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Abstract

Background: The combination of robotic tools with assistance technology determines a slightly explored area of
applications and advantages for disability or elder people in their daily tasks. Autonomous motorized wheelchair
navigation inside an environment, behaviour based control of orthopaedic arms or user’s preference learning from
a friendly interface are some examples of this new field. In this paper, a Simultaneous Localization and Mapping
(SLAM) algorithm is implemented to allow the environmental learning by a mobile robot while its navigation is
governed by electromyographic signals. The entire system is part autonomous and part user-decision dependent
(semi-autonomous). The environmental learning executed by the SLAM algorithm and the low level behaviour-
based reactions of the mobile robot are robotic autonomous tasks, whereas the mobile robot navigation inside an
environment is commanded by a Muscle-Computer Interface (MCI).

Methods: In this paper, a sequential Extended Kalman Filter (EKF) feature-based SLAM algorithm is implemented.
The features correspond to lines and corners -concave and convex- of the environment. From the SLAM
architecture, a global metric map of the environment is derived. The electromyographic signals that command the
robot’s movements can be adapted to the patient’s disabilities. For mobile robot navigation purposes, five
commands were obtained from the MCI: turn to the left, turn to the right, stop, start and exit. A kinematic
controller to control the mobile robot was implemented. A low level behavior strategy was also implemented to
avoid robot’s collisions with the environment and moving agents.

Results: The entire system was tested in a population of seven volunteers: three elder, two below-elbow amputees
and two young normally limbed patients. The experiments were performed within a closed low dynamic
environment. Subjects took an average time of 35 minutes to navigate the environment and to learn how to use
the MCI. The SLAM results have shown a consistent reconstruction of the environment. The obtained map was
stored inside the Muscle-Computer Interface.

Conclusions: The integration of a highly demanding processing algorithm (SLAM) with a MCI and the
communication between both in real time have shown to be consistent and successful. The metric map generated
by the mobile robot would allow possible future autonomous navigation without direct control of the user, whose
function could be relegated to choose robot destinations. Also, the mobile robot shares the same kinematic model
of a motorized wheelchair. This advantage can be exploited for wheelchair autonomous navigation.

Background
Integration of robotic issues into the medical field has
become of a great interest in the scientific community
in the recent years. Mechanical devices specially devel-
oped for surgery like robot manipulators, control algo-
rithms for tele-operation of those robots and cognitive

algorithms for user decision learning are some examples
of robotic applications in medicine. On the other hand,
service, assistance, rehabilitation and surgery can also
benefit from advances in robotics.
The objective of SLAM is to concurrently build a map

of an environment and allow the robot to localize itself
within that environment [1-3]. Although SLAM is not
only devoted to mobile robots [4], it was first thought as
a tool for mobile robot autonomous navigation [5-7].
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Since its early beginnings [8,9], the SLAM scheme has
been developed and optimized in different ways. The
most common implementation uses an Extended Kal-
man Filter (EKF) [6,7]. The EKF minimizes the mean
quadratic error of the system state and considers all
variables as Gaussian random variables [5,9]. The map
obtained by an EKF-based SLAM implementation is
usually a feature-based map [10-12]. The features of the
map obey some geometrical constrain of the environ-
ment [13,14]. Thus, in [14] is presented a line-based
SLAM where lines are related to walls; in [12] is shown
a point-based SLAM where all significant points are
related to trees of the environment. Other approaches
use a Particle Filter, [15,16], for solving the SLAM pro-
blem. The Particle Filter SLAM implementation has the
advantage that the features of the map are not restricted
to be Gaussian. In [15], there is a SLAM approach
based on the Unscented Kalman Filter which gives a
better performance of the SLAM scheme considering
the non-linearity of the model of the vehicle and the
model of the features. The best SLAM algorithm for a
particular environment depends on hardware restric-
tions, the size of the map to be built by the robot and
the optimization criterion of the processing time. A
common criterion of all SLAM algorithms is that they
must be consistent [17,18]. A non consistent SLAM
derives in unreliable environmental and position
information.
The integration of the SLAM algorithm with mobile

robot navigation strategies are discussed in [19]. Thus,
in [19] it is shown the implementation of the SLAM
algorithm to autonomous navigation. Autonomous navi-
gation in SLAM requires that the robot is able to decide
by its own the destination within the environment being
mapped. On the other hand, in [20] is shown an imple-
mentation of a semi-autonomous navigation strategy in
SLAM. In this application, the mobile robot has some
knowledge about its state but it cannot take any action
according to that.
The use of biological signals to command robotic

devices has been widely discussed in the scientific litera-
ture. Thus, Brain-Computer Interfaces developments to
govern the motion of a mobile robot can be found in
[21]. Also, face posture recognition and electromyo-
graphic signals were used to command robotic devices
[22]. As an example of these implementations, in [23] is
shown a Muscle-Computer Interface to direct the
motion of a robot manipulator, simulating an orthopae-
dic arm. Most of these biological signals interfaces are
joystick based devices. The biological signal is acquired,
filtered, classified and then a feature or a pattern is
extracted from it. According to the extraction results,
the pattern or feature has a command -or an action-
associated with it. Thus, Finite State Machines have

been proposed as actuator devices of the biological sig-
nals interfaces, [21,23].
In this work we focus the human-machine interface in

the EMG signals, which has been extensively used for
wheelchair navigation, as in [24-26]. In the former, the
operator controls the direction of motion by means of
EMG signal from the neck and the arm muscles. An
intuitive human-machine interface is implemented by
mapping the degrees of freedom of the wheelchair onto
the degrees of freedom of the neck and arm of the
operator. For disabled users (C4 or C5 level spinal cord
injury), an EMG based human-computer interface (HCI)
is proposed in [25], where the user expresses his/her
intention as shoulder elevation gestures and their com-
bination defines the command control of the wheelchair.
When the operator preserves the capability to control

a joystick to command a powered wheelchair, it
becomes as a better solution for the wheelchair naviga-
tion. Thus, the SLAM algorithm would not be necessary
since the patient has a complete maneuverability over
the wheelchair and map information is not longer
needed. On the other hand, the EMG control is an
alternative for disabled people who cannot use a tradi-
tional joystick (i.e. amputees, persons with progressive
neuromuscular disorders, and so on). The MCI can be
adapted to any pair of agonist-antagonist muscles, like
facial, shoulder or neck muscles and not only for extre-
mities. In the first stage of amyotrophic lateral sclerosis
(ALS) some muscles remain actives, even in the upper
extremities. In others neuromuscular disorders such as
Duchenne muscular dystrophy (DMD), low level spinal
cord injury (B at Spinal Cord Injury Classification Sys-
tem) and Brown-Séquard syndrome (between some
pathologies) the remaining capabilities of the user can
be used as command control of any robotic device.
For physically disabled or aged people, the intelligent

wheelchairs allow them to achieve some degree of inde-
pendent personal mobility with little or no external aid.
An example of intelligent wheelchairs is the robotic
wheelchair developed by the Federal University of Espir-
ito Santo, Brazil, which has the capability of navigating
within a sensorized equipped environment [27].
Combining robotics techniques with Human-Machine

Interfaces has led to a slightly explored research area.
Mobile vehicles equipped with sensor systems or manip-
ulators are developed to offer autonomous or semi-
autonomous navigation, suitable for severely disabled
users. The MOVAID, [28], project and the Nursery
Robot System for the elderly and the disabled [29] are
examples of the robotic incursions in assistance tasks.
An interesting application of these systems is trans-

portation in hospitals, such as delivery of meals, phar-
macy supplies and patient records, or to hold and carry
an adult patient or a disabled child. Different navigation
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algorithms were implemented in the HelpMate robot
[30] -which requires a partially structured environment-
and the MELKONG care robot controlled by a nurse or
by a patient by means of a joystick, [31].
The use of a mobile robot or a robotic wheelchair as

a transportation system for a person with motor dis-
abilities provides him/her with some degree of auton-
omy subordinated to the sensorized environmental
configuration combined with the reactive behavior fea-
tures of the vehicle, and with the patient’s capability to
control the entire system. In order to achieve complete
autonomy, the user of the wheelchair should be able to
navigate in the environment where she/he stands with-
out the assistance of extra people. To do so, the user
should have some level of knowledge of the environ-
ment. When it is a sensorized one, the patient is
restricted to that place and any intention to go out of
that environment will violate the autonomy. In this
case, a map construction and robot localization
appears as an appropriate solution for reaching auton-
omy, which is the objective of the present work. The
central contribution of this paper is the combination
of an MCI with an SLAM algorithm for the navigation
of a robotic wheelchair within unknown and unsensor-
ized environments.
In this work, a mobile robot controlled by a Muscle-

Computer Interface is presented. Although the MCI
used can be adapted to the patient capabilities, in this
work, flexion, extension, hand pronation and hand supi-
nation of the right arm were used. The robot is
equipped with a sequential EKF-based SLAM algorithm
to map the unknown environment and with low level
behavioral strategy to avoid collisions. Once the patient
activates the SLAM algorithm, a map of the environ-
ment is continuously acquired. This map is a feature-
based map with metric information of the environment.
The features extracted correspond to corners (convex
and concave) and lines (representing walls). A secondary
map is also developed with the information of the seg-
ments associated with each line of the environment.
This parallel map is corrected and updated according to
the SLAM system state and the evolution of the covar-
iance system matrix of the SLAM algorithm. Once the
SLAM is turned off by the patient, the built map is
stored in a computer system. The SLAM process allows
dynamic and semi-structured indoor environments. A
kinematic control law to command the motion of the
robot was also implemented.
The system proposed in this paper allows the con-

struction of geometric maps of unknown environments
by a vehicle governed by a MCI. The obtained map is
then stored and it can be used for future safe navigation
purposes. The map remains stored on the computational
system and if the user of the MCI positions the vehicle

within a previously mapped environment he/she can use
the map information for planning tasks. The system pre-
sented here can be directly applied to intelligent wheel-
chairs without the need of using previously known
environments. The SLAM algorithm avoids the use of
off-board sensors to track the vehicle within an environ-
ment -a sensorized environment restricts the area of
movements of an intelligent wheelchair to the sensor-
ized area-. Furthermore, the SLAM algorithm allows the
creation of maps of unvisited regions.

Methods
System architecture
Figure 1 shows the architecture of the implemented sys-
tem. This architecture has two main sub-systems: a first
system managing the biological signal processing and a
second system that manages the robotic devices involved
in the entire process.
In figure 1, the Muscle-Computer Interface extracts

and classifies the surface electromyographic signals
(EMG) from the arm of the volunteer. From this classifi-
cation, a control vector is obtained and it is sent to the
mobile robot via Wi-Fi.
The Robotic Devices sub-system is composed by the

SLAM algorithm, the map visualization and managing
techniques, the low level robot controllers and the bio-
feedback interface to ensure the system’s stability. If no
bio-feedback is presented to the patient, the system
becomes open loop and the robot could collide [21].

Electromyographic signals extraction and classification
After previous informed consent, EMG data correspond-
ing to four classes of motion were collected from 7
volunteers with normal cognitive capabilities: two
below-elbow amputees, three elder and two young nor-
mally limbed patients using a pair of bipolar Ag/AgCl
(3 M RedDot) electrodes according to SENIAM [32]
protocol. The electrodes were located at the biceps bra-
chii, triceps brachii, supinator and pronator teres mus-
cles and the reference electrode was placed on the right
ankle. Electronic amplification, isolation, and filtering
are implemented by a front-end signal conditioning cir-
cuit with the following characteristics:
Input impedance: 10 MΩ
Gain: 1000
Common Mode Rejection Ratio (CMRR): 120 dB
Band-Pass Filter: 10-500 Hz.
Thereafter, the analogue EMG signals were digitized at

a sampling rate of 1000 Hz with an A/D 6015 board
(National Instruments®).
In the initial setting stage, the system records the

maximum voluntary contraction (MVC) and the back-
ground noise. Afterwards, with this information, the sys-
tem executes an adaptation routine for the current
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environmental conditions and for the current specific
characteristics of each volunteer. The volunteers were
prompted to perform the following types of contraction:
elbow flexion/extension, wrist pronation/supination
(elbow rotation for amputees) and no movement (rest).
With these results, a simple classifier was implemented,
in order to generate a set of commands based in muscle
contractions. For navigation purposes, the natural choice
is to command the robot with the pronation and supi-
nation from the right hand (or left, according to the
volunteer’s decision). These EMG signals were recorded

only in biceps and pronator muscles, in order to prevent
the interchannel crosstalk. The other acquisition chan-
nels are not taken into account for control purposes.

Signal control generation
The control vector generated by the EMG signals is a
set of basic commands to allow the robot’s movements
over the environment. These commands are described
in Table 1. To accomplish the set of commands shown
in Table 1, the following considerations were taken into
account.

Figure 1 General system architecture. It is composed by two main sub-systems. One acquisition and processing of the biological signals and
a second sub-system for the robot motion control and intelligence.
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i. The linear velocity of the robot is a function of its
angular velocity control input. If no angular velocity is
present, then the linear velocity remains constant.
ii. The Start, Stop and Exit signals are accomplished

by the extension of the forearm. It is so because this sig-
nal is present only in the triceps and no other muscle
can activate it. Thus, a first extension is needed to start
the SLAM algorithm. A second extension would stop it.
If two extensions with elapsed time between them lower
than 5 seconds are presented, then the SLAM algorithm
is turned off.
iii. Turn to the left command is related to the prona-

tion movement.
iv. Turn to the right is related to the supination

movement.
v. The EMG signal is full-wave rectified and a sixth

order Butterworth low-pass filter (cutoff frequency: 10
Hz) is implemented in order to smooth the trace and
extract the envelope.
In figure 2 different signals of the MCI are shown

according with the four acquisition channels. As a first

approach the angular velocity of the mobile robot,
related to pronation (turn to left) and supination (turn
to right) is assigned to the signal of pronator teres and
biceps brachii muscles. The classification was implemen-
ted through the difference between channels, in order to
minimize the interchannel crosstalk. The positive values
of this signal are related to the positive angular velocity
provided to the robot (the robot turns to the left). The
negative values correspond to negative angular velocity
(the robot turns to the right).
Since the EMG can be considered as a zero-mean sto-

chastic process, amplitude appears as proportional to
the standard deviation (STD) varying in time. Under
this assumption, Mean Absolute Value (MAV) is pro-
posed as maximum likelihood estimator of the EMG
amplitude (and, consequently, EMG-muscle force rela-
tion) [33]. MAV is defined as in Zecca et al. [34],

MAV k
k

abs emg j
j

k

( ) ( )  

1

1

Table 1 Commands for navigational purposes generated by the user

Generated Commands Description

Start SLAM and control algorithms begin

Stop Stops robot’s movements but the SLAM algorithm continues

Turn to the left Sustained command to make the robot turning to user’s left

Turn to the right Sustained command to make the robot turning to user’s right

Exit SLAM stops and a map is visualized

Figure 2 Electromyographic signal acquisition I. Four channels of electromyographic signal acquisition. In the Triceps Brachii channel the
crosstalk amplitude has the same order of the baseline.
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where emg(j) stands for the j-th sample from the
beginning of the experiment and k is the current sam-
ple. This equation was modified to be applied in a
recursive way, that is, more suitable for real-time con-
trol,

MAV k
k
k

MAV k
k

abs emg k( ) ( ) ( )     1
1

1

where k = 1,2,... corresponds to the sample time and
emg(k) is the myoelectric signal in each sampled time.
During the test, the subject was instructed to use a

pair of agonist-antagonist muscles (i.e. pronator teres
and biceps brachii muscles) to command the robot. The
muscle contraction amplitude is estimated through
MAV, which, in turn, is transformed to angular velocity
of the mobile robot. The decision criterion of the direc-
tion of turning is the sign obtained from the difference
between MAV signals, that is, sign(emgchannel1(k))-
emgchannel2(k))

Robotic devices
Once obtained the Scontrol (output classifier) from the
classification stage -as shown in figure 3-, it is applied

into the robot. The robot used in this work, is a non-
holonomic of the unicycle type Pioneer 3AT built by
ActivMedia® -shown in figure 1. The kinematic equa-
tions of this robot are shown in (1).
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In (1), V(k) and W(k) are the linear and angular veloci-
ties, respectively; x(k), y(k) and θ(k) are the current pose
of the robot -x(k) and y(k) represent the robot position
and θ(k) its orientation in a global coordinate system-
and Ωx(k), Ωy(k) and Ωθ(k) are the additive uncertainties
associated with the robot’s pose at the time instant k.
Given that the mobile robot used here has the same
kinematic model (1) than a powered wheelchair, the
results shown in this section could be directly applied to
the wheelchair [34] -without consideration of dynamic
variables-.
The control signals that are provided to the robot,

V(k) and W(k), are generated by injecting Scontrol into
the mobile robot (as shown in figure 4). Thus, if it is
positive, the robot turns to the left, and, if negative,

Figure 3 Electromyographic signal acquisition II. Biceps B. contraction and Pronator T contraction are shown in the top and middle panels
respectively. The output of the classifier is shown in the bottom panel (Scontrol).
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turns to the right. The control law implemented is
shown in (2).

u k
V k

W k

V W k t

S W
( )
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( )
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max

max









 













control
(2)

In (2), Vmax and Wmax are, respectively, the maximum
linear and angular velocities allowed by the MCI. Also,
Scontrol is the control signal; Δt is the sampled time of
the time-discretized system. As it is shown in (2), the
linear velocity is incremented when the angular velocity
decreases and vice versa. This means that when the
robot is turning, its linear velocity decreases. If no angu-
lar velocity is present, then the robot travels with a con-
stant maximum linear velocity. Figure 4 shows a scheme
of the control system.
In figure 4, the Stop, Start and Exit signals along with

Scontrol are transmitted to the robot via a Wi-Fi
connection.
Also, the mobile robot is equipped with a laser sensor

(built by SICK®) which acquires 181 range measure-
ments of the environments in 180 degrees. The maxi-
mum range of the sensor is of 30 m.

SLAM algorithm
The SLAM algorithm implemented in this work is a
sequential EKF-based SLAM (EKF, Extended Kalman Fil-
ter). The EKF-SLAM of this paper is a feature extraction
based algorithm that uses corners (convex and concave)
and lines of the environment as features to localize the
robot and, simultaneously, to build the map, [29]. All
extracted features and the robot’s pose are located at a glo-
bal coordinates system. In parallel with the map built by
the SLAM algorithm, a second map of the segments asso-
ciated to line features is maintained. This secondary map
stores the information concerning the beginning and end-
ing points of each segment. Due to the fact that lines of
the environment are associated with walls, the parameters
of a single line can represent two o more walls on the real
environment -e.g., two walls on both sides of a door-. A

map built by lines has no information for navigation pur-
poses because all walls belonging to one line are going to
be considered as a single feature. This problem is solved
by using the secondary map of segments, which gives a
metric tool to differentiate line features.
The map of an environment is the set of features that

represent it. In the SLAM, the robot-map system is
interpreted as one single vector state. Thus, at instant k
the robot pose is defined as xv(k) and the ith-feature is
expressed as pi(k). The pi-vector contains the parameters
that define the ith-feature. The complete state of the sys-
tem, with n features, is

x k x k p k p kn v
T T

n
T T

( ) ( ) ( ) ( ) 



  ... 1

(3)

The mean and covariance of the state shown in
(3) are, respectively,
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Here, Σvv(k|k) is the covariance matrix of the robot
pose estimate at instant k, Σii(k|k) is the ith-feature cov-
ariance estimate, and Σjj(k|k) is the cross covariance
between the ith-element and the jth-element of the vec-
tor state (4). It is assumed that all features in (3) are sta-
tionary and without process noise. According to this, the
process model can be expressed as

f x k u k v k
f x k u k k

n
v v       
 







, ,

( ), ( ), ( )
.


0

(6)

In (6), u(k) is the control input previously defined in
(2) and Ω(k) is the mobile robot process noise.

Figure 4 Mobile robot control system. Mobile robot control system.
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The observation model is

z k h x k p k ki i v i( ) [ ( ), ( ), ( )].  (7)

In (7), the observation model is a function of the
robot pose (xv), the environmental features (pi) and the
noise associated to the sensor -ψ- (range laser built by
SICK®). No odometric encoder information was used in
the SLAM algorithm implemented in this work. Given
that (1) and (7) are non-linear equations, the SLAM
algorithm requires the linearization of such expressions
[35].

Extended Kalman filter
In order to accomplish the estimation of the vector state
shown in (3), an EKF filter is used. The implementation
of an EKF-based SLAM algorithm is widely presented in
the literature ([6,7]). In this work, a sequential EKF-
SLAM was implemented to reduce the processing time
involved in the SLAM execution loop.

Feature extraction
The lines are defined by two parameters: the distance
(r) of the line to the global coordinate center frame and
the angle (a) between the global x-axis and a vector,
normal to the detected line, as shown in [14]. The
points measured by the sensor along a line, are deter-
mined by an iterative clustering algorithm. The set of
points that actually belong to a line are processed by a
linear regression algorithm in order to calculate the best
line [14].
Considering that a line, by hypothesis, is a Gaussian

random variable whose parameters, (r, a), are consid-
ered as the mean values. The covariance matrix for a
detected line is obtained by Taylor series propagation
of the covariance of the regression. As a line is
detected, an array with information about the segment
associated with that line is created. The secondary map
of the SLAM, stores both endpoints of all segments in
a global coordinates frame. The secondary map is
updated and corrected according to the EKF map
improvement. Therefore, if a new line is added to the
map, both its segment endpoints are also added to the
secondary map.
Although lines intersection could be used for corners

extraction, an independent method is used in this paper.
By using an independent method for feature detection,
possible cross-correlations between features parameters
are avoided. The detection of convex and concave cor-
ners of the environment is made by applying a right and
left differentiation on the actual angle provided by a
range sensor measurement. Those points, for which the
derivate of the angle exhibits a discontinuity along the
direction, are chosen as possible corners. Then, by

clustering the neighborhood of each chosen point and
analyzing the metric relations between points in that
cluster, it is possible to find the estimated corners.
Finally, the detected corner is also treated as a Gaus-

sian random variable and its parameters are represented

in the global reference frame - x y
G
T

,  -. Figure 5a shows

an example of the corners detection algorithm in a
closed environment. The figure also shows the covar-
iance ellipse associated to each corner. Figure 5b shows
lines and corners detection. Lines also have their covar-
iance ellipses, but they remain in the (r, a) system. The
mobile robot shown in figure 5 is of the unicycle type,
whose kinematics were previously shown in (1). The
mathematical model associated to corners of the envir-
onment is presented in (8), while the mathematical
model of a line is shown in (9) [14,15].

z k h x k p k w k
z

z

x k x

corner i v i
R

v x corner

( ) [ ( ), ( ), ( )]

( ),

 















    








2 2
x k y

xv y k ycorner
xv x xcorner

v y corner, ( )

, ( )

,
atan




 
































x kv

R

, ( )





(8)

z k h x k p k w k
z

z

r x k x

line i v i

v x

( ) [ ( ), ( ), ( )]

( )cos( ),

 











 





 vv y

v

k

x k
,

,

( ) sin( )

( )


















 











(9)

In (8) and (9) are shown the observation models used
for corners and lines. ψR, ψb, ψr and wa are their asso-
ciated Gaussian noises, and xv(k) = [xv,x(k) xv,y(k) xv,θ(k)]

T

is the pose of the robot. Figure 5b shows the geometric
interpretation of each variable of (8) and (9). More about
these features models can be found in [14] and [15].

SLAM general architecture and consistency analysis
Figure 6 shows the general architecture of the SLAM
algorithm implemented in this work. Once the features
of the environments are extracted (lines, corners or
both) they are compared with the predicted features
previously added to the SLAM system state. If there is a
correct association between -at least- one feature of the
SLAM system state with a recently extracted feature,
then the SLAM system state and its covariance matrix
are corrected according to the correction stage of the
Extended Kalman Filter (see [6]). If there is no appropri-
ate association between the observed features and the
predicted ones, the feature is added into the parallel
map (if the feature is a line, then their beginning and
ending points are incorporated into the parallel map; if
it is a corner, then its Cartesian coordinates are added).
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Once a feature is added into the parallel map, its para-
meters -according to Eq. (8) or (9)- are initialized in the
SLAM system state. When a correction stage is success-
fully executed, the values stored in the parallel map are
also updated according to the changes of their corre-
sponding features in the SLAM system state. The data
association criterion used in this work was the Mahala-
nobis distance [15]. An extended analysis of this SLAM
architecture can be found in [36].
In addition, figure 7 shows the consistency test of

the SLAM algorithm used in this work. The consis-
tency of a SLAM algorithm means that the estimate
remains bounded by its standard deviation, ensuring
the convergence of the estimation process [7]. In order
to get the error of the robot pose, a simulated environ-
ment was used. In that way, the true pose of the robot
was known at every step of the experiment. Figure
7c-e shows that the error of the robot pose (position
and orientation) remains bounded by two times its
standard deviation. Figure 7a shows the simulated
environment and the robot’s initial position. Figure 7b
shows the map built by the SLAM algorithm using the
information of the parallel map. As it can be seen, the
SLAM is consistent.

Maps managing, visualization and bio-feedback
Once the SLAM algorithm is turned off, the created
map is stored and managed by a computer system, [37].
The final map shown to the user is the one with the
corners features and segments (the secondary map).
Although segments are not part of the system state,
lines can not represent the environment to the user,
because they may contain several segments and, as was
stated, a segment represents a wall of the environment.
The bio-feedback requirements are satisfied since the

process works in real time and the user watches the
map evolution, his/her biological signals, and the robot’s
motion in the computer system. More details can be
found in [37].

Results
The previous section introduced the EKF-SLAM used
and in the section Electromyographic Signals Extraction
and Classification the biological signals of the MCI were
presented. In this section, the results concerning the
implementation of the entire system with the robot
navigating in the facilities of the Institute of Automatics
of the National University of San Juan, Argentina, are
shown. For the experiment shown next, the volunteer

Figure 5 Features detection of the environment. Line segment and corner detection by a mobile robot. a) The robot and the detected
corner show the covariance ellipse associated to them. b) Detection of line and a corner. Both features, the lines and corners, represent the
environment through which the mobile robot navigates. The parameters of both features correspond to the ones shown in Eqs. (8) and (9): r is
the distance of the line to the origin of the coordinate system and a the angle between the x–axis and a normal to that line; on the other
hand, ZR is the distance of the robot to the corner and Zb is the angle between the x–axis of the robot and the corner.
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has the MCI connected to his/her right arm. The goal is
that the mobile robot could close a loop inside the Insti-
tute of Automatics. In order to do this, he/she remains
in front of the computer system. The signal calibration
step was previously made. The signals generated by the
user are shown in Figs. 8a-b.
In figure 8a, the Biceps Brachii and the Pronator Teres

signals are the only electromyographic signals shown
here. This is so because they are strictly related to the
robot motion commands, as it was explained in the sec-
tion Electromyographic Signals Extraction and Classifi-
cation. Figure 8b shows the motion command control

signals obtained from the muscles represented by the
signals of figure 8a.
As it was stated in the section Robotic Devices, the

robot’s linear velocity remains fixed (to 100 mm/s) if no
angular velocity is presented. Thus, when the robot
turns to the right or to the left, the linear velocity
decreases. The maximal angular velocity that the robot
can reach is 50 deg/s. Both maximal velocity values are
appropriate considering that the robot could represent a
powered wheelchair. The sampled time in the robotic
device is variable, according to the processing SLAM
needs.

Figure 6 SLAM general architecture. Architecture of the EKF-based SLAM algorithm with the parallel map. The parallel map stores the
information concerning the beginning and ending points of the walls associated with the detected lines from the environment.
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Figure 7 Consistency test of the EKF-SLAM algorithm. Consistency test of the EKF-SLAM algorithm used in this paper. a) Simulated
environment (solid black lines) with the desired path (dashed blue lines). b) Map reconstruction of the environment. The yellow points
correspond to raw laser data; solid black segments represent walls of the environment; green circles correspond to corners; red crosses are the
beginning and ending points associated with the segments and the blue line is the path travelled by the mobile robot. c) The error in the x–
coordinate of the mobile robot is bounded by two times its standard deviation. d) The error in the y–coordinate. e) The error in the orientation
of the mobile robot.
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The mobile robot is connected through Wi-Fi connec-
tion with the EMG processing device.
Figure 9a shows the partial map of the Institute of

Automatics facilities that was built according to the
command signals shown in figure 8a-b. The estimated
path traveled by the robot is also shown in figure 9a. In
figure 9a, segments (representing walls of the environ-
ment) are drawn with solid black lines; corners are
represented with solid line circles. Figure 9b shows a
different experiment. In this case, the robot traveled
around the entire Institute. The final map that was

obtained is this experiment is shown in figure 9b. Addi-
tional files 1 and 2 show a real time experimentation of
the system presented in this work.
Closing a loop inside the Institute of Automatic was

an experiment that also shown the consistency function-
ality of the SLAM algorithm. Also, a low level behavioral
reactive response allowed the robot to avoid collisions.

Evaluation parameters and statistical analysis
The seven volunteers were required to repeat the
experiment five times, while training and navigation

Figure 8 Muscle signals generated for robot navigation. Muscle signals generated for robot navigation; a) set of pronation/supination
movements to control the robot motion; b) motion command controls.
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signals were recorded. After completing the trial, each
volunteer was asked to fill out a questionnaire including
five rating questions to compare their perception of the
navigation strategies.
The questionnaire consist of 5 items, which are scored

using a 5 point scale of 5 = adequate to 1 = not ade-
quate, and a score of 0 = does not apply. The five items
are: (1) personal perception of maneuverability; (2) sys-
tem response speed; (3) extension of training time; (4)
fatigue sensation; (5) facility of use.

All volunteers could successfully complete the naviga-
tion tasks and the questionnaire was approved by all
users, as figure 10 shows.
The total (training + navigation) time was recorded

from each one of the seven volunteers in the five trials.
The average total time to complete the loop inside the
Institute of Automatics facilities was of 31.8 min, and
the particular times are detailed in Table 2. No signifi-
cant difference in performance was observed between
elderly, amputee and young volunteers, showing that

Figure 9 Maps obtained after navigation. Maps obtained after navigation; a) Partial construction of the Institute of Automatics using a mobile
robot governed by a MCI with SLAM incorporated on it; b) Closing a loop inside the Institute of Automatics, the robot started from point A and
traveled around the environment until reaching point B.
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this method is adequate to tasks related to navigation
and wheeled mobility.

Conclusions
In this paper, a SLAM algorithm applied to a mobile
robot governed by a Muscle-Computer Interface (MCI)
has been presented. The SLAM algorithm was based on
an Extended Kalman Filter and on environmental fea-
tures extraction. These features are constituted by cor-
ners and lines and correspond to walls of the
environment and their intersections.
The proposed system improved the autonomy of motor

disabled people by the implementation of a general MCI
-that could be adapted to the user’s capabilities- in order

to control the navigation of a mobile robot through
unknown environments while mapping them. This mobile
robot shares the same kinematics than a powered wheel-
chair. The SLAM implemented on the vehicle allowed the
construction of metric maps. The obtained map was then
stored in a computer system for future safe navigation
purposes.
The robotic system was managed by a set of basic

commands in order to control the movements of the
mobile robot. The MCI used in this work was based on
the muscles of the right arm of the user although it
could be adapted to the patients needs.
The SLAM algorithm in this paper has proven to be a

promissory tool for mapping unknown environments
which a robotic wheelchair user could travel through.
This reduces the need of fixed sensors located in the
environment and its a priori knowledge. The user is
then able to navigate through environments that he/she
is not familiar with. Although the proposed system is
for indoors semi-structured environments it could be
expanded to outdoors environments in the future. The
applications of the system presented in this paper are
not restricted to motorized wheelchairs. Once the map
of the environment is acquired, the robot is able to
drive to any part of the environment where the user

Figure 10 Statistical analysis. Subjective rating of the performance of the system based on a questionnaire filled by the volunteers after the
trials. The items evaluate maneuverability, response speed, training time, fatigue and how easy is to use. Maximal score is 5. Vertical bars
represent the volunteers that took part in the performance evaluation.

Table 2 Average total time of each volunteer

Mean (min) Standard Deviation

Volunteer 1 30.60 ± 2.8810

Volunteer 2 34.40 ± 3.3615

Volunteer 3 29.80 ± 2.3875

Volunteer 4 33.80 ± 1.6432

Volunteer 5 31.00 ± 2.9155

Volunteer 6 30.00 ± 2.8284

Volunteer 7 33.00 ± 2.5495
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sends it and other tasks -as manipulations of objects-
can be coupled to the system.
The entire system was tested in a population of seven

patients (three elder, two amputees and two young nor-
mally limbed patients) showing similar results in all
cases and experiments.

Additional file 1: Demonstration Video I. This movie file shows an
example of the mobile robot governed by electromyographic signals
whereas the vehicle construct a map of the environment using the
SLAM algorithm implemented on it. The user of the entire system is an
amputee volunteer.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1743-0003-7-10-
S1.WMV ]

Additional file 2: Demonstration Video II. This movie file shows
another example of the mobile robot governed by electromyographic
signals whereas the vehicle navigates inside the Institute of Automatics
while constructing a map of the environment using the SLAM algorithm
implemented on it.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1743-0003-7-10-
S2.WMV ]
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