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a b s t r a c t

A new approach to the solution of problems of electrostatics, some of them with mixed boundary
conditions, is presented. The proposed scheme can be used in cases were we have a formal solution in
the form of a series in Legendre polynomials and the boundary or matching conditions are given not on
the whole interval (0, p) of the polar variable, q, but only over the interval (0, p/2) or (p/2, p). Truncation
of the series after the Nth term and the projection on the subspace generated by the set of the first N
even (or odd) Legendre polynomials allows us to determine the unknown coefficients of the approximate
solution. The results show rapid convergence toward the exact values as we increase the number of
terms, N, included in the approximate solutions. The procedure allows to solve approximately some
problems whose exact solutions, we believe, are not yet known.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

An advanced course on Electromagnetism based on Jackson’s
Classical Electrodynamics [1] leaves the students with the feeling
that they are able to solve almost any problem in this area. However
this perception is far from been accurate; for example, if we want to
find the external electrostatic potential of a cube or a finite cylin-
drical body, we soon realize that we lack the mathematical tools to
solve such problems. Even simple academic problems, most of
them with mixed boundary conditions, need rather sophisticated
techniques, such as the dual integral equations [2], not always
familiar to students with a basic background. The aim of this work
is to contribute to increase the number of problems that the
students can solve, even in an approximate way, with elementary
tools. With this objective J. D. Jackson has included in the third
edition of his book an introduction to finite elements analysis in
electrostatics [3]. One of the authors together with Lamberti have
developed a numerical procedure to find the electrostatic potential
with given boundary conditions [4]. In some problems in electro-
static we can write down a formal solution as a series with
unknown coefficients but the boundary or the matching conditions
are given not on the whole range of the variable but only on a part
of it, therefore we are unable to determine the coefficients by the
use of the orthogonality property. Such is the case of many prob-
lems whose solution can be given as an expansion in Legendre
polynomials but the range of the polar variable q is only (0, p/2) or
(p/2, p). We know that over these ranges the Legendre polynomials
.
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with even or odd indices are still orthogonal among themselves but
the even ones are not orthogonal to the odd ones there. We can
define an overlap matrix S whose elements are the integrals, over
the restricted range of the variable, of the two polynomials with
indices of different parity. By truncating the series expansion after
the Nth term, imposing the matching conditions, and then pro-
jecting on one of the subspaces generated by the first even, or odd,
Legendre polynomials we are left with a set of matrix equations,
each of order N�N, that once solved gives us an approximate
solution. In order to show the simplicity and the accuracy of the
procedure we will apply it to solve four problems of electrostatics.
Two of them have known solution and will be used to compare our
results with the exact ones, but we have not been able to find the
solution for the others in the available literature.
2. Examples

2.1. Charged conducting disk

This problem has been treated in the first edition of Jackson’s
Classical Electrodynamics. Assume that the disk, of radius a, is on
the {x, y} plane with center at the origin of the coordinate system
(see Fig. 1) and held at a potential V. We propose an expression for
the electrostatic potential for the outer region r� a, q ˛ (0, p), fo(r,
q), and one for the inner region r � a; q˛ð0;p=2Þ; fiðr; qÞ, given by

foðr; qÞ ¼
PN

j¼0
BjPjðcos ðqÞÞ

rjþ1 ; j ¼ 0;2;4::;

fiðr; qÞ ¼
PN

j¼0 AjPjðcos ðqÞÞrj þ
PN

a¼1 CaPaðcos ðqÞÞra;

j ¼ 0;2;4.:; a ¼ 1;3;5;.:

ð1Þ
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Fig. 1. Electrified disk of radius a. The dotted line is the common frontier of the two
regions where are defined the potentials fi and fo.
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Fig. 2. Behavior of the approximate potential fi(r¼ a, q) and fo(r¼ a, q) at the common
boundary as a function of cos(q) for two values of N. a- N¼ 5; b- N¼ 15.
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The form chosen for fo(r, q) makes sure that fo(r, q)¼ fo(r, p� q)
then vfo

vq
jq¼p=2 ¼ 0. Since fi(r, q) is defined in the restricted interval

q˛ð0;p=2Þ it has not defined parity. For the region r� a, q˛ðp=2;pÞ
the potential can be obtained from fi(r, q) by symmetry.

From now on we will assume that latin indices are even and that
greek ones are odd.

Defining the basis row vectors with the even, Pn, and the odd, Pa,
Legendre polynomials

FðqÞhðP0ðcos ðqÞÞ; P2ðcosðqÞÞ; P4ðcosðqÞÞ;.:Þ
GðqÞhðP1ðcosðqÞÞ; P3ðcosðqÞÞ; P5ðcosðqÞÞ;.:Þ (2)

the column vectors A, B, C and the infinite diagonal matrices R1(r),
R2(r), R3(r), R4(r), by

AT hðA0;A2;A4;.Þ;BT hðB0;B2;B4;.Þ;CT hðC1;C3;C5;.Þ
R1ðrÞhdiag

�
1; r2; r4; r6;.

�
R2ðrÞhdiag

�
r; r3; r5; r7;.

�
R3ðrÞhdiag

�
r�1; r�3; r�5;.

�
R4ðrÞhdiag

�
r�2; r�4; r�6;.

�
ð3Þ

respectively, the potentials given in Eq. (1) can be written in
a matrix form

fiðr; qÞ ¼ FR1ðrÞA þ GR2ðrÞC r � a; q˛
�
0; p

2

�
foðr; qÞ ¼ FR3ðrÞB r � a; q˛ð0;pÞ (4)

We have used the superscript T to indicate the transpose of the
column vectors. We also define the overlap matrices:

Qh

Zp
2

0

FT F sin ðqÞdq ¼ diag
�

1;
1
5
;
1
9
;.:

�

Sh

Zp
2

0

FT G sin ðqÞdq

(5)

The elements of the overlap matrix S are [5]

Sja ¼
ð�1Þ

jþa�1
2 j!a!

2 jþa�1ða� jÞðjþ aþ 1Þ
h�

j

2

�
!
�

a�1
2

�
!
i2 (6)

Imposing the continuity of the potential and its normal derivative
at r¼ a for 0 � q � p=2 we have

FR1A þ GR2C ¼ FR3B
FR01A þ GR02C ¼ FR03B (7)

where the matrices Ri and their derivatives R0i are evaluated at
r¼ a. From Eq. (7) after multiplying from the left by FT sin(q) and
integrating over the variable q˛ð0;p=2Þ, i.e. projecting on the
subspace generated by the even Legendre polynomials, we arrive at
the two matrix equations

QR1A þ SR2C ¼ QR3B
QR01A þ SR02C ¼ QR03B (8)

The potential fi(r, q) satisfies the condition:

fi

�
r; q ¼ p

2

�
¼ V0A0 ¼ V ;A2 ¼ A4 ¼ .:: ¼ 0 (9)

Truncating the series expansion after the Nth term we are left
with a set of two N�N matrix equations with two unknown
vectors B and C. Once the coefficients are known the approximate
potentials are obtained. In Fig. 2 we show the difference between
the external potential fo(r¼ a, q) and the internal potential
fi(r¼ a, q) as a function of q for two values of N. As we can see this
difference decreases as we increase N insuring the continuity of
the potential as N goes to infinity. In order to have an idea of the
accuracy of the approximate solution, we have calculated the
capacity of the disk for different values of N, see Fig. 3. As can be
seen a reasonable approximate value of the capacity can be
obtained with very little effort, q=V ¼ 2p30a for N¼ 1, against the
exact value 8e0a. The approximated charge density, s(r/a), on
the disk as function of the radial coordinate is compared with the
exact one in Fig. 4 for different values of N. This figure show clearly
the convergence of the approximate solution to the exact one as
we increase the value of N.
2.2. Conducting plane with a circular hole of radius a

The origin of coordinates is taken at the center of the hole and
the z axis normal to the plane, the unitary vector e3 is along this
direction. We also assume that far from the hole there is an electric
field in the z direction having different values on either side of the



0.2 0.4 0.6 0.8 1

2

4

6

8

10σi(r/a)/(V a)
Exact 

N=121 

N=51 

N=13 
N=3 

r/a

r/a

σi(r/a)/(V a)
Exact 

N=121 

N=51
N=13

N=3

0.95 0.96 0.97 0.98 0.99

2

4

6

8

10

1

a

b

Fig. 4. Charge density, s(r/a), of an electrified disk of radius a, hold at potential V, for
different values of N, also the exact density, dotted line, as a function of the distance to
the center of the disk. (a) For the full range, r ˛ (0, a) and (b) for the expanded region
r ˛ (0.95a, a).
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Fig. 3. The approximate electrical capacity C, divided by eoa, of the electrified disk of
radius a as a function of N. The exact value is 8.
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Fig. 5. An infinite grounded conducting plane with a circular hole of radius a cut in it.
There is constant electric field far from the hole, normal to the plane of value Eþ and
E�, for z> 0 and z< 0 respectively.
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grounded plane, see Fig. 5. Let f1, f2 and fi be the electrostatic
potentials for the regions: r � a; q˛ð0;p=2Þ; r � a; q˛ðp=2;pÞ
and r� a, q ˛ (0, p) respectively. Defining:

fþ0 h� Eþz; f�0 hE�z (10)

the general expression for the potential that satisfies the boundary
condition on the plane outside the hole and far from it, are

f1ðr; qÞ ¼ fþ0 þ
PN

a¼1 HaPaðcos ðqÞÞr�a�1

hGR2ðrÞIþ þ GR4ðrÞH

f2ðr; qÞ ¼ f�0 þ
PN

a¼1
DaPaðcos ðqÞÞr�a�1

hGR2ðrÞI� þ GR4ðrÞD

fiðr; qÞ ¼
PN

j¼0
AjPjðcos ðqÞÞrj þ

PN
a¼1 CaPaðcos ðqÞÞra

hFR1ðrÞA þ GR2ðrÞC

ð11Þ

where F, G, A, C and Ri(r) are the same as before, D and H are two
new row vectors with odd subindices. We have written the
asymptotic potentials f0

þ and f0
� using the two column vectors

Iþ and I� whose components are Iþa¼�Eþda,1 and I�a¼ E�da,1

respectively, da,1 is the so-called Kronecker delta. Imposing the
continuity of the potential and its normal derivative at the
boundary r¼ a, multiplying from the left by FT sin(q), integrating
over q, and taking into account that

Zp

p
2

FT F sinðqÞdq ¼
Zp

2

0

FT F sinðqÞdq ¼ Q

Zp

p
2

FT G sinðqÞdq ¼ �
Zp

2

0

FT G sinðqÞdq ¼ �S;

(12)

we get the following set of matrix equations

QR1A þ SR2C ¼ SR2Iþ þ SR4H
QR01A þ SR02C ¼ SR02Iþ þ SR04H
QR1A � SR2C ¼ �SR2I� � SR4D
QR01A � SR02C ¼ SR02I� � SR04D

(13)

where the matrices Ri and their derivatives R0 i should be evaluated
at r¼ a. The Eq. (13) are an inhomogeneous set of matrix equations
whose solution gives us the coefficient A, C, H and D of the series
expansion for the potentials. The roughest approximation, i.e. N¼ 1
leads us to

f1ðr; qÞz� Eþz� ðE
þþE�Þ
4r2 a3cosðqÞ; r � a; q˛

�
0; p

2

�
f2ðr; qÞzE�zþ ðE

þþE�Þ
4r2 a3cos ðqÞ; r � a; q˛

�
p
2;p

�

fiðr; qÞz�
3a
�

Eþ þ E�
�

8
�

�
Eþ � E�

�
2

rcos ðqÞ; r � a; q˛ð0;pÞ

The second term in f1 (f2) corresponds to the potential of
an electric dipole p¼�pe0a3(Eþþ E�)e3 (p¼pe0a3(Eþþ E–)e3),
located at the center of the hole. For the exact solution (6) the dipolar
contribution to the potential comes from an electric dipole given by
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pe ¼ �4=330a3ðEþ þ E�Þe3. The potential at the center of the hole,
in this approximation, is fið0; qÞz�

3aðEþþE�Þ
8 ¼ �0:375aðEþ þ E�Þ,

while the exact result is feð0; qÞ ¼ �a=pðEþ þ E�Þ ¼ �0:318a
ðEþ þ E�Þ, i.e. an approximation within the 20%.

The magnitude of the above mentioned electric dipole, i.e. the
coefficient H1, as a function of N is shown in Fig. 6, and the potential
along the radial coordinate inside the hole, fiðr=a; q ¼ p=aÞ, in
Fig. 7. In both figures we have taking E�¼ 0.

In Fig. 8 we compare the behavior of the external potential,
f1(r¼ a, q), and the internal potential, fi(r¼ a, q), at the common
boundary as a function of cos(q) for N¼ 14.

It should be emphasized that the exact solution of the last two
problems requires a knowledge of dual integral equations and
much work as can be seen in Jackson’s book [6].

2.3. Hemispherical hole drilled in a flat conductor

The problem of a hemispherical boss on a conducting plane in
an external constant electric field is a classical problem equiva-
lent to the one of a spherical grounded conductor in a uniform
electric field [8]. However, we have not found the solution for the
analogous problem with a hole instead of a boss that we will now
consider here. The boundary of the conductor is part of the {x, y}
plane and the surface of the hole given by r ¼ a; q˛ðp=2;pÞ,
which are kept at potential zero, see Fig. 9. We assume that far
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Fig. 7. The potential fi(r/a) on the plane {x, y} as a function of the radial coordinated
r/a for different values of the parameter N.
from the hole there is an electric field in the z direction E0¼ E0e3.
We propose an electric potential for points inside the sphere
r� a, fi(r, q), and one outside the sphere, fo(r, q), that can be
written as follows:

fi ¼
PN

j¼0
Ajr

jPjðcosðqÞÞ þ
PN

a¼1
CaraPaðcosðqÞÞ

hFR1ðrÞA þ GR2ðrÞC; r � a; q˛ð0;pÞ

fo ¼ �E0rP1ðcosðqÞÞ þ
PN

a¼1
Dar�a�1PaðcosðqÞÞ

hGR2ðrÞIþ þ GR4ðrÞD; r � a; q˛
�
0; p

2

�

ð14Þ

where the components of Iþ are Ia
þ¼�E0da,1. Using the continuity

of the potential and its derivative at the common frontier, the
boundary condition for fi, the definition of the matrices Q and S, Eq.
(5), and their property, Eq. (12), we get the following matrix
equations

QR1A � SR2C ¼ 0
QR1A þ SR2C ¼ SR2IDDSR4D
QR01A þ SR02C ¼ SR02IDDSR04D

(15)

Solving this set of matrix equations for the column vectors A, C
and D as functions of Iþ we get the potential and from it the charge
density on the plane or on the wall of the hole. In Fig. 10 we show
the external potential fo(r¼ a, q) and the internal potential fi(r¼ a,
q) as a function of cos(q) for N¼ 15 and radial component of the
y 

z φo 

a0

ΕΕΕΕ0 

φ = 0 

φ = 0 

φi 

-a

Fig. 9. A hemispherical hole of radius a drilled on the flat surface, z¼ 0, of a homo-
geneous infinite conducting body that filled the semi-space z� 0. A constant electric
field E0 exists far away from the conductor.
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electric fields evaluated at common boundary of the two regions.
Fig. 11 shows the charge per unit polar angle q, h(q), on the wall of
the hole for N¼ 15 and N¼ 20. The oscillations are due to the finite
number of terms taken in the approximate solution. The charge
density on the plane is given by soðrÞ ¼ �30vfo=vzjz¼0; the charge
density on the plane if the hole were not there is sp(r)¼ e0E0. We
define z(r) h (so(r)� sp(r))2pr, i.e. the excess of charge per unit
radial coordinate, it is shown in Fig. 12. This excess of charge is
mainly concentrated close to the rim of the hole. The exact solution
satisfies that the charge inside the hole plus the excess of charge on
the plane surface must be equal to the charge on the lid of the hole
if it were absent. It can be shown that the approximate solution
π 2.5 2.2 2.0 1.8
-0.5
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2.5
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π/2
θ

η /(2 π a2 ε0 E0) 

Ν=15
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0

Fig. 11. The electrical charge per unit polar angle, h(q), on the wall of the hole, for
N¼ 15 and N¼ 20, as a function of q.
given here, for any value of N, satisfies this requirement. In fact, this
equality is built in the zero component of the last matrix equation
given in Eq. (15) if one takes into account the values of S0,a.

2.4. Electrical resistance of a semi-infinite conductor

We assume that we have an isotropic homogeneous conductor
with conductivity s in the region given by the following conditions:
r � a; q˛ð0;p=2Þ and r� a, q ˛ (0, p). The hemispherical cup of
radius a and q˛ðp=2;pÞ is one of the electrodes which is kept at
potential V. The other electrode is held at potential zero and it is
supposed to be at infinity, see Fig. 13. Once the system has reached
a stationary regime the total current through one of the electrodes
will be used to calculate the electrical resistance. The stationary
character of the problem allows as to define an electrostatic
potential, E¼�7f, and write the conditions 7. J¼ 0 for all points
inside the conductor, where J is the current density. From Ohm
microscopic law J¼ sE then we have 7. E¼�Df¼ 0. Further more
the z component of the current density should vanish at the plane
z¼ 0 for r� a, that is vf=vz ¼ 0, because no current flows across
this part of the plane. This condition on the normal component of
the current density does not rule out the possibility of a static
surface charge density there.

We should mention that the calculation of the resistance with
an hemispherical electrode buried in the conductor instead of
protruding, as in our case, can easily be calculated giving the value
Rb ¼ 1=2psa [7]. The present is a typical problem with mixed
boundary conditions. The electrostatic potential, for points inside
the sphere of radius a, fi(r, q) and for points outside the sphere, fo(r,
q), can be written as
φo

y 

z 

a0

φi

-a

V
Electrode

Conductor

0
z 0

o =
∂
∂

=z

φ
0

z 0

o =
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∂
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0 

Fig. 13. The electrode, r¼ a, q ˛ (p/2, p), hold at potential V. The normal derivative of
fo on the surface z¼ 0 for r> a, vanishes.
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fiðr; qÞ ¼
PN

n¼0 AnrnPnðcos ðqÞÞ þ
PN

a¼1 CaraPaðcos ðqÞÞ
hFR1ðrÞA þ GR2ðrÞC; r � a; q˛ð0;pÞ

foðr; qÞ ¼
PN

n¼0 Bnr�n�1Pnðcos ðqÞÞ
hFR3ðrÞB; r � a; q˛

�
0; p

2

�
ð16Þ

Proceeding as in the last example we obtain the following 3
matrix equations:

QR1A þ SR2C ¼ QR3B
QR01A þ SR02C ¼ QR03B
QR1A � SR2C ¼ QI

(17)

where we have used the column vector I whose components are
In¼ Vdn,0. To have an idea of the approximate value of the resistance
we take again N¼ 1, obtaining in this case Rz3=2psa ¼ 3Rb. The
values of the approximate resistance obtained as a function of N is
shown in Fig. 14. We expect that the asymptotic value limN/NR be
greater than Rb.
3. Conclusions

We have presented a procedure that allows us to solve prob-
lems of electrostatics, some of them with mixed boundary
conditions, using elementary tools of linear algebra. The results
obtained show a rapid convergence toward the exact values in
cases that we have to compare with. It is shown that we can
obtain reasonable approximate solution with very little effort, and
it can be improved increasing the number of terms included in the
expansion. In this work we have chosen to project on the subspace
generated by the first N even Legendre polynomials, if we had
chosen the space generated by the odds ones we would have
a slightly different approximate solution. The difference between
these two solutions goes to zero as we increase the number of
terms, N, in the expansion. Finally we want to mention that we
have successfully use this scheme in a course on Classical Elec-
tromagnetism at our University.
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