Molecular and genetic characterization of novel S-RNases from a natural population of Nicotiana alata

Juan A. Roldán • Rodrigo Quiroga • Ariel Goldraij

Received: 23 December 2009/Revised: 12 April 2010/Accepted: 15 April 2010/Published online: 5 May 2010
© Springer-Verlag 2010

Abstract

Self-incompatibility in the Solanaceae is mediated by S-RNase alleles expressed in the style, which confer specificity for pollen recognition. Nicotiana alata has been successfully used as an experimental model to elucidate cellular and molecular aspects of S-RNase-based self-incompatibility in Solanaceae. However, S-RNase alleles of this species have not been surveyed from natural populations and consequently the S-haplotype diversity is poorly known. Here the molecular and functional characterization of seven S-RNase candidate sequences, identified from a natural population of N. alata, are reported. Six of these candidates, $S_{5}, S_{27}, S_{70}, S_{75}, S_{107}$, and S_{210}, showed plant-specific amplification in the natural population and style-specific expression, which increased gradually during bud maturation, consistent with the reported S-RNase expression. In contrast, the S_{63} ribonuclease was present in all plants examined and was ubiquitously expressed in different organs and bud developmental stages. Genetic segregation analysis demonstrated that $S_{27}, S_{70}, S_{75}, S_{107}$, and S_{210} alleles were fully functional novel S-RNases, while S_{5} and S_{63} resulted to be non-S-RNases, although with a clearly distinct pattern of expression. These results

[^0]reveal the importance of performing functional analysis in studies of S-RNase allelic diversity. Comparative phylogenetic analysis of six species of Solanaceae showed that N. alata S-RNases were included in eight transgeneric S-lineages. Phylogenetic pattern obtained from the inclusion of the novel S-RNase alleles confirms that N. alata represents a broad sample of the allelic variation at the S-locus of the Solanaceae.

Keywords Natural populations • Nicotiana alata . Self-incompatibility • S-Haplotype • S-RNase • Transgeneric S-lineages

Introduction

Self-incompatibility (SI) is a prezygotic reproductive barrier based on the recognition and subsequent rejection of self or genetically related pollen. More than half of the approximately 250,000 angiosperm species display some form of SI (de Nettancourt 2001), thus there is apparently considerable pressure to prevent inbreeding and maintain genetic diversity. SI is genetically determined by the S-locus, which controls the specificity of pollen-pistil recognition. The S-locus has at least two genes encoding for male and female specificity factors, selectively expressed in pollen and pistil, respectively. Both genes are multiallelic and they are inherited as a segregating unit; therefore, each allelic pair defines a haplotype of SI. In Solanaceae and other families, the SI system is gametophytic (GSI); the compatibility phenotype of a pollen tube growing through the style is determined by its own haploid genotype. Pollen rejection occurs when the S-haplotype expressed by pollen matches any of the S-haplotypes expressed in the diploid pistil.

Seminal research on molecular basis of Solanaceae SI was conducted mainly on Nicotiana, Petunia, and Solanum as experimental models. S-RNase was found to be the factor conferring pistil specificity for pollen recognition (McClure et al. 1989; Lee et al. 1994; Murfett et al. 1994) and the cytotoxic agent in the pollen rejection process, by degradation of pollen tube RNA (McClure et al. 1990; Huang et al. 1994). Five conserved domains and two hypervariable domains were identified in the primary structure of solanaceous S-RNases, the latter playing a key role in the determination of female specificity and the interaction with the pollen counterpart (Ioerger et al. 1991; Matton et al. 1997). On the other hand, the gene encoding the pollen specificity factor, the SLF (S-locus F-Box) protein, has been identified and cloned in Petunia (Sijacic et al. 2004) and recently, several SLF orthologue candidates in Nicotiana were reported (Wheeler and Newbigin 2007). S-RNase enters both compatible and incompatible pollen tubes to interact with SLF (Luu et al. 2000; Goldraij et al. 2006), although the nature of this interaction is still unknown.

In contrast with the remarkable progress made in the last 20 years at the cellular, molecular, and biochemical levels, our knowledge about SI in natural populations of Nicotiana is quite different from that in Petunia and Solanum. While in Petunia and Solanum S-allele variation is well-studied from natural populations, to our knowledge there are no reports about similar studies in Nicotiana. Natural populations are useful to investigate the allelic diversity of selfincompatible species because they usually contain a large number of S-alleles. These S-alleles are subjected to negative frequency-dependent selection which greatly increases the persistence of polymorphism at the S-locus. PCR techniques based on the conserved domains of S-RNases offer a simple and efficient approach to examine allelic variants of S-RNases. Pioneering research following this approach was described in Solanum carolinense (Richman et al. 1995). Natural populations of Petunia and other Solanum species were also surveyed and several new S-RNase alleles have been identified from these analyses. For example, 21 S-RNase alleles were found in Petunia inflata (Wang et al. 2001), while in Solanum chilense, 34 S-RNase alleles were recently reported (Igic et al. 2007). Natural populations of other solanaceous genera such as Physalis (Richman et al. 1996; Lu 2006), Witheringia (Stone and Pierce 2005) and Lycium (Savage and Miller 2006; Miller et al. 2008) were also examined and the number of identified S-RNase alleles ranged between 21 and 36 . Besides the large diversity of S-alleles, wild populations often show marked individual differences in terms of the robustness of the SI response. In both Petunia and Solanum, natural populations of mixed, self-incompatible, and self-compatible individuals have been described
(Tsukamoto et al. 1999, 2003a; Kokubun et al. 2006; Mena-Alí and Stephenson 2007). Self-compatible (SC) individuals of otherwise self-incompatible species constitute a valuable potential source for revealing the complex molecular machinery participating in the pollen rejection of S-RNase-based SI (McClure 2008).

In this paper, we focus on the self-incompatible species Nicotiana alata (Goodspeed 1954), a model system both in early genetic studies of SI as well as in the modern biochemical analysis of SI (reviewed in McClure 2009). The mating system, the pollen rejection mechanisms and the pollination biology between this species and its relatives of section Alatae have been extensively studied (Pandey 1979; Murfett et al. 1996; McClure et al. 2000; Ippolito et al. 2004; Lee et al. 2008). However, given the lack of studies about S-allelic diversity in natural populations of N. alata, the number of reported S-RNase alleles in this species is quite small compared to other Solanaceae. Some S-RNase accessions of N. alata have been annotated with different codes (i.e., $S_{7^{-}}$and $S_{c 10^{-}}$RNase) despite their identical deduced amino acid sequences. Other accessions correspond to putative S-RNases, without clear confirmation of their functional role as S-alleles, i.e., MS1 and MS2 (Kuroda et al. 1994). Given the very high similarity in primary structural traits, it cannot be ruled out that putative S-RNases not subjected to functional assays, are in fact S-like-RNases or relic S-RNases not involved in SI (Green 1994; Golz et al. 1998). These genes have been reported in pistils of both self-compatible and selfincompatible species of many plant families (Green 1994; Kao and Tsukamoto 2004), including N. alata (Dodds et al. 1996). Sequencing therefore is not sufficient to confirm conclusively the SI function of putative S-RNase allele sequences and thus, functionality assays are critically important to identify clearly functional S-RNases (Igic et al. 2007).

As part of the analysis of natural variation in the S-locus of Solanaceae, the aim of this work was to identify and characterize novel S-RNase alleles of self-incompatible N. alata from a natural population located in northeastern Argentina. Using an RT-PCR approach, we recovered seven novel S-RNase candidate sequences. By allele-specific amplification, we examined the expression profile of these S-RNase candidates in a sample of the natural population, in different tissues and pistil developmental stages, and also in other plant populations including SI and SC genotypes. We also performed controlled crosses to establish whether the novel ribonuclease sequences were functional as S-alleles. Finally, phylogenetic analysis was used to determine the extent of S-RNase polymorphism in N. alata and the distribution of novel S-RNases among the different S-lineages of the Solanaceae. Five novel functional S-RNases, identified from the natural population,
are reported. Two non-S-RNases, which exhibited a contrastable expression pattern in different plants and tissues, were also characterized. Interestingly one of these non-S-RNases appears to be present in SC Nicotiana longiflora and a SC accession of N. alata.

Materials and methods

Plant material and growth conditions
The natural population of N. alata studied in this work was designated NaM ; it was collected in Province of Misiones, Argentina, on the coast of Paraná River, approximately 300 m from the confluence of Paraná and Iguazú rivers $\left(25^{\circ} 35^{\prime} 50^{\prime \prime} \mathrm{S}, 54^{\circ} 35^{\prime} 34^{\prime \prime} \mathrm{W}\right)$ on 26 November 2006. The population occupied an area of approximately $5,000 \mathrm{~m}^{2}$ and consisted of 15 isolated plants established in a stony soil, poorly covered with vegetation. Seeds were collected randomly from capsules, mixed and stored at $4^{\circ} \mathrm{C}$ until use. Plants were grown in a greenhouse at $28^{\circ} \mathrm{C}$ with $16 / 8 \mathrm{~h}$ light/dark period. NaM-1 to NaM-8 individuals were selected at random from NaM population seeds. NaM-9 to NaM-12 derived from a screening of NaM population seedlings by allele-specific PCR, to select plants not harboring the S_{5}-RNase. NaM-t1 and NaM-t2 individuals were tester plants, derived from the cross of NaM-5 $\times S_{c 10} S_{c 10}$ (the latter being obtained from bud-selfing of NaM-7). All plants consistently failed to set fruits upon selfing, except NaM-1 and NaM-8 that occasionally set small capsules. The SI response of these two plants will be detailed elsewhere.

The presence of S-RNase candidate genes was tested in N. longiflora, a laboratory stock of N. alata and a SC accession of N. alata. Seeds of N. longiflora, a self-compatible member of section Alatae (Goodspeed 1954) were collected from a natural population in Ciudad Universitaria, Córdoba, Argentina ($31^{\circ} 26^{\prime} 18^{\prime \prime} \mathrm{S}, 64^{\circ} 11^{\prime} 23^{\prime \prime} \mathrm{W}$). A laboratory stock of the N. alata genotypes $S_{c 10} S_{105}, S_{c 10} S_{a 2}$, and $S_{105} S_{a 2}$ was obtained by crossing homozygous lines $S_{c 10} S_{c 10}, S_{105} S_{105}$ and $S_{a 2} S_{a 2}$ previously described (Murfett et al. 1996; McClure et al. 1999). SC N. alata cv Breakthrough (BT) was obtained from Thompson and Morgan, Jackson, NJ, USA. Plants were grown at conditions described for N. alata. At least, two individuals of each species or genotype were selected for the experiments of Fig. 2b, c.

Nucleic acid extraction

Genomic DNA was purified from leaves by phenolic extraction and ethanol precipitation of DNA or using GenElute ${ }^{\mathrm{TM}}$ Plant Genomic DNA Miniprep kit (Sigma,

St Louis, MO). Total RNA was extracted from styles (including the stigma) according to McClure et al. (1990).

DNA extracts were used to determine progeny genotypes in S-functionality assays (see below). DNA was extracted from small pieces of plantlet leaves by slight homogenization with a plastic pestle in 0.2 ml of 0.2 M Tris-ClH pH 8 containing $0.25 \mathrm{M} \mathrm{NaCl}, 0.02 \mathrm{M}$ EDTA, and $0.5 \% \mathrm{w} / \mathrm{v}$ SDS. After heating at $65^{\circ} \mathrm{C}$ for 5 min , supernatant was precipitated successively with isopropanol and 70% ethanol and resuspended in sterile water. $0.4-2 \mu \mathrm{l}$ of leaf extract was used as template in a $20 \mu \mathrm{l}$ of PCR reactions as indicated below.

PCR, cloning, and sequencing of S-RNase candidates
S-RNase candidates from N. alata styles were amplified using degenerate primers based on conserved domains C 1 and C5 (Ioerger et al. 1991), which amplified a single cDNA fragment of expected size. Further characterization of this fragment was performed using additional degenerate primers, based on C 2 and C 4 conserved domains (Supplementary Fig. S1). All sequences of degenerate and allele-specific primers are detailed in Supplementary Table S1.

Genomic PCR was performed in $20-\mu \mathrm{l}$ reactions containing 0.4 units of GoTaq ${ }^{\circledR}$ Flexi DNA polymerase (Promega, Madison WN), GreenGoTaq Flexi buffer ${ }^{\circledR}, 1.5 \mathrm{mM}$ $\mathrm{MgCl}_{2}, 0.2 \mathrm{mM}$ dNTPS, and $12.5-33 \mathrm{pg}$ of DNA. Primers were used at 0.4 and $1.2 \mu \mathrm{M}$ for specific and degenerate primers, respectively. The reaction was incubated at $95^{\circ} \mathrm{C}$ for 5 min and then by 40 cycles of 1 min at $94^{\circ} \mathrm{C}, 45 \mathrm{~s}$ at the annealing temperature indicated in supplementary Table S 1 , and 1 min at $72^{\circ} \mathrm{C}$, followed by a final extension step of 5 min at $72^{\circ} \mathrm{C}$.

For RT-PCR amplification, $1 \mu \mathrm{~g}$ of total RNA and $5.5 \mu \mathrm{M}$ oligo $(\mathrm{dT})_{15}$ were incubated for 5 min at $70^{\circ} \mathrm{C}$, chilled in ice water for 5 min , and mixed with 6 mM $\mathrm{MgCl}_{2}, 0.5 \mathrm{mM}$ dNTPs, $1 \mu \mathrm{l}$ of ImProm-II ${ }^{\mathrm{TM}}$ Reverse Transcriptase and ImProm-II ${ }^{\mathrm{TM}}$ buffer (Promega, Madison WN) in a final volume of 20μ l. Single-stranded cDNA synthesis was performed for 1 h at $42^{\circ} \mathrm{C}$, according to manufacturer's instructions. A $2 \mu \mathrm{l}$ aliquot of cDNA synthesis reaction was used as template for PCR amplification, following the procedure indicated above for genomic PCR. Amplified fragments were analyzed on agarose gels, purified and cloned into pGEM-Teasy vector (Promega, Madison WN). Twenty to thirty recombinant plasmids were analyzed by restriction enzyme digestion or allelespecific PCR. All different types of plasmid identified were sequenced with standard SP6 or T7 promoter primers (Macrogen Inc, MD, USA). For each type of clone identified, both DNA strands from two or more plasmids were sequenced.

For RT-PCR analysis of S-RNase transcripts, total RNA was isolated from stigma/style, pollen, sepals, petals, and from styles of different developmental stages. Linearity of allele-specific PCR amplification was assessed with Gel-Pro ${ }^{\text {TM }}$ Analyzer 3.0. Actin was used as positive amplification control. Sequence data of novel genes described in this work have been deposited with the GenBank Data Libraries under accession nos. GQ375150GQ375155 and GQ850520.

Functionality assays of novel S-RNase candidates
S-functionality was established by crossing plants sharing the tested S-allele candidate (half-compatible crosses) and subsequent genotyping of the progeny by allele-specific PCR on DNA extracts. Flowers were emasculated 2 days before anthesis and heavily pollinated within 24 h after anthesis. In half-compatible crosses, if the alleles tested were functional in SI, they are expected to be present in 50% of the progeny, due to the exclusive maternal contribution (assuming full viability of gametes and equal probability of segregation). However, if the shared alleles were not functional in SI, their proportion in the progeny would be higher, reflecting paternal contribution. Likewise, all of the progeny of half-compatible crosses bear the single compatible paternal allele. For instance, in the cross $B C \times A B$, where A, B, and C are S-alleles, if B is a fully functional SI allele in both pollen and style, then the cross will be half-compatible and the allele A will represent the single pollen contribution to the progeny, $A B$ and $A C$. Using this strategy, functional and non-functional S-haplotypes were recently identified in species with S-RNasebased SI (Hauck et al. 2006; Igic et al. 2007; Tsukamoto et al. 2008).

Protein alignment and phylogenetic analysis
S-RNase nucleotide sequences spanning the region between the conserved domains C2-C5 (Ioerger et al. 1991) were translated into amino acid sequences, aligned with ClustalX (Thompson et al. 1997), back-translated to a nucleotide alignment and manually adjusted to ensure proper alignment of conserved sites in solanaceous S-RNases. Percentage of pairwise amino acid identity were determined using Megalign ${ }^{\text {TM }} 5.00$ (DNASTAR). Gene trees were reconstructed using Bayesian inference (BI) and maxi-mum-likelihood (ML) methods with MrBayes v3.2 (Ronquist and Huelsenbeck 2003) and RaxML 7.04 (Stamatakis 2006), respectively. For determining Bayesian inference phylogeny, four parallel Monte-Carlo Markov Chains (MCMC) were run for 10 million generations to search tree space, with a sample frequency of 100 generations. The General Time-Reversible (GTR) model of
substitution was used, approximating the rate of variation across sites by using four discrete gamma categories. A consensus 50% majority rule tree was constructed with MrBayes subprogram "Sumt", discarding the initial 25\% of the trees generated in each run as burn-in. Stationarity was suggested by average standard deviation of split frequencies remaining below 0.01 after 6.5 million generations, and potential scale reduction factor (PSRF) values for all parameters ranging between 1.000 and 1.003 . ML phylogeny was estimated using the GTR+CAT approximation (Stamatakis et al. 2008) to model among-site rate variation, using a maximum parsimony starting tree to perform 1,000 rapid-bootstraps, and the GTR model with 4 discrete gamma categories to perform a thorough ML search for the best scoring tree (traditional non-parametric bootstrapping was performed with very similar results). Tree topology from the best scoring ML tree and the consensus BI tree proved to be very similar. Posterior probabilities for clades from the consensus BI tree were mapped onto the best scoring ML tree. Five species in addition to N. alata were included in the phylogenetic analysis, representing both broad (Solanum chilense, Lycium parishii, Petunia inflata) and restricted (Physalis longifolia, Witheringia solanacea) distributions of S-RNase alleles in S-lineages. The number of transgeneric (TG) lineages was determined for N. alata S-RNases considering a TG lineage as the most recent node including alleles from more than one species (Savage and Miller 2006). A total allele set of 154 individual sequences was used for generating a phylogenetic tree, in which the S_{3}-RNase from Antirrhinum hispanicum was assigned as the outgroup. (See Supplementary File S1 for the accession numbers of the sequences included in the phylogenetic analysis.) The phylogenetic tree comparing relic S-RNases, S-RNases (both from the Solanaceae, Plantaginaceae, and Rosaceae) and S-like RNases is a BI tree built as described above, except for MCMC run length, which was 3 million generations. Ribonuclease T2 from Aspergillus oryzae was assigned as the outgroup.

Results

Identification of putative S-RNases from a natural population of Nicotiana alata

C1-C5 cDNA fragments (Supplementary Table S1; Supplementary Fig. S1) amplified from styles of 12 plants of the natural population of N. alata were cloned, classified by restriction digests, and sequenced. Three of these sequences were more than 99% identical to $S_{c 10^{-}}, S_{2^{-}}$, and S_{6}-RNases, which were previously characterized as functional SI alleles (Anderson et al. 1989; Murfett et al. 1996).

A fourth putative S-RNase sequence, designated here S_{63}, was almost identical to ribonuclease MS1 described by Kuroda et al. (1994). Six additional putative S-RNase sequences, not previously reported and denoted here as $S_{5^{-}}$, $S_{27^{-}}, S_{70^{-}}, S_{75^{-}}, S_{107^{-}}$, and $S_{210^{-}}$RNase candidates, were also recovered from the 12 plants analyzed. In some plants only one S-RNase candidate of the two expected for the GSI locus was identified, while in other plants, three or even four different S-RNases candidates were identified (Supplementary Table S2).

The cDNA of the $S_{\text {clo }}$-RNase allele was used as reference in the alignment of the deduced amino acid sequences of the $\mathrm{C} 1-\mathrm{C} 5$ fragments amplified from the novel S-RNase candidates (Fig. 1). The C1-C5 fragment (without including C1f and C5r primer sequences) accounts for approximately 70% of the full size of solanaceous S-RNases (Ioerger et al. 1991). All sequences showed the expected conserved domains $\mathrm{C} 2, \mathrm{C} 3$, and C 4 as well as the hypervariable regions HVa and HVb , located between C 2 and C 3 domains. They also exhibited other typical traits of S-RNase primary structure, such as the glycosylation site in C 2 , the five conserved cysteine sites included between the C 1 and C5 domains, and the histidine residues, included in the C 2 and C 3 domains, involved in the catalytic activity of T2-type ribonucleases. Except for the pairs S_{70} / S_{63} and $\mathrm{S}_{5} / \mathrm{S}_{75}$, which showed the highest amino acid pairwise identity (81 and 83%, respectively), the amino acid identity among the novel S -RNase candidates ranged from 40 to 58%. This high degree of allelic sequence diversity was similar to values previously found among solanaceous S-RNases (typically 50% of amino acid pairwise identity) (McClure et al. 2000; Kao and Tsukamoto 2004). In the pair S_{70} / S_{63} most non-conservative differences were concentrated in HVa and HVb regions while in the pair $\mathrm{S}_{5} / \mathrm{S}_{75}$, non-conservative changes were distributed uniformly in the C1-C5 sequence, albeit with a small concentration in the HVa region. A pairwise alignment of S-RNase candidates $\mathrm{S}_{70} / \mathrm{S}_{63}$ and $\mathrm{S}_{5} / \mathrm{S}_{75}$ is shown in Supplementary Fig. S 2. Percentage of pairwise amino acid identity of all novel S-RNase candidates is shown in Table S3.

Specificity of S-RNase candidates expression

To determine whether S-RNase candidates showed the typical characteristics of S-RNases, the expression specificity of each candidate in different plants of the NaM population was assayed by RT-PCR. Then, the relative expression of S-RNase candidate sequences was examined in different tissues and stages of style maturity. Finally, controlled crosses to test whether novel alleles were associated with the SI phenotype were performed. In all these experiments, S-RNase candidates were tested in parallel to the $S_{\text {c10-RNase }}$, a well-characterized S-allele with a robust

SI phenotype (Murfett et al. 1994), used here as a functional S-RNase reference.

Allele-specific primers based on nucleotide sequences of S-RNase hypervariable regions HVa and HVb (Supplementary Table S1), amplified single fragments of the expected sizes from cDNA of the 12 NaM individuals (Fig. 2a). As expected, RT-PCR with the $S_{c 10-R N a s e ~ p r i-~}^{\text {- }}$ mer set revealed a specific amplification product in plants 2 and 7, consistent with results shown in Supplementary Table S2. Similarly, amplification with the $S_{2^{-}}$and S_{6}-RNase primer sets rendered a band only in plants 4 and 9, respectively. Likewise, RT-PCR with specific primers of putative $S_{70^{-}}, S_{75^{-}}, S_{27^{-}}, S_{107^{-}}, S_{210^{-}}$, and $S_{5^{-}}$, RNases amplified the corresponding products in the expected plants (Supplementary Table S2), and also revealed the presence of these alleles in other plants. These results confirm that the aforementioned S-RNase candidates are plant specific and suggest that they could represent S-RNase genes. By contrast, the amplification product of S_{63} was present in all 12 plants examined indicating that this ribonuclease was not a functional S-RNase. (Supplementary Fig. S3A).

To gain more insight about the relationship of novel S-RNase candidates with the SI system, their expression was also tested in a well-genotyped laboratory stock of N. alata and in a SC species N. longiflora (Fig. 2b, c). As expected, $S_{c 10}$-RNase was detected in $S_{c 10} S_{105}$ and $S_{c 10} S_{a 2}$ genotypes. Consistent with its ubiquity, the S_{63} sequence was detected in the three S-genotypes assayed, confirming that it is a ribonuclease not involved in S-specificity. Moreover, S_{63} was also amplified in both SC N. longiflora and also in a self-compatible accession of N. alata (cultivar Breakthrough), which does not express an S-RNase (McClure et al. 1999) (Fig. 2c). In contrast, none of the other novel S-RNase candidates assayed were detected in the three N. alata genotypes analyzed (Fig. 2b; Supplementary Fig. S3B). The $S_{c 10^{-} \text {RNase }}$ and the $S_{5^{-}}$, and S_{75}-RNase candidates were not detected in any of the two SC genotypes assayed in Fig. 2c (results not shown).

To further characterize putative S-RNases, tissue specificity and temporal expression was investigated by RT-PCR analysis of transcripts. The relative expression pattern in different organs of $S_{5^{-}}, S_{107}$, and S_{70}-RNase candidates showed close resemblance to the $S_{c 10}$-RNase pattern, rendering the expected amplification product in styles but not in other floral tissues or leaves (Fig. 3a). By contrast, transcripts of non- S_{63}-RNase were detected in all organs analyzed, albeit amplification in style, petals, and sepals was higher than in pollen and leaf. Temporal expression of S-RNase candidates was also analyzed in developing styles. Similar to the tissue-specific pattern, the expression of the $S_{5^{-}} S_{70}$, and S_{107}-RNase candidates paralleled the pattern exhibited by $S_{c 10}$-RNase (Fig. 3b). The RT-PCR amplification of these S-RNase candidates was not detected at the

Fig. 1 Deduced amino acid alignment of S-RNase candidates identified from a natural population of Nicotiana alata. The fragments aligned were amplified with C1f-C5r primer set detailed in Table S1. The $\mathrm{S}_{\mathrm{c} 10}$-RNase was used as reference. Amino acids are shaded according to percentage agreement. Three conserved domains (C 2 ,

C 3 and C 4) and the two hypervariable regions (HVa and HVb) of S-RNases from Solanaceae are indicated by solid lines. Other common S-RNase traits like conserved cysteines (stars), histidine residues involved in catalytic activity (black dots), and glycosylation site (black triangle), are marked

Fig. 2 Allele-specific PCR of Nicotiana alata S-RNase candidates. PCR was carried out using specific primers detailed in Table S1. S-RNase candidates assayed are indicated at the left of each panel.
a RT-PCR analysis of style transcripts from NaM individuals.
b Genomic PCR analysis in different S-genotypes from a Nicotiana
alata laboratory population. c Genomic PCR analysis in Nicotiana longiflora and a self-compatible accession of Nicotiana alata (cv Breakthrough). Controls, DNA template with (+) and without (-) the sequence of the assayed S-RNase candidate
earliest stage analyzed; then it increased gradually to reach their maximum level close to maturity, when styles are fully capable of pollen rejection, near the anthesis stage. Immediately after anthesis, the expression remained constant or slightly decreased. However, S_{63} ribonuclease showed a stable amplification during all developmental bud stages, with clear early expression in the first stage of style development analyzed. These results indicate that the non-S_{63}-RNase is a constitutive and ubiquitous ribonuclease whose function appears to be not restricted to the reproductive process. The spatial and developmental expression of $S_{75^{-}}$and S_{210}-RNase candidates was similar to the pattern showed by $S_{\text {c10-RNase }}$ and the S-RNase candidates in Fig. 3a, b (Supplementary Fig. S4).

Functionality of novel putative S-RNase alleles
Functionality of SI was tested for all putative S-RNases identified. The two more frequent S-RNase candidates in NaM individuals, S_{5} and S_{107}, were tested first. These genes showed the typical expression of an S-RNase in different tissues and style developmental stages (Fig. 3), suggesting they could be functional in SI. To test S_{5} and S_{107} functionality, allele-specific PCR was performed in the progeny of the half-compatible cross NaM-3 \times NaM-6 (Table 1). From the results of Fig. 2a, NaM-3 showed three S-allele candidates (S_{5}, S_{27}, and S_{107}) while NaM-6 showed two candidates (S_{5} and S_{107}). The progeny segregation of the S_{107}-RNase candidate fitted the expected 1:1 ratio,

Fig. 3 RT-PCR analysis of transcripts of S-RNase candidates. PCR was carried out using allele-specific primers shown in Table S1. a Organ-specificity, b style developmental stages. 32 PCR cycles were performed for all transcripts assayed. Actin was used as positive control on each preparation of total RNA
indicating that the presence of this candidate is only due to maternal contribution and confirming that it is a functional S-RNase allele. However, the progeny segregation of $S_{5}-R N a s e$ candidate rejected the $1: 1$ ratio, indicating that it was not a functional allele of S-RNase in the NaM population. As expected, all progeny derived from the cross $\mathrm{NaM}-3 \times$ NaM-6 bore the non-functional S_{63} ribonuclease (result not shown).

Similar analysis was conducted on the other S-RNase candidates identified from the NaM population (Table 2). In this case, the single compatible paternal allele expected in the progeny of parents sharing one common S-allele was tested. Because S_{5} ribonuclease was ruled out as an S-RNase allele (Table 1), in the crosses shown in Table 2 each parent has only two S-RNase allele candidates. The crosses to test functionality of the putative $S_{75^{-}}, S_{70^{-}}$, and S_{27}-RNases demonstrated that these alleles are fully functional S-haplotypes, since the hypothesis of full compatible crosses was rejected in each case (Table 2). Besides doing control crosses to show paternal segregation of functional $S_{107^{-}}$and $S_{c 10^{-} \text {RNases, a full compatible cross between }}$
parents not sharing a common allele (NaM-3 $\times \mathrm{NaM}-5$) was performed as an additional control. As expected, progeny segregation fits $1: 1$ ratio indicating that in this case the pollen contribution is not restricted to a single S-allele.

The S_{210}-RNase candidate also appears to be a functional S-allele, although some leakiness was observed in the cross performed to evaluate this S-allele. The genotypes of the three individuals not bearing the paternal allele $S_{c 10}$ (Table 2, cross $\mathrm{NaM}-12 \times \mathrm{NaM}-2$) were $S_{107} S_{210}$, confirming that 15% of assessed progeny was derived from pollen tubes bearing the S_{210} haplotype that escaped rejection (Supplementary Fig. S5, progeny r, s, and t from cross $\mathrm{NaM}-12 \times \mathrm{NaM}-2$). The complete segregation of S-genotypes from three selected crosses of Table 2 is also shown in Supplementary Fig. S5. In each cross, the novel S-RNase candidates segregated with each other, as expected for functional S-RNases of the S-locus.

Phylogenetic analysis

Phylogenetic analysis was conducted to determine evolutionary relationships and the extent of polymorphism among the S-RNase sequences from N. alata and five other species of Solanaceae. In previous phylogenetic analysis, S-alleles of N. alata appeared to be distributed into few S-lineages, compared to other species of SI solanaceae sampled more extensively (Richman and Kohn 2000). Posterior probabilities and bootstrap values derived from Bayesian inference (BI) and maximum-likelihood (ML) analysis provided strong support for almost all non-basal nodes of the tree (Fig. 4). Eight transgeneric (TG) S-lineages were identified for N. alata S-RNases (including the non-S-RNases), defined as the most recent nodes including S-alleles from more than one species (designated I-VIII in Fig. 4). TG lineages II and III concentrated four and three S-RNases, respectively, while the novel S-RNases identified in this work were distributed in five out of eight TG lineages. Given the strong support values of the single leaf node containing S_{27}-RNase, it was considered an independent TG lineage; its isolation could be due to incomplete sampling of S-RNase polymorphism or rapid divergence from its ancestral lineage.

Table 1 Segregation of $S_{5^{-}}$and $S_{107-R N a s e ~ c a n d i d a t e s ~ t o ~ t e s t ~ S I ~ f u n c t i o n a l i t y ~}$

S-RNase candidates of NaM parents ${ }^{\mathrm{a}}$	Family size	Candidate tested	Observed ratio $(+:-)$	${\text { Expected ratio }(+:-)^{\mathrm{b}}} X^{2}(P$ value $)$	
$3\left(S_{5}, S_{107}, S_{27}\right) \times 6\left(S_{5}, S_{107}, S_{7}\right)$	34	S_{5}	$34: 0$	$1: 1$	$34(<0.0001)$
	S_{107}	$16: 18$	$1: 1$	$0.12(0.73)$	

$+:-$ presence or absence of the S-RNase candidate tested for functionality
${ }^{\text {a }}$ The S-RNase candidates of NaM parents are based on Fig. 2a
${ }^{\mathrm{b}}$ Expected ratio if the shared S-RNase candidate tested is fully functional in SI

Table 2 Segregation of pollen-derived S-allele in semi-compatible crosses to test SI functionality

NaM parents (proposed S-genotype ${ }^{\text {a,b }}$	Family size	Allele tested	Paternal allele assayed by PCR	Observed ratio (+:-)	Expected ratio (+:-) ${ }^{\text {c }}$	$X^{2}(P$ value $)$
$5\left(S_{70} S_{75}\right) \times \mathrm{t}_{1}\left(S_{c 10} S_{75}\right)$	28	S_{75}	$S_{c l o}$	28:0	1:1	28 (<0.0001)
$5\left(S_{70} S_{75}\right) \times \mathrm{t}_{2}\left(S_{c l 0} S_{70}\right)$	20	S_{70}	$S_{c ı 0}$	20:0	1:1	20 (<0.0001)
$3\left(S_{107} S_{27}\right) \times 7\left(S_{C 10} S_{107}\right)$	20	S_{107}	$S_{c l 0}$	20:0	1:1	20 (<0.0001)
$12\left(S_{107} S_{210}\right) \times 2\left(S_{c 10} S_{210}\right)$	20	S_{210}	$S_{c l 0}$	17:3	1:1	$9.8(<0.0017)$
$10\left(S_{?} S_{27}\right) \times 3\left(S_{107} S_{27}\right)$	18	S_{27}	S_{107}	18:0	1:1	$18(<0.0001)$
$\mathrm{t}_{1}\left(S_{c l 0} S_{75}\right) \times \mathrm{t}_{2}\left(S_{c l 0} S_{70}\right)$	20	$S_{\text {cı0 }}$	S_{70}	20:0	1:1	20 (<0.0001)
$3\left(S_{27} S_{107}\right) \times 5\left(S_{70} S_{75}\right)^{\text {d }}$	17	-	S_{75}	8:9	1:1	0.059 (0.812)

$+:-$ presence or absence of the paternal allele assayed by PCR
${ }^{\text {a }}$ The proposed S-genotype of NaM parents is based on results shown in Fig. 2a and Table 1
${ }^{\mathrm{b}} \mathrm{t}_{1}$ and t_{2} are tester plants bearing the S-allele $S_{\text {clo-RNase }}$
${ }^{c}$ Expected ratio if the shared, putative S-allele is non-functional and the cross is fully compatible
${ }^{\mathrm{d}}$ Control, fully compatible cross

Ten rooted clades (labeled 1-10), derived from ancestral nodes with solid bootstrap and posterior probabilities values, were also identified in the tree of Fig. 4. With a few exceptions, S-RNases from N. alata, Petunia inflata, Lycium parishii and Solanum chilense cluster together and are broadly distributed in clades 1-10. In contrast, Witheringia solanacea and Physalis longifolia are clearly restricted to three clades (3,8 , and 10). The small number of ancient S-lineages covered by alleles from these species is in agreement with several previous reports (Richman and Kohn 2000; Stone and Pierce 2005; Savage and Miller 2006; Lu 2006).

Discussion

Identification of cDNAs encoding S-RNases
from a natural population of Nicotiana alata
This work reports the identification, expression analysis, functional characterization, and phylogenetic origin of S-RNase alleles from a natural population of the selfincompatible species N. alata. Several natural populations of Solanaceae have been surveyed for S-RNase alleles using RT-PCR techniques (Tsukamoto et al. 1999; Igic et al. 2007 and references therein; Mena-Alí and Stephenson 2007). However, despite the early use of N. alata to explore the genetic diversity of SI (East and Yarnell 1929) and the extensive research conducted to understand the complex molecular basis of S-RNase-based SI (reviewed in McClure 2008), no examination of S-RNase diversity at the molecular level has been reported from natural populations of this species. Consequently, the number of reported S-RNase alleles of N. alata in databanks is limited compared to other self-incompatible solanaceous species.

Degenerate primers based on conserved domains C 1 and C5 were effective for amplifying N. alata S-RNases. Overall, ten different S-RNase candidate sequences of approximately 500 bp were identified (Supplementary Table S2). Three sequences (S_{2}, S_{6}, and $S_{c 10}$) were welldocumented S-RNase alleles involved in SI (Anderson et al. 1989; Murfett et al. 1996). Another S-RNase candidate sequence, designated S_{63} in this work, was very similar to N. alata pistil ribonuclease MS1 (Kuroda et al. 1994). The remaining six sequences ($S_{5^{-}}, S_{27^{-}}, S_{70^{-}}, S_{75^{-}}$, S_{107}, and S_{210}-RNases) represented new N. alata S-haplotype candidates, not previously reported. The alignment of deduced amino acid sequences of these putative S-RNases with $\mathrm{S}_{\mathrm{c} 10}$-RNase, showed the typical primary structure of solanaceous S-RNases (Fig. 1).

Although two different S-RNases from the S-locus are expected in plants displaying S-RNase-based SI, in some individuals only a single S-RNase candidate was identified, while in others, more than two S-RNase candidates were recovered (Supplementary Table S2). In the first case, the differential affinity of degenerate primers could largely favor the amplification of a single sequence. Another possible explanation could be a significantly different transcript level or stability between the two S-RNase alleles expected for the S-locus. Alternatively, style expression of S-like RNases or relic S-RNases, which structurally resemble functional S-RNases, could explain the amplification of more than two sequences related to S-RNases in each individual.

The high frequency of S_{63} and S_{5} sequences among the NaM individuals screened suggested that these alleles could represent in fact S-like RNases or relic S-RNases. The proteins encoded by these genes are members of the S-RNase super family (Green 1994) and have been reported in both self-compatible and self-incompatible species of many plant

Fig. 4 Phylogenetic analysis of S-RNases from the Solanaceae. Maximum-likelihood tree topology depicting phylogenetic relationships of S-RNases from Nicotiana alata (Nical), Petunia inflata (Petinf), Solanum chilense (Solchi), Lycium parishii (Lycpar), Physalis longifolia (Phylon) and Witheringia solanacea (Witsol). Eight Nicotiana alata TG lineages (lines I-VIII) and ten ancient S-lineages (lines $1-10$) are shown. Nicotiana alata alleles are underlined, and novel S-RNases reported in this work are highlighted with a black dot. Posterior probabilities and bootstrap values (percentage of 1,000 bootstrap replica) are shown for corresponding nodes when their value exceeds 50%. The tree was rooted with S_{3}-RNase from Antirrhinum hispanicum (Anthis). Accession numbers for the 154 S-RNase alleles used are in the supplementary File S1

families. S-like RNases are not linked to S-locus; their expression is not restricted to the pistil and the corresponding proteins usually exhibit several conserved residues between C1 and C3 domains that are not conserved in S-RNases. Frequently, their functions are related to stress scenarios, like phosphate starvation or pathogen attack (Dodds et al. 1996; Hugot et al. 2002). Relic S-RNases genes are a particular type of S-like RNases, they are not linked to S-locus either and their expression is restricted to the pistil. Originally they were described in SC species (Golz et al. 1998) although they have been also reported in SI species (Lee et al. 1992; Liang et al. 2003). So far, no particular role has been assigned to relic S-RNases and probably, they originated as paralogous copies of functional S-RNases. Phylogenetic analysis has shown that relic S-RNases and functional S-RNases share the same origin, while S-like RNases are more distantly related genes that group in an independent clade (Golz et al. 1998; Liang et al. 2003).

Neither S_{63} nor S_{5} amino acid sequences were significantly different from the rest of the S-alleles aligned in Fig. 1. Moreover, the highest identities among the S-RNase candidates were found between the S_{63} and S_{70} and between the S_{5} and S_{75}. In contrast to the high frequency of S_{63} and $\mathrm{S}_{5}, \mathrm{~S}_{70}$ and S_{75} were expressed in only two and three individuals of the NaM population, respectively (Fig. 2; Supplementary Fig. S2). The close structural resemblance between S-RNases, S-like RNases, and relic S-RNases means that functional and expression analyses are required to determine which candidates are truly S-RNase alleles.

Expression and functionality of N. alata style S-RNases

Due to the high divergence of HV regions among S-RNase alleles, PCR with specific primers based on $\mathrm{HVa} / \mathrm{HVb}$ regions has been extensively used for genotyping the S-locus in self-incompatible species. RT-PCR conducted
with specific primers showed individual-specific expression in the NaM population for all the new S-RNase candidates, except the S_{63} gene. This pattern of expression was the one expected for S-alleles involved in SI (Fig. 2). In contrast, S_{63} was the only sequence detected in all the plants examined, a trait consistent with a non-S-RNase. The specificity of putative S-RNases was further assayed in different organs and in developing styles, using $S_{\text {c10 }}$-RNase as an internal control (Fig. 3). Again, all the S-RNase candidates analyzed but S_{63}, mimicked both $S_{c 10-R N a s e}$ spatial and temporal patterns of expression. The RT-PCR analysis of $S_{c 10}$-RNase transcript in developing styles was almost identical to the expression of this S-allele previously assessed by RNA gel-blot analysis (McClure et al. 1999). Thus, the primary structure, the individual-specific expression and the spatial and temporal expression patterns of S-RNase candidates were the ones expected for S-RNases involved in SI. Conversely, the ubiquitous expression of S_{63} ribonuclease, both in different individuals and tissues, precluded it from encoding the specificity factor in the SI reaction and suggested that its role is not restricted to the reproductive process only.

To test whether the sequences of putative S-alleles were associated with SI phenotypes, the progeny of half-compatible crosses was analyzed (Tables 1, 2). All sequences assayed, except S_{5} and S_{63}, showed that the S-RNase candidates were functional in the SI reaction. Thus, $S_{70^{-}}, S_{75^{-}}$, $S_{27^{-}}, S_{107^{-}}$, and $S_{210^{-}}$RNases are novel functional S-haplotypes of N. alata. The minor leakiness observed in the S_{210}-RNase test cross was not unusual in natural populations of solanaceous species as we discuss below. Therefore, based on RT-PCR genotyping shown in Fig. 2 and the functionality tests of Tables 1 and 2 , the S-genotype proposed for the 12 NaM individuals analyzed in this work is shown in Table 3. One S-haplotype of each of plants 1, 6 , and 10 still remain unknown.

Both S_{5} and S_{63} alleles were non-S-RNases similar to relic S-RNases, regarding their deduced amino acid sequence (indistinguishable from S-RNases), their failure in pollen rejection, and their phylogenetic origin, shared with functional S-RNases but different from S-like-RNases (Fig. 1; Table 1; Supplementary Fig. S6). However, the pattern of relative expression in different organs was different for these two genes. While the non-functional S_{5}-RNase showed the organ expression of a relic S-RNase, typically restricted to the style, the non-functional S_{63}-RNase expression was ubiquitous and it resembled that of S-like-RNases. It will be interesting to know if these two genes are also related to nutritional metabolism or response to pathogen attack, as was previously established for S-likeRNases (Dodds et al. 1996; Hugot et al. 2002; Liang et al. 2002). It is intriguing that these two non-S-RNases, S_{63} and S_{5}, are highly similar to other two functional S-RNases,

Table $3 S$-genotype of NaM individuals

NaM individuals	S-genotype ${ }^{\mathrm{a}}$
1	$S_{75} S_{?}$
2	$S_{c 10} S_{210}$
3	$S_{27} S_{107}$
4	$S_{75} S_{6}$
5	$S_{75} S_{70}$
6	$S_{107} S_{?}$
7	$S_{c 10} S_{107}$
8	$S_{27} S_{107}$
9	$S_{2} S_{107}$
10	$S_{27} S_{?}$
11	$S_{70} S_{107}$
12	$S_{210} S_{107}$

${ }^{\text {a }}$ The S-genotype was inferred from results of Fig. 2a and Tables 1 and 2
exhibiting identity values higher than those of Nicotiana S-RNase alleles (Supplementary Fig. S2). S_{63} appears to have diverged from S_{70} before S_{5} diverged from S_{75}, since S_{63} ubiquity and presence in SC Nicotiana species, suggested that S_{63} had diverged before Nicotiana speciation (Fig. 2c).

Genealogy of novel S-RNase haplotypes
To analyze the phylogeny of N. alata S-RNases, five GSI species of the Solanaceae with distinct patterns of S-RNase allele evolution were chosen: S-RNases from Solanum chilense, Lycium parishii, and Petunia inflata were shown to represent a broad sample of ancient S-allele lineages (Igic et al. 2007; Savage and Miller 2006; Wang et al. 2001) while Physalis longifolia, and Witheringia solanacea S-RNases were grouped in clusters in a small subset of transgeneric S-lineages (Lu 2006; Stone and Pierce 2005). In the tree shown in Fig. 4, Petunia, Lycium, Solanum, and Nicotiana S-RNases tended, in general, to group together without relevant clustering in species-specific subgroups. To our knowledge, S-RNase diversity has been surveyed only in one natural population of N. alata (this work) and P. inflata (Wang et al. 2001). Both species exhibited the lowest number of S-RNase alleles from the species included in this study. Therefore, incomplete sampling would explain the absence of S-alleles from P. inflata in clades 3, 5 , and 7 and from N. alata in clades 1,2,6, and 7.

Overall, the S-RNase phylogenetic pattern showed that N. alata displays a broad sample of the allelic variation at the S-locus of the Solanaceae. As was previously pointed out, the close clustering of species from SI Solanaceae shows that the most extant diversity of S-RNases represents an ancient S-RNase polymorphism that appears to predate
the divergence of the species (Ioerger et al. 1990; Richman and Kohn 2000).

The functional analysis of the novel S-RNases described in this work revealed, in general, a robust SI response. Such behavior has been found previously in natural populations. For instance, a sample of ten new S-RNases identified from a natural population of wild tomato Solanum chilense exhibited a tight SI mechanism (Igic et al. 2007). However, solanaceous species from natural populations have shown a marked phenotypic variation in the strength of SI reaction. Often, natural populations display a mixture of selfcompatible and self-incompatible individuals, including intermediate behaviors with diverse degree of self-fertilization tendency (Tsukamoto et al. 1999; Stone et al. 2006). Then, the importance of examining SI in these populations is based on the high level of diversity they may exhibit in the expression of SI response. This natural variation is caused by different mechanisms such as deficient S-RNase expression or function (Tsukamoto et al. 2003a; Mena-Alí and Stephenson 2007), or loss of pollen function (Tsukamoto et al. 2003b). Pollen rejection in S-RNasebased SI is a complex mechanism involving the recruitment of several proteins other than the specificity factors of locus S. In N. alata and other solanaceous species, transacting stylar factors are required for SI (McClure et al. 1999; O'Brien et al. 2002; Hancock et al. 2005; Puerta et al. 2009). Other putative factors have been proposed as part of the molecular machinery that leads to pollen rejection (Goldraij et al. 2006; Hua and Kao 2006; McClure 2008). Currently individuals in the NaM population showing low or null ability for self-pollen rejection are being selected. The analysis of these individuals, possibly deficient in factor/s involved in pollen rejection, will contribute to elucidate the complex molecular mechanism of S-RNase-based SI.

Acknowledgments We thank Dr Bruce McClure, Dr Jorge Muschietti, and Dr Carlos Argaraña for critical reading of the manuscript; Dr Andrew Jackson for advice and discussion regarding phylogenetic issues, and Dr María E Alvarez for helpful discussions. We thank Gabriela Díaz Cortez for editorial assistance. This work was funded by grants of Agencia Nacional de Promoción Científica y Tecnológica (PICT 05/32933) and SECyT-Universidad Nacional de Córdoba to Ariel Goldraij.

References

Anderson AG, McFadden I, Bernatzky R, Atkinson A, Orpin T et al (1989) Sequence variability of three alleles of the self-incompatibility gene of Nicotiana alata. Plant Cell 1:483-491
de Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants. Springer, Berlin

Dodds PN, Clarke AE, Newbigin E (1996) Molecular characterisation of an S-like RNase of Nicotiana alata that is induced by phosphate starvation. Plant Mol Biol 31:227-238
East E, Yarnell SH (1929) Studies on self-sterility VIII. Self-sterility allelomorphs. Genetics 14:455-487
Goldraij A, Kondo K, Lee CB, Hancock CN, Sivaguru M, VázquezSantana S, Kim S, Phillips TE, Cruz-García F, McClure BA (2006) S-RNase compartmentalization and HT-B degradation in self-incompatible Nicotiana. Nature 439:805-810
Golz JF, Clarke AE, Newbigin E, Anderson M (1998) A relic S-RNase is expressed in the styles of self-compatible Nicotiana sylvestris. The Plant J 16:591-599
Goodspeed TH (1954) The genus Nicotiana. Origins, relationships and evolution of its species in the light of their distribution, morphology and cytogenetics. Chronica Botanica Company, Waltham, MA, pp 389-405
Green PJ (1994) The ribonucleases of higher plants. Ann Rev of Plant Physiol Plant Mol Biol 45:421-445
Hancock CN, Kent L, McClure B (2005) The stylar 120 k glycoprotein is required for S -specific pollen rejection in Nicotiana. Plant J 43:716-723
Hauck NR, Yamane H, Tao R, Iezzoni AF (2006) Accumulation of non-functional S-haplotypes results in the breakdown of gametophytic self-incompatibility in tetraploid Prunus. Genetics 172:1191-1198
Hua Z, Kao T-h (2006) Identification and characterization of components of a putative Petunia S-locus F-box-containing E3 ligase complex involved in S-RNase-based self-incompatibility. Plant Cell 18:2531-2553
Huang S, Lee HS, Karunandaa B, Kao T-h (1994) Ribonuclease activity of Petunia inflata S proteins is essential for rejection of self-pollen. Plant Cell 6:1021-1028
Hugot K, Ponchet M, Marais A, Ricci P, Galiana E (2002) A tobacco S-like RNase inhibits hyphal elongation of plant pathogens. Mol Plant Microbe Int 15:243-250
Igic B, Smith WA, Robertson KA, Schaal BA, Kohn JR (2007) Studies of self-incompatibility in wild tomatoes: I. S-allele diversity in Solanum chilense Dun. (Solanaceae). Heredity 99:553-561
Ioerger TR, Clarke AE, Kao T-h (1990) Polymorphism at the selfincompatibility locus in Solanaceae predates speciation. Proc Nat Acad Sci USA 87:9732-9735
Ioerger TR, Gohlke JR, Xu B, Kao T-h (1991) Primary structural features of the self-incompatibility protein in Solanaceae. Sex Plant Reprod 4:81-87
Ippolito A, Fernandes GW, Holtsford TP (2004) Pollinator preferences for Nicotiana alata, N. forgetiana, and their $F 1$ hybrids. Evolution 58:2634-2644
Kao T-h, Tsukamoto T (2004) The molecular and genetic bases of S-RNase-based self-incompatibility. Plant Cell 16:S72-S83
Kokubun H, Nakano M, Tsukamoto T, Watanabe H, Hashimoto G, Marchesi E, Bullrich L, Basualdo IL, Kao TH, Ando T (2006) Distribution of self-compatible and self-incompatible populations of Petunia axillaris (Solanaceae) outside Uruguay. J Plant Res 5:419-430
Kuroda S, Norioka S, Mitta M, Kato I, Sakiyama F (1994) Primary structure of a novel stylar RNase unassociated with selfincompatibility in tobacco plant Nicotiana alata. J Prot Chem 13:438-439
Lee HS, Singh A, Kao T-h (1992) RNase X2, a pistil-specific ribonuclease from Petunia inflata, shares sequence similarity with solanaceous S proteins. Plant Mol Biol 20:1131-1141
Lee HS, Huang S, Kao T-h (1994) S proteins control rejection of incompatible pollen in Petunia inflata. Nature 367:560-563

Lee CB, Page LE, McClure BA, Holtsford TP (2008) Post-pollination hybridization barriers in Nicotiana section Alatae. Sex Plant Reprod 21:183-195
Liang L, Lai Z, Ma W, Zhang Y, Xue Y (2002) AhSL28, a senescence- and phosphate starvation-induced S-like RNase gene in Antirrhinum. Biochem Biophys Acta 17:5964-5971
Liang L, Huang J, Xue Y (2003) Identification and evolutionary analysis of a relic S-RNase in Antirrhinum. Sex Plant Reprod 16:17-22
Lu Y (2006) Historical events and allelic polymorphism at the gametophytic self-incompatibility locus in Solanaceae. Heredity 96:22-28
Luu DT, Qin XK, Morse D, Capadoccia M (2000) S-RNase uptake by compatible pollen tubes in gametophytic self-incompatibility. Nature 407:649-651
Matton DP, Maes C, Laublin G, Qin XK, Bertrand C, Morse D, Cappadoccia M (1997) Hypervariable domains of self-incompatibility RNases mediate allele-specific pollen recognition. Plant Cell 9:1757-1766
McClure BA (2008) Comparing models for S-RNase-based selfincompatibility. In: Franklin-Tong VE (ed) Self-incompatibility in flowering plants. Evolution diversity and mechanisms. Springer, Berlin, pp 217-236
McClure BA (2009) Darwin foundation for investigating selfincompatibility and the progress toward a physiological model for S-RNase-based SI. J Exp Bot 60:1069-1081
McClure BA, Haring V, Ebert PR, Anderson MA, Simpson RJ, Sakiyama F, Clarke AE (1989) Style self-incompatibility gene products of Nicotiana alata are ribonucleases. Nature 342:955957
McClure BA, Gray JE, Anderson MA, Clarke AE (1990) Selfincompatibility in Nicotiana alata involves degradation of pollen rRNA. Nature 347:757-760
McClure BA, Mou B, Canevascini S, Bernatzky R (1999) A small asparagine-rich protein required for S-allele specific pollen rejection in Nicotiana. Proc Nat Acad Sci USA 96:13548-13553
McClure BA, Cruz-García F, Beecher B, Sulaman W (2000) Factors affecting inter- and intra-specific pollen rejection in Nicotiana. Ann Bot 85:113-123
Mena-Alí JI, Stephenson AG (2007) Segregation analyses of partial self-incompatibility in self and cross progeny of Solanum carolinense reveal a leaky S-allele. Genetics 177:501-510
Miller JS, Levin RA, Feliciano NM (2008) A tale of two continents: Baker's rule and the maintenance of self-incompatibility in Lycium (Solanaceae). Evolution 5:1052-1065
Murfett J, Atherton TL, Mou B, Gasser CS, McClure BA (1994) S-RNase expressed in transgenic Nicotiana causes S-allelespecific pollen rejection. Nature 367:563-566
Murfett J, Strabala TJ, Zurek DM, Mou B, Beecher B, McClure BA (1996) S-RNase and interspecific pollen rejection in the genus Nicotiana: multiple pollen-rejection pathways contribute to unilateral incompatibility between self-incompatible and selfcompatible species. Plant Cell 8:943-958
O'Brien M, Kapfer C, Major G, Laurin M, Bertrand C, Kondo K, Kowyama Y, Matton DP (2002) Molecular analysis of the stylarexpressed Solanum chacoense asparagine-rich protein family related to the HT modifier gametophytic self-incompatibility in Nicotiana. The Plant J 32:1-12
Pandey KK (1979) The genus Nicotiana: evolution of incompatibility in flowering plants. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae. Academic, London

Puerta AR, Ushijima K, Koba T, Sassa H (2009) Identification and functional analysis of pistil self-incompatibility factor HT-B of Petunia. J Exp Bot 60:1309-1318
Richman A, Kohn JR (2000) Evolutionary genetics of self-incompatibility in the Solanaceae. Plant Mol Biol 42:169-179
Richman A, Kao T-h, Schaeffer SW, Uyenoyama MK (1995) S-allele sequence diversity in natural populations of Solanum carolinense (Horsenettle). Heredity 75:405-415
Richman AD, Uyenoyama MK, Kohn JR (1996) S-allele diversity in a natural population of Physalis crassifolia (Solanaceae) (ground cherry) assessed by RT-PCR. Heredity 76:497-505
Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574
Savage AE, Miller JS (2006) Gametophytic self-incompatibility in Lycium parishii (Solanaceae): allelic diversity, genealogical structure and patterns of molecular evolution. Heredity 96:434444
Sijacic P, Wang X, Skirpan L, Wang Y, Dowd PE, McCubbin AG, Huang S, Kao T-h (2004) Identification of the pollen determinant of S-RNase-mediated self-incompatibility. Nature 429:302-305
Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688-2690
Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RaxML web servers. Syst Biol 57:758-771
Stone JL, Pierce S (2005) Rapid recent radiation of S-RNase lineages in Whiteringia solanaceae (Solanaceae). Heredity 94:547-555
Stone JL, Sasuclark MA, Blomberg C (2006) Variation in the selfincompatibility response within and among populations of the tropical shrub Witheringia solanaceae (Solanaceae). Am J Bot 93:592-598
Thompson JD, Gibson TJ, Plewniak F, Jeanmouguin F, Higgins DG (1997) The ClustalX window interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res 24:4876-4882
Tsukamoto T, Ando T, Kokubun H, Watanabe H, Masada M, Zhu X, Marchesi E, T-h Kao (1999) Breakdown of self-incompatibility in a natural population of Petunia axillaris (Solanaceae) in Uruguay containing both self-incompatible and self-compatible plants. Sexual Plant Reprod 12:6-13
Tsukamoto T, Ando T, Kokubun H, Watanabe H, Sato T, Masada M, Marchesi E, Kao T-h (2003a) Breakdown of self-incompatibility in a natural population of Petunia axillaris caused by a modifier locus that suppresses the expression of an S-RNAse gene. Sexual Plant Reprod 15:255-263
Tsukamoto T, Ando T, Takahashi K, Omori T, Watanabe H, Kokubun H, Marchesi E, Kao T-h (2003b) Breakdown of self-incompatibility in a natural population of Petunia axillaris caused by loss of pollen function. Plant Physiol 131:1903-1912
Tsukamoto T, Potter V, Tao R, Vieira CP, Vieira J, Iezzoni AF (2008) Genetic and molecular characterization of three novel S-haplotypes in sour cherry (Prunus cerasus L.). J Exp Bot 59:31693185
Wang X, Tsukamoto T, Ando T, Kao T-h (2001) Evidence that intragenic recombination contributes to allelic diversity of the S-RNase gene at the self-incompatibility (S) locus in Petunia inflata. Plant Physiol 125:1012-1022
Wheeler D, Newbigin E (2007) Expression of 10 S-Class SLF-like genes in Nicotiana alata pollen and its implications for understanding the pollen factor of the S locus. Genetics 177:2171-2180

[^0]: Communicated by R. Schmidt.
 Electronic supplementary material The online version of this article (doi:10.1007/s00299-010-0860-6) contains supplementary material, which is available to authorized users.
 J. A. Roldán • R. Quiroga • A. Goldraij (\triangle)

 Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
 e-mail: arielg@fcq.unc.edu.ar

