear second-order stiff system

Consider again the introductory example of Equation
(3) with initial conditions x1ð0Þ ¼ 0, x2ð0Þ ¼ 20. This
time, we wish to solve the system until t ¼ tf ¼ 1000.

396 Simulation: Transactions of the Society for Modeling and Simulation International 88(4)



We first simulated the introductory experiment using
the BQSS with a quantum of DQ1 ¼ DQ2 ¼ 1. Then, we
repeated the simulation twice more while reducing the
quantum first by a factor of 10, and finally by a factor
of 100.

The first simulation took 21 and 22 steps in x1 and
x2, respectively. Using DQi ¼ 0:1, the number of steps
was 204 in each variable. For DQi ¼ 0:01, we observed
2022 and 2038 steps in x1 and x2, respectively.

In all three cases, the simulation arrived at a stable
situation, where the algorithm does not perform any
further step beyond t ¼ 500.

It can be seen that the number of steps in each var-
iable is given by the division of the corresponding signal
amplitude by the quantum.

Figure 6 shows the simulation trajectories obtained
with DQi ¼ 1 (dashed lines) and DQi ¼ 0:1 (solid lines).
We did not include the simulation results correspond-
ing to DQi ¼ 0:01, because they cannot be distinguished
from the latter by the naked eye.

The theoretical error bounds, according to Theorem
3, for DQi ¼ 1 are

je1j � 3:004; je2j � 5:001 ð42Þ

while for DQi ¼ 0:1, they are 10 times smaller, and for
DQi ¼ 0:01, they are 100 times smaller.

Table 1 summarizes the results. As can be seen by
comparing the results reported in the error column
(column #2) with the theoretical error bounds estab-
lished earlier, the error bounds turned out to be con-
servative in this example.

As the BQSS method does not introduce oscillations,
the number of changes performed in each variable can
be obtained as the division between the signal ampli-
tude and the quantum. This fact is corroborated in this
example.

When the trajectories are not monotonic, the number
of steps performed canbeobtainedbyadding the number
of steps during each monotonic segment. This is equiva-
lent to dividing the signal activity22 by the quantum.

6.2. Non-linear third-order stiff system

The following system is a stiff standard benchmark
problem for ODE solvers:23

_x1 ¼ �0:013x1 � 1000x1x3
_x2 ¼ �2500x2x3
_x3 ¼ �0:013x1 � 1000x1x3 � 2500x2x3

ð43Þ

We consider initial conditions x1ð0Þ ¼ 1, x2ð0Þ ¼ 1,
and x3ð0Þ ¼ 0.

Table 1. Results for the linear second-order system

Integration Max, mean Number Function fi
method error of steps evaluations

PowerDEVS BQSS (�Q1,2 ¼ 1) 1.06, 0.34 43 65

PowerDEVS BQSS (�Q1,2 ¼ 0:1) 0.199, 0.034 408 612

PowerDEVS BQSS (�Q1,2 ¼ 0:01) 0.0191, 0.0033 4060 6098

BQSS: backward quantized state system.
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Figure 5. Centered quantized state system simulation of a
marginally stable system.

Figure 6. Backward quantized state system simulation of
Equation (3).
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In order to simulate this system with the BQSS,
we first selected a quantization of DQ1 ¼ 0:01,
DQ2 ¼ 0:01, and DQ3 ¼ 5	 10�8 with a final time of
tf ¼ 500.

Figure 7 shows the simulation trajectories. The tra-
jectory of x3ðtÞ exhibits initially a very fast negative
gradient that cannot be discerned at the resolution of
the figure. The figure leaves the impression that x3ðtÞ is
experiencing a discontinuity at time zero, which is, of
course, not the case.

The simulation took 517 steps (100 in x1, 102 in x2,
and 315 in x3), arriving at a stable situation at time
t ¼ 419:66. After that time, no further events take
place.

PowerDEVS finished the calculations after 24ms on
a 2GHz personal computer (PC) running Linux.

When the quantum is reduced tenfold, the number of
function evaluations grows about 10 times. However,
the integration time increases by less than a factor
of three. This suggests that, in the original simulation,

PowerDEVS spends most of its time in the initialization
procedure.

We then repeated the experiment with the F-stable
CQSS method and with the same quantum as used in
the original simulation. The results obtained were
quite similar to those obtained by the BQSS (522
steps), but this time around, a stable situation was
not reached. The simulation ended in slow oscillations
around the final values of the three state variables.
Had we continued this simulation to a longer final
time, the CQSS would have produced additional
events due to the steady-state oscillations, whereas
the BQSS would not. Both solvers are useful for sim-
ulation, but their strengths lie in different types of
applications. The BQSS performs better than the
CQSS in stiff system simulations, whereas the CQSS
performs better than the BQSS in marginally stable
system simulations.

For comparison purposes, we then performed the
same simulations using the stiff ode15s and ode23s sol-
vers of Matlab. For these simulations, we requested a
relative error tolerance of 10�3, that is, the same toler-
ance as in the more accurate second simulation run
using the BQSS.

Table 2 summarizes the results. The errors shown
(column #2) in each case are the largest of the three
mean absolute errors for the three state variables.

We notice that the BQSS generated results that were
about as accurate as requested, that is, with a quantum
of DQ1 ¼ DQ2 ¼ 0:01, we obtained results with an
absolute global error of approximately 0:01, whereas
with a quantum of DQ1 ¼ DQ2 ¼ 0:001, we obtained
results with an absolute global error of approximately
0:001. The errors were calculated by comparing the
simulation results with a reference solution obtained
by simulating the model once more using ode15s with
a relative error tolerance of 10�9.

If we compare the number of steps used by the
second BQSS simulation (with a quantum of
DQ1 ¼ DQ2 ¼ 0:001) with those used by ode15s and
ode23s, we notice that the BQSS requires between 100
and 200 times as many steps. This much larger number

Table 2. Results for the third-order system

Integration method Mean error
Number
of steps

Function fi
evaluations

CPU time
[sec]

PowerDEVS BQSS (�Q1,2 ¼ 0:01 �Q3 ¼ 5 � 10�8) 0.014 517 1349 0.024

PowerDEVS BQSS (�Q1,2 ¼ 0:001 �Q3 ¼ 5 � 10�9) 7:2 � 10�4 4953 12,860 0.057

PowerDEVS CQSS �Q1,2 ¼ 0:01 �Q3 ¼ 5 � 10�8) 0.011 522 1363 0.026

Matlab – ode15s (Tol.¼ 10�3) 7:11 � 10�4 38 4 342 0.087

Matlab – ode23s (Tol.¼ 10�3) 8:42 � 10�4 22 4 198 0.049

CPU: central processing unit, BQSS: backward quantized state system, CQSS: centered quantized state system.

Figure 7. Backward quantized state system simulation of the
system of Equation (43).
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of steps is partly caused by the fact that the BQSS is an
asynchronous solver, that is, each integration step
updates only a single state variable, whereas the
Matlab solvers are synchronous solvers that update
all three state variables simultaneously. Thus, the
BQSS uses in reality only about 50 times as many
steps as the two Matlab solvers. The main reason for
the much larger number of steps is, however, caused by
the fact that the BQSS is a first-order algorithm,
whereas the Matlab solvers are higher-order
algorithms.

We already noticed when developing and testing the
non-stiff QSS solvers that the number of steps required
by these solvers is comparable to the number of steps
required by classical non-stiff ODE solvers of the same
order.9 We expect that the same will hold also for the
stiff solvers, that is, once the higher-order stiff QSS
solvers have been fully developed and debugged, they
also will use a similar number of steps as the corre-
sponding Matlab solvers.

The number of individual function evaluations can
be directly measured in PowerDEVS. In the case of
Matlab, we can only obtain an estimate of a lower
bound by multiplying the number of steps with the
order of the system (three in this case) and with the
minimum number of function evaluations per step of
the method. Both methods need at least three function
evaluations per step, assuming that the Newton itera-
tion converges after only one iteration (i.e. involving
two function evaluations), and an extra function eval-
uation for step-size control.

Yet in spite of the fact that the BQSS is a first-order
stiff ODE solver only and in spite of the fact that this
solver requires many more steps to complete the simu-
lation, the BQSS simulation runs almost as fast (0.057
seconds) as the more efficient among the two Matlab
simulations (0.049 seconds), and the results have a sim-
ilar accuracy.

The execution times of the two codes are meaning-
fully comparable, because both Matlab and
PowerDEVS partly compile their solvers and/or
model equations, but neither of the two codes compiles
the entire simulation into a flat simulation code that
can then be executed, that is, both codes are partly
compiled and partly interpreted.

Of course, the BQSS will become hopelessly ineffi-
cient when the accuracy requirements are tightened.
For example, if we request a relative accuracy of
10�6, the Matlab solvers will still simulate the prob-
lem adequately, whereas the BQSS will take forever
to complete the simulation, since the number of steps
in the BQSS grows inversely proportional to the
quantum.

In order to simulate stiff systems with stringent accu-
racy requirements using a QSS-based stiff system

solver, we shall need to wait for the higher-order
codes that are currently under development.

6.3. 80th-order marginally stable stiff non-linear
system

The following system of equations represents a lumped
model of a lossless transmission line, where L ¼ C ¼ 1,
with a non-linear load at the end:

_f1ðtÞ ¼ u0ðtÞ � u1ðtÞ
_u1ðtÞ ¼ f1ðtÞ � f2ðtÞ
..
.

_fj ðtÞ ¼ uj�1ðtÞ � uj ðtÞ
_uj ðtÞ ¼ fj ðtÞ � fjþ1ðtÞ
..
.

_fnðtÞ ¼ un�1ðtÞ � unðtÞ
_unðtÞ ¼ fnðtÞ � gðunðtÞÞ

ð44Þ

We consider an input pulse entering the line:

u0ðtÞ ¼
10 if 0 � t � 10
0 otherwise

�
ð45Þ

and a non-linear load:

gðunðtÞÞ ¼ 10000 � unð Þ3 ð46Þ

We also set zero initial conditions ui ¼ fi ¼ 0,
i ¼ 1, . . . , n.

We consider 40LC sections (i.e. n ¼ 40), which
results in an 80th-order system. Linearization
around the origin (ui ¼ fi ¼ 0) shows that the system
is marginally stable, that is, the linearized model
does not have any damping term. However, a more
careful analysis concludes that the system is also
stiff, as the non-linear load adds a fast mode when un
grows.

We decided to simulate the system of Equations
(44)–(46) using the F-stable CQSS method. To this
end, we started with quanta of DQi ¼ 0:1 for all state
variables except for un, where we applied
DQ ¼ 1	 10�4.

The quantum in QSS methods plays the role of the
absolute tolerance. We reduced it at the last state,
because we wanted to observe the evolution of that
variable with a finer resolution, since its value will be
very close to zero.

To obtain the first 500 seconds of simulated time, the
CQSS performed roughly 6500 transitions in each of
the state variables. The results of the first 100 seconds
of the simulation are shown in Figure 8.

Figure 9 shows the voltage at the 35th section of the
transmission line, that is, towards the end with the load.
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In order to be able to analyze and discuss the accu-
racy and efficiency of the CQSS solution, we repeated
the simulation twice with larger values of the quanta,
and we also performed simulations of the same model
in Matlab using the two ODE solvers that worked best
on this example: ode23t, an implementation of the
F-stable trapezoidal rule, and ode15s, a variable-step,
variable-order stiff backward differentiation formula
(BDF) solver.

Table 3 summarizes the results. The error given
in the table (column #2) refers to the average abso-
lute error of the voltage of the 35th transmission line
section, that is, the same variable that is shown in
Figure 9.

The absolute errors obtained by the CQSS simula-
tions were approximately those requested through the
selection of the quanta: for DQi ¼ 0:1, we obtained an
average absolute error of 0:133; with DQi ¼ 0:2, we
achieved an average absolute error of 0:29; and setting
DQi ¼ 0:5, the average absolute error turned out to be
0:833. The Matlab solutions were a little less accurate,
but much more importantly, the CQSS, by controlling
the global absolute error, provides the user with a more
finely tuned error control than either ode23t or ode15s,
which only control the local relative error. The errors
were calculated by comparing the simulation results
with a reference solution obtained by simulating the
model once more using ode23t with a relative error
tolerance of 10�9.

We notice further that the CQSS simulations were,
for this example, significantly more efficient than the
more efficient among the two Matlab solutions.

In order to gain a yet better understanding of the
errors in these simulations, we plotted the absolute
errors of the voltage of the 35th transmission line sec-
tion, simulated using the most accurate of the CQSS
and Matlab solutions, as functions of time. These
results are depicted in Figure 10.

Notice that the largest absolute errors are about 10
times larger for ode23t than for the CQSS. In addition,
the average errors for both ode23t and ode15s are
slowly growing over time, whereas the average errors
of the CQSS simulation remain constant over time.

Table 3. Accuracy and efficiency analysis for the transmission line

Integration method Mean error Number of steps Function fi evaluations CPU time [sec]

PowerDEVS CQSS (�Qi ¼ 0:1) 0.133 497,526 995,052 3.94

PowerDEVS CQSS (�Qi ¼ 0:2) 0.290 263,506 527,012 2.15

PowerDEVS CQSS (�Qi ¼ 0:5) 0.833 144,171 288,342 1.23

Matlab ode23t (Tol.¼ 10�3) 0.706 5551 4 1,332,240 8.80

Matlab ode15s (Tol.¼ 10�3) 1.1498 5192 4 1,246,080 9.52

CPU: central processing unit, CQSS: centered quantized state system.

0 50 100 150 200 250 300 350 400 450 500
−20

−15

−10

−5

0

5

10

15

Figure 9. Centered quantized state system simulation of the
system of Equations (44)–(46).

Figure 8. Centered quantized state system simulation of the
system of Equations (44)–(46).
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6.4. Buck converter

The buck converter is a highly efficient step-down direct
current/direct current (DC/DC) power-switching con-
verter. Buck converters form an integral part of many
electronic circuits. The reason why they are called step-
down converters is because their output voltage can
never exceed their input voltage. Given an unregulated
continuous voltage, they produce a regulated output
voltage of smaller magnitude. Figure 11 shows a circuit
diagram of a buck converter containing two non-linear
elements: a switch, Sw, and a diode, D.

Models of ideal switching power converters are non-
linear, discontinuous, variable structure models. A var-
iable structure model is a model, in which the state
variables change as a function of a switch parameter.
It can be seen easily that the ideal buck converter circuit
is represented by a variable structure model. To this
end, consider the case where the switch is open. Then,
when the diode is conducting, current flows through the
inductor, whereas when the diode is blocking, no cur-
rent flows through the inductor. Consequently, the
inductor current can be used as a state variable of the

model while the diode is conducting, but it cannot be
used as a state variable while the diode is blocking.

To avoid the problem of having to deal with a var-
iable structure model, many modelers make use of
leaky diodes and non-ideal switches, that is, they rep-
resent closed switches and conducting diodes by a very
small resistance, and they represent open switches
and blocking diodes by a very large resistance.
Consequently, both elements can be modeled as resis-
tors with resistance values that vary over time. This is
also the approach that we shall be using in this
example.

In this way, we avoid the variable structure problem,
and we can obtain, for example, the following differen-
tial algebraic equation (DAE) model describing this
circuit:

_VC ¼ IL
C �

VC

RC
_IL ¼ VD�VC

L

VD ¼ RD
VCC�VD

RLL
� IL

� �
vout ¼ VC

ð47Þ

where

RLL ¼
RLL�on if Sw�ONðclosed Þ
RLL�off if Sw�OFFðopenÞ

�
ð48Þ

RD ¼
RD�off if VD 4 0ðID � RD 4 0 : blockingÞ
RD�on if VD � 0ðID � RD � 0 : conductingÞ

�
ð49Þ

The form of the DAE model obtained is not unique.
It defines the algebraic variable, VD, implicitly, that is,
the model contains an algebraic loop, and conse-
quently, that equation can be formulated in many dif-
ferent ways.

Figure 12 shows how this model has been imple-
mented using the graphical block diagram editor of
PowerDEVS. The hysteretic quantized integrator
block, QSS Integrator1, computes the inductive cur-
rent, IL. Its derivative is a linear-weighted sum of VD

and VC and is computed by the block WSum1. The
second integrator block, QSS Integrator2, computes
the capacitive voltage, VC. Its derivative is a linear-
weighted sum of IL and VC and is computed by the
block WSum2. The implicitly formulated algebraic var-
iable, VD, is computed by the block ImpFunction1. It is
a non-linear function of the switch resistances, RLL and
RD, and of the inductive current, IL. The top switch
block, Switch1, computes the switch resistance, RLL,
whereas the bottom switch block, Switch2, computes
the diode resistance, RD. RD is a function of VD.
In order to avoid an illegitimate model, that is,
oscillations occurring with infinite frequency, a small
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Figure 10. Absolute simulation error in u35ðtÞ.

Figure 11. Buck converter diagram.
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hysteresis was introduced between the block that com-
putes VD and its use by the switch block, Switch2.
Table 4 lists the parameter values used by the model.

It must be noted that modeling the switch and the
diode by non-ideal switch elements to avoid the vari-
able structure problem comes at a price. The resulting
model is very stiff in some of the switch positions, and
the smaller the value of Ron and the larger the value of
Roff are chosen, the more pronounced the (artificial)
stiffness of the model will turn out to be.

Consequently, we need a stiff system solver to simu-
late this discontinuous model, and therefore, we chose
the BQSS for simulating this circuit. The integration
algorithm to be used can be set in PowerDEVS as a
parameter of the hysteretic quantized integrator block,
and it is set for each integrator independently, that is,
PowerDEVS offers a convenient way to specify mixed-
mode integration.

Figure 13 shows the output voltage, Vout, of model
(47) starting from zero initial conditions, VCð0Þ ¼ 0

Figure 12. PowerDEVS model of buck converter.

Figure 13. Buck converter simulation results.
BQSS: backward quantized state system.

Table 4. Parameters of the buck converter circuit

Parameter Value

R 10 �

C 100 �F

L 0:1 mH

Ron Diode 10�6

Roff Diode 106

Ron Switch 10�6

Roff Switch 106

Switch commutation 10 kHz

Frequency

Vcc 24 V
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and ILð0Þ ¼ 0, and using the parameters of Table 4.
The position of the externally controlled switch is tog-
gled with a frequency of 10 kHz.

The simulation was run thrice. The first simulation
used the BQSS with DQ1 ¼ DQ2 ¼ 0:1 for the two inte-
grators. In PowerDEVS, DQ is specified as a parameter
of the hysteretic quantized integrator block. The second
simulation was run in Matlab using ode23t with a rel-
ative error tolerance of 10�3. The third simulation run
generated the reference solution. It was run also in
Matlab using ode23t with a relative error tolerance
of 10�9.

We notice that the solution produced by ode23t
deviates significantly from the reference solution
during the initial phase of the simulation, whereas the
solution produced by the BQSS is quite accurate.
On the other hand, once the (oscillatory) steady state

has been reached, the ode23t solution is more accurate
than that produced by the BQSS.

Figure 14 depicts the absolute errors committed by
the two simulations, that is, by the BQSS and ode23t.
They were computed by comparing the simulation
results with the reference solution.

The error committed by ode23t during the initial
simulation phase is huge. The simulated output voltage,
Vout, deviates from the reference solution by roughly
20%, although a relative error tolerance of 0:001 had
been requested. Thus, the actual simulation error is too
large by a factor of 200. During the (oscillatory) steady
state, the absolute error committed by ode23t is of the
order of 0:015, whereas the output itself assumes a
value of roughly 15. Hence ode23t performs as
requested during steady-state operation.

In contrast, the absolute error committed by the
BQSS remains of the order of 0:1 throughout
the entire simulation, as requested by the setting of
the DQi values.

We notice once again that the BQSS does a much
better job than ode23t in controlling the error accu-
rately. Neither does the BQSS waste precious comput-
ing resources by calculating a solution that is more
accurate than requested, nor does it deceive the user
by producing simulation results that are less accurate
than demanded.

In Table 5, the mean errors of the output voltage,
Vout, from a number of simulations are tabulated
together with the execution times that these simulations
required.

In addition to the two simulations mentioned earlier,
we performed an additional simulation using the BQSS
with larger quanta of DQ1 ¼ DQ2 ¼ 0:2, two simula-
tions using the CQSS with different quanta, a series
of simulations using Matlab’s ode23t simulator with
different relative error tolerances, a comparative simu-
lation using LTSpice, a version of the Spice electronic

Table 5. Accuracy and efficiency of buck converter circuit simulations

Integration method Mean error Number of steps Function fi evaluations CPU time [sec]

PowerDEVS BQSS (�Q1 ¼ �Q2 ¼ 0:1) 0.067 10, 431 20, 862 0:09

PowerDEVS BQSS (�Q1 ¼ �Q2 ¼ 0:2) 0.139 5386 10,772 0.06

PowerDEVS CQSS (�Q1 ¼ �Q2 ¼ 0:1) 0.044 10,027 20,054 0.09

PowerDEVS CQSS (�Q1 ¼ �Q2 ¼ 0:2) 0.198 4857 9714 0.04

Matlab ode23t (Tol.¼ 10�3) 0.199 4 2003 4 24, 036 0.65

Matlab ode23t (Tol.¼ 10�4) 0.213 4 2327 4 27, 924 0.71

Matlab ode23t (Tol.¼ 10�5) 0.033 4 3561 4 42, 732 0.81

LTSpice ModTrap (Tol.¼ 10�3) 0.209 11, 714 4 67, 000 0.53

Dymola esdirk23a (Tol.¼ 10�2) 0.019 734 8766 1.041

CPU: central processing unit, BQSS: backward quantized state system, CQSS: centered quantized state system.

Figure 14. Absolute errors of buck converter simulations.
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circuit simulator specifically designed for the efficient
simulation of digital circuits, such as switching power
converter circuits, and finally, we also simulated this
same circuit in Dymola, an object-oriented modeling
and simulation environment designed for modeling
and simulating physical systems.

We notice that, for this example, the performance of
the BQSS and the CQSS is very similar, both in terms
of accuracy and efficiency. We notice further that the
execution times of ode23t grow insignificantly when
tightening the relative error tolerance from 10�3 to
10�5, but we also notice that the solver does not deliver
either, that is, the mean errors should get reduced by a
factor of 100, which is not at all the case. Another
observation is that LTSpice, although specialized for
the simulation of precisely this type of electronic circuit,
is about as equally efficient as Matlab with ode23t. We
finally observe that Dymola, when using esdirk23a,
simulates the circuit very accurately, but is also the
least efficient of the tools. Dymola is slower than
Matlab and/or LTSpice by almost a factor of two.
We tried all solvers that Dymola offers and reported
the results for the solver that simulated this circuit most
effectively.

Although the BQSS and the CQSS are only first-
order accurate solvers, both turned out to be highly
competitive in the simulation of the buck converter cir-
cuit. Both solvers are faster than Matlab and LTSpice
by at least a factor of five, and they beat Dymola in
efficiency by at least a factor of 10.

Of course, our accuracy requirements were set rela-
tively low. We had to compute the reference solution in
all four examples using Matlab, because neither the
BQSS nor the CQSS would be able to calculate a
highly accurate solution efficiently. When the quanta
are reduced by a factor of 10, the number of events
for both the BQSS and the CQSS will increase by
roughly a factor of 10, and consequently, the simula-
tion will also take 10 times longer to execute.

We shall have to wait for higher-order stiff and mar-
ginally stable QSS-based solvers to remedy this short-
coming. In a second-order QSS solver, the number of
events grows inversely proportional to the square root
of the quantum, and in a third-order accurate QSS
solver, the number of events grows inversely propor-
tional to the cubic root of the quantum. Hence by
using a third-order stiff QSS solver, we shall be able
to reduce the quantization by a factor of 1000, and
yet will only have to wait about 10 times as long for
the simulation to end.

7. Conclusions

In this paper, a new stiff numerical ODE solver has
been presented that bases its discretization on state

quantization instead of time slicing. The BQSS
method, as described in this article, is only first-order
accurate, and therefore, the accuracy obtainable by
BQSS simulations is evidently quite limited, but an
extension to higher orders of approximation accuracy
has already been proposed in a PhD dissertation,17 and
solvers based on this idea are currently under
development.

The numerical properties of the BQSS, that is, its
stability and convergence properties, were rigorously
analyzed. Although state quantization leads invariably
to non-linear solutions, even when applied to the sim-
ulation of linear time-invariant systems, it has been
possible to develop theorems, using analysis of pertur-
bations,20,24 about the accuracy, consistency, and
numerical stability of these methods that are analogous
to those developed for classical ODE solvers.

It was shown that QSS-based solvers share a number
of striking properties that make it well worthwhile
studying them as potentially interesting alternatives to
classical ODE solvers. In particular, it was shown that
QSS-based ‘implicit’ solvers can be implemented by
explicit algorithms that do not require any iteration.

The reason for this surprising discovery is that there
are only two possible next state values that need to be
investigated (one level up and one level down), that is,
in the worst of all cases, the computation of the next
step would need to be repeated only once. Yet, since
QSS-based algorithms offer a naturally dense output, a
decision, which of the two possible solutions must be
taken, can be made beforehand, that is, without actu-
ally performing a simulation step. The additional com-
putational cost for making this decision is quite low.
Comparing the computational effort of calculating one
step of the stiff ‘implicit’ BQSS solver with computing
one step of the non-stiff ‘explicit’ QSS1 solver, we find
that simulating a step of the BQSS is only about
10% more expensive than computing a step of QSS1.
In contrast, classical implicit ODE solvers require on
average three Newton iteration steps for each integra-
tion step.

In classical ODE solvers, step-size control is per-
formed by comparing the simulation results of two inte-
gration algorithms that are simulated in parallel with
each other. These algorithms control the local integra-
tion error during a single step, and if it turns out that a
step was calculated too inaccurately, the step needs to
be repeated with a smaller step size. This is true for
both explicit and implicit ODE solvers.

QSS-based algorithms operate differently. Here,
step-size control is a natural feature of the algorithms
themselves. It was shown that the global integration
error is a function of the quantum chosen, and the
step size of these methods is adapted for each state
variable separately in accordance with its current
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gradient and the selected quantization. Thus, QSS-
based algorithms never need to repeat an integration
step.

As an almost accidental by-product, a second algo-
rithm, the CQSS, was also introduced in this article.
The CQSS solver is a mixture between the non-stiff
QSS1 solver and the stiff BQSS solver. It turns out
that the CQSS is a true geometric solver.13 It shares
all of the properties of geometric solvers. The algorithm
is symmetric, symplectic, and preserves r-reversibility.13

In addition, the CQSS is only first-order accurate.
Hence, the CQSS is ideally suited for the simulation
of conservative (frictionless) mechanical systems at
low-to-moderate accuracy.

The properties of the CQSS were, however, not pre-
sented as rigorously as those of the BQSS algorithm.
The reason is that the geometric nature of the CQSS
seems to be a bit of an accident. At least until now, we
do not see any way to extend the geometric properties
of the CQSS to higher orders of approximation accu-
racy. Of course, it is possible to design higher-order
QSS-based algorithms that will be decently well suited
for the simulation of marginally stable systems, for
example, by toggling steps of the already developed
higher-order non-stiff algorithms, QSSi with steps of
the higher-order stiff algorithms that are currently
under development, but these cyclic algorithms do
unfortunately not preserve the geometric properties of
the CQSS in a rigorous way.

The more theoretical discussions of the properties of
the BQSS (and to a lesser extent, the CQSS) are accom-
panied in this paper by a more practical section, in
which the performance of the BQSS and the CQSS is
compared against the performance of classical stiff and
marginally stable system solvers. Comparisons were
made with ODE solvers available as part of Matlab,
in particular ode15s, ode23s, and ode23t, with
LTSpice, a dialect of the widely used Spice electronic
circuit simulator, designed specifically for the simula-
tion of power electronic switching circuits, and also
with Dymola, a state-of-the-art environment for model-
ing and simulating physical systems.

It turned out that, in spite of their limitations of
being first-order algorithms only, both the BQSS and
the CQSS are quite competitive when simulating sys-
tems with low-to-moderate accuracy requirements.
In one example, simulating a switching electronic
power converter circuit, the BQSS and CQSS simula-
tions were about five times faster than Matlab and
LTSpice, and about 10 times faster than Dymola.

In addition, all of the examples demonstrated that
QSS-based solvers do a much better job than classical
ODE solvers in terms of controlling the integration
error. They do not waste precious computational
resources on computing the solution more accurately

than requested, but they do not ‘cheat’ either by com-
puting a solution that does not satisfy the accuracy
requirements imposed on the solution.

The BQSS was designed to solve general stiff
systems. However, taking into account that QSS meth-
ods are particularly efficient for the simulation of
systems exhibiting many discontinuities, we found
that the BQSS shows important advantages when
simulating discontinuous stiff ODEs, such as those
present in power electronic circuit models. In those
cases, the BQSS significantly outperforms all of the
stiff solvers available in Dymola, Matlab, and
LTSpice, at least for low-to-moderate accuracy
requirements.

In the following list, we summarize the advantages
and disadvantages of the BQSS and CQSS methods.

Advantages.

. The BQSS and the CQSS are semi-explicit methods.
They do not require Newton iteration. In spite of
this, they are suitable for simulating stiff systems.

. The CQSS is also suitable for simulating marginally
stable systems.

. The BQSS and the CQSS, like all QSS methods, are
highly efficient in handling discontinuities.

. In systems that are both stiff and discontinuous –
very typical in power electronics – the BQSS and
the CQSS offer very efficient solutions, at least for
low-to-moderate accuracy requirements. As shown
in the last example, these solvers can improve the
speed of the simulations by more than one order of
magnitude in comparison with state-of-the-art dis-
crete-time methods.

. The BQSS and the CQSS exhibit strong theoretical
properties regarding numerical stability and the
global error bounds.

Disadvantages.

. The BQSS and the CQSS are only first-order accu-
rate. They cannot perform simulations with stringent
accuracy requirements.

. The implementation of BQSS and CQSS methods is
more involved than that of classic algorithms.
Firstly, it requires some sort of discrete-event simu-
lation engine. In addition, the state equations need
to be evaluated componentwise. Thus, it is not
straightforward to include a BQSS/CQSS solver in
conventional simulation packages.

. In large non-sparse systems, the BQSS and the
CQSS, just like other QSS methods, become ineffi-
cient as every step in each state variable results in a
large number of individual function evaluations. In
this case, discrete-time algorithms are more efficient
as they update all state variables together, thereby
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performing a much smaller number of full function
evaluations.

. In some cases, when integrating non-linear systems,
the BQSS may find spurious equilibrium points and
terminate the simulation prematurely. Due to this
shortcoming, the current implementation of the
BQSS may be less robust than a classical stiff
system solver that is based on time slicing.
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